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Abstract: Edge devices (EDs) carry limited energy, but 6th generation mobile networks (6G) communi-
cation will consume more energy. The unmanned aerial vehicle (UAV)-aided wireless communication
network can provide communication links to EDs without a signal. However, with the time-lag
system, the EDs cannot dynamically adjust the emission energy because the dynamic UAV coordi-
nates cannot be accurately acquired. In addition, the fixed emission energy makes the EDs have
poor endurance. To address this challenge, in this paper, we propose a deep learning-based energy
optimization algorithm (DEO) to dynamically adjust the emission energy of the ED so that the
received energy of the mobile relay UAV is, as much as possible, equal to the sensitivity of the receiver.
Specifically, the edge server provides the computing platform and uses deep learning (DL) to predict
the location information of the relay UAV in dynamic scenarios. Then, the ED emission energy is
adjusted according to the predicted position. It enables the ED to communicate reliably with the mo-
bile relay UAV at minimum energy. We analyze the performance of a variety of predictive networks
under different time-delay systems through experiments. The results show that the Weighted Mean
Absolute Percentage Error (WMAPE) of this algorithm is 0.54%, 0.80% and 1.15% under the effect of
a communication delay of 0.4 s, 0.6 s and 0.8 s, respectively.

Keywords: 6G; UAV communication; adaptive adjustment; track prediction; edge intelligence

1. Introduction

In the 6G communication environment, the number of wirelessly connected ter-
minals is increasing dramatically [1,2]. They carry out tasks such as data sensing [3],
data sending and receiving [4]. A large amount of data needs to be transmitted over
wireless networks [5,6]. Among them, a variety of big data such as video [7] and point
clouds [8] can make local wireless communication clogged. Mobile edge computing (MEC)
can alleviate this problem [9]. MEC places computation and storage resources at the edge of
the mobile network [10], reducing transmission latency and enabling fast decision making
at the endpoint. At the same time, MEC enables big data generated by devices at the edge
to be processed at the terminal, reducing the amount of data uploaded to the cloud [11].
However, due to the limited 6G coverage, some EDs are isolated due to communication
interruptions and signal blocking [12] and are unable to interact with the cloud for data. To
address this challenge, UAVs will take on some of the relay tasks in 6G communication to
connect ground communication nodes [13].
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UAVs are widely used in civilian applications [14] because of their low cost and
high reliability. For example, they can perform high-altitude delivery [15], remote sens-
ing mapping [16], pesticide spraying [17], high-altitude rescue [18], disaster emergency
rescue [19] and so on. As an aerial actuator, various devices can be quickly installed on
UAVs [20,21], such as various types of sensing devices, small servers, small base stations
and so on. Because there is less obstruction in the air, line-of-sight (LOS) [22] communica-
tion can be established quickly, so UAVs can carry base stations to provide services at the
edge of the communication and expand the communication area.

In this paper, we envisage an MEC system with a UAV as a relay. The system consists
of an ED, a UAV and an access point. The ED is moving in the no-signal area, collecting and
computing the forepart-generated data and generating the data that need to be transmitted
back to the cloud. The UAV carries a small base station at a high altitude and establishes a
temporary communication link to receive the data sent by the ED, and according to the mis-
sion, the UAV will move in the air. The access point is in the signal area and makes a wired
or wireless connection to the cloud to receive the information forwarded through the UAV.
In the 6G environment, the UAV will probably no longer have only a single function during
the overhead operation [23], that is, the UAV will be given other aerial tasks during the
communication relay tasks. In such a moment, the UAV will not only keep hovering in the
air during the work process but will also more often make irregular movements depending
on the work needs. To ensure smooth communication, the EDs need to maintain real-time
signal coverage and keep in touch with the UAV. However, in order to work outdoors
for a long time, EDs have strict requirements on the power consumption of the product.
With fixed emission energy for a long time, the ED will lead to the poor endurance of edge
computing devices without an external power supply. Moreover, although the communica-
tion coding technology has matured [24–26], the high frequency of 6G communication [27]
leads to a significant increase in transmit energy at the ground edge. In order to ensure
that the EDs work for a long time in the field, adaptive control of the emission energy of
the ED is required [28] to achieve the effect of reducing the overall energy consumption.
However, the issue of the emission energy of the ED is less mentioned in related papers.
M. Alzenad et al. [29] investigated an energy-efficient three-dimensional (3D) layout of
UAV-base stations that succeeds in maximizing the number of covered users with minimum
transmit energy. Mingzhe Chen et al. [30] proposed a new algorithm in a machine learning
framework for echo state networks to find optimal locations for UAV communication to
minimize the transmit energy used by UAVs. Zhaohui Yang et al. [31] achieved a total
energy minimization problem by jointly optimizing user association, energy control, com-
putational capacity allocation and location planning. Shuhang Zhang et al. [32] optimized
the trajectory of the UAV, the transmit energy of the UAV and the mobile device by min-
imizing the outage probability of the relay network, and a closed-form low-complexity
solution with joint trajectory design and energy control is proposed to solve this non-
convex problem. The above studies mainly target the transmit energy sent from the UAV
to the access point without considering the configuration of the transmit energy of the EDs.
Mushu Li et al. [33] maximize the UAV energy efficiency by jointly optimizing the UAV
trajectory, user emission energy and computational load distribution. Fuhui Zhou et al. [34]
proposed two alternative algorithms by jointly optimizing the CPU frequency, user un-
loading times, user emission energy and UAV trajectory to maximize user weighting and
computational rate. Although they take into account the user emission energy allocation,
they optimize it jointly with communication and computational resources, the UAV trajec-
tory and the choice of unloading method, while our proposed model is for a UAV in the air
with irregular motion and an uncontrolled UAV trajectory.

The UAV will inform the ED of its real-time location through wireless signals. Al-
though joint scheduling of ultra-reliable and low-latency communications and enhanced
mobile broadband traffic in 6G wireless networks [35] makes the communication latency
further reduced, it still does not allow for real-time communication [36]. The communica-
tion delay and the computation delay are incurred during data delivery in the MEC wireless
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networks with UAVs as relays. More specifically, a communication delay includes a wait
delay (WD) and a transmission delay (TD), while a computation delay includes a queuing
delay (QD) and a processing delay (PD) [37]. These delays can lead to the degradation
of the transmission quality. In order to solve this problem, in the work of [38], a strategy
of non-orthogonal multiple access-assisted MEC was proposed to achieve the effect of
avoiding a severe delay and reducing energy consumption. In the work of [39], a two-level
alternating algorithm framework based on Lagrangian dual decomposition is proposed to
achieve a near-optimal delay performance with a large energy consumption reduction. In
the work of [40], the concept of the 3D cellular network is proposed. By using kernel den-
sity estimation, cross-validation and optimal transport theory, the latency-minimal 3D cell
association for UAV-user equipment is derived to reduce the delay of serving UAV users.
In the work of [41], a novel penalty dual decomposition-based algorithm was proposed to
minimize the sum of the maximum delay among all the users in each time slot by jointly
optimizing the UAV trajectory, the ratio of offloading tasks and the user scheduling. The
communication delay mentioned in the above studies is limited to the delay when the UAV
task loading and unloading processes conflict. Today’s research rarely considers the impact
of a communication delay on UAV mobile communication when the UAV acts as a relay.
Therefore, the UAV position information obtained by the ground transmitter side will be
lagging if the UAV performs an irregular motion while performing relay communication.
That is, the ground transmitter side cannot obtain the correct communication distance
with the relay communication UAV. As a result, the adaptive ground transmitter side will
not be able to adjust the transmitting state correctly. The UAV flight trajectory can be
well predicted using motion prediction models [42]. However, the method is difficult to
predict for long-time motion models. Studies have indicated that DL can predict the flight
trajectory of UAVs better than traditional algorithms [27,43]. The trajectory of the UAV
can be predicted using artificial intelligence, which allows the ground-side transmitting
antenna to be aligned with the UAV faster [44,45]. However, the study only considers the
flight of the UAV in 2D and does not discuss the magnitude of the time delay in categories.
Therefore, UAV emergency relay communication faces the following challenges: (1) how
to eliminate the impact of the time lag on the acquisition of the location information of
UAVs and (2) how to reduce the transmit power of edge nodes and improve the range
of EDs. In response to the above challenges, we propose a deep learning-based energy
optimization algorithm. MEC is used to optimize the communication resources of EDs in
the UAV relay network. The algorithm uses geometry to theoretically derive 3D UAV relay
communication losses and predicts UAV motion trajectories through a DL network. An
adaptive adjustment of the ED emission signals with a known network communication
delay improves the communication quality and minimizes the energy consumption. The
main contributions of this paper are as follows:

(1) Considering the power consumption problem of EDs transmission, we formulate
an adaptive adjustment algorithm, which establishes a full-duplex relay network
using UAVs and makes UAVs talk with EDs in real-time to understand the position
relationship between EDs and relay UAVs and adjust the emission energy of EDs.

(2) Considering that a communication delay will lead to an information transfer lag,
we discuss the impact of a time delay on communication performance and find that
an incorrect distance calculation is the main factor affecting the success of signal
transmission. We propose a deep learning-based energy optimization algorithm,
which can optimize the transmitter energy allocation under a certain response delay
threshold.

(3) Considering the impact of different system delays on communication systems, we
test the performance of a variety of DL prediction algorithms in different time-delay
systems. At the same time, the proposed adaptive energy optimization algorithm is
tested and discussed by simulation experiments.

The rest of this paper is organized as follows. Section 2 presents the communication
model of a UAV-aided wireless network system. Section 3 derives the factors that affect
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the transmitter energy allocation under a single communication link. A DEO is given
considering the effect of a communication response delay. In Section 4, we discuss the
results of various DL algorithms under different time-lag systems through simulations to
evaluate the performance of the algorithm. In Section 5, we conclude the full paper.

2. UAV-Aided Wireless Network System Model

We consider an ED operating in a signal-free area, working on data acquisition, edge
computing and transmitting the necessary information to the cloud in real-time. The device
does not have any physical connection to other devices. Considering the transmission of
information in signal-less areas, we envision a UAV-aided wireless network in which the
UAV carries a base station to the signal-less area, establishes a temporary communication
link to cover the signal-less area and connects to an access point in the signal-bearing area
for signal relay transmission. In this section, we first introduce the UAV-aided wireless
network model and then make a formal description of the model.

In this paper, we consider a UAV-assisted relay architecture with a two-hop full-duplex
transmission scenario in a 3D environment, as shown in Figure 1. The relay system adopts
the amplify-and-forward (AF) strategy, which only amplifies the energy of the signal
without demodulation and modulation. The system consists of three nodes: ED S and
access point D are two ground transceivers, and the overhead base station U is a UAV.
In this case, D is fixed in the signal coverage area and can interact with the cloud. S is
in the no-signal coverage area due to operational needs. S and D cannot communicate
properly due to severe path loss or physical barriers between S and D. U performs irregular
movements in the air carrying a mobile base station as a mobile relay to assist in information
exchange. We assume that the ED S, the access point D and the overhead base station U
are equipped with a transmitter and a receiver, and with two antennas, one for receiving
information and one for transmitting it [46]. According to the Cartesian coordinate system,
the coordinates of S US and D UD are (xs, ys, hs) (xd, yd, hd), respectively, and the UAV U
performs irregular flight in the no-signal area between the ground transceiver S and D. The
instantaneous position Ut(t) of the UAV U can be expressed as (x(t), y(t), h(t)). Because
the UAV flies at high altitudes with less communication obstruction, the communication is
considered as LOS communication in this paper.

Figure 1. UAV-aided wireless network system.

Assuming that the emission energy of node S is PS, the upload signal received by the
UAV contains both transmission and interference signals. Thus, the signal YSU(t) received
by the UAV at the predicted node is
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YSU(t) =
√

PSLSU(t)XS(t) + δU(t) (1)

where XS(t) is the instantaneous transmit signal of node S, LSU(t) is the instantaneous
path loss [47] coefficient between S and U, δU(t) is the transmission system noise during

the relay transmission from S to U. Its signal-to-noise ratio is γSU = PS |LSU(t)|2

δU(t)2 .

The system uses an AF strategy, so the download energy transmitted by the UAV is the
amplified upload signal energy. Then, the download energy Pτ of UAV can be expressed as

Pτ = β(τ)E
{
|YSU(t)|2

}
(2)

where β(τ) is the signal forwarding gain, |YSU(t)| is the amplitude of the signal YSUa(t)
and E{·} is the expectation of |YSUa(t)|

2. Therefore, the download signal of the UAV is

XUD(τ) =
√

β(τ)YSU(t) (3)

The upload signal received by node D is

YD(t) = LUD(t)
√

β(τ)YSU(t) + δD(t) (4)

where LUD(t) is the instantaneous path loss coefficient between S and U, δD(t) is the
transmission system noise in the relay transmission from U to D. Its signal-to-noise ratio is

γUD = Pτ |LUD(t)|2

δD(t)2 . Then, γSD can be expressed as

γSD =
PS|LSU(t)|2β(τ)2|LUD(t)|2

β(τ)2|LUD(t)|2|δU(t)|2 + |δD(t)|2

=
γSUγUD

γSU + γUD + 1

(5)

3. Problem Analysis and Optimization

We take into account that EDs need to operate in the field and are required to work for
as long as possible without compensating energy. Therefore, a lower energy loss enables
EDs to have a longer operating time. The fixed emission energy for data transmission often
makes the received signal energy far exceed the receiver sensitivity, resulting in ineffective
energy loss. To address this challenge, in what follows, we propose a deep learning-based
energy optimization algorithm. The specific implementation framework of the algorithm is
shown in Figure 2. First, we formulate the problem to obtain the environmental variables
that affect the emission energy under limited conditions. Then, we develop a prediction
model using a DL algorithm to address the uncertainty of the environmental variables due
to the transmission time delay.

3.1. Problem Formulation

In order to minimize the emission energy of the ED, the emission energy needs to
be adaptively adjusted according to the distance between the transmitting end and the
receiving end to meet the purpose of transmission and energy saving at the same time.
Because the ED end, the UAV end and the ground receiving end are equipped with full-
duplex communication devices, the process of communication relay can be regarded as
two wireless communication processes. In the single communication process, the system
satisfies the free-space propagation model, and the emission energy is expressed as

PS = (4π)2d2PRL/GTGRλ2 (6)
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where GT is the transmit antenna gain, GR is the receive antenna gain, λ is the wavelength
and d is the distance between the transmitter and the receiver. L is the system loss factor,
which is a constant coefficient dependent on the antenna characteristics and the average
channel loss, independent of the transmission. PR is the received energy, and the value of
PS will be minimum when the value of PR is equal to the receiver sensitivity PRmin. PRmin
can be expressed as

PRmin = kB[Ta + Te]SNRomin (7)

where k is Boltzmann constant, B is the system equivalent noise bandwidth, Ta is the
antenna noise temperature, SNRomin is the demodulator required minimum signal-to-noise
ratio. Te is the equivalent noise temperature, can be expressed as

Te = (FT − 1)T0 (8)

where FT is the total equivalent noise figure and T0 is the thermodynamic temperature.
Assume that FT is only related to the gain and noise figure of each monopole of the receiver,
then FT can be expressed as

FT = 1 +
n

∑
i=1

(Fi − 1)
i=1
∏
j=0

Gj

(9)

Figure 2. Implementation framework of DEO.

In the above formula, Fi is the level i noise figure, Gj is the level i gain, where G0 is 1.
It follows that the receiver sensitivity does not change with the environment and PRmin is a
constant. Therefore, the minimum transmit energy PSmin(t) varies with time t and can be
expressed as

PSmin(t) = (4π)2d(t)2PRminL/GTGRλ(t)2 (10)

From this, we can see that the minimum emission energy is only related to the trans-
mitter transmitting signal wavelength λ(t) and the distance d(t) between the transmitter
and the receiver. Where λ(t) = u/ f (t), u is the speed of light and f (t) is the real-time emis-
sion frequency. To perform adaptive adjustment of the emission energy, the ED receives
real-time position information Ut(t) of the relay UAV through the RF-wireless device and
calculates the relative distance dSUt(t) between the transmitter of the ED and the receiver of
the UAV based on its position information Us(t). Finally, based on the real-time transmitter
frequency λSU(t) and the known spatial noise, receiver sensitivity, transmit antenna gain,
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receive antenna gain and system loss factor, the required minimum transmitting energy
PSmin(t) is calculated.

3.2. Adaptive Energy Regulation of EDs

The ED can obtain λSU(t) information in real-time during the process of signal trans-
mission and obtain real-time location information Ut(t) of the UAV through the wireless
device. However, it can be seen from Figure 3 that the real-time position information of the
UAV obtained by the ED is lagging due to the communication delay. That is, the relay UAV
is not at the coordinates at the time of informing S when loading the information from the
edge end. This leads to an incorrect relative distance obtained by the calculation at the ED
side, making the emission energy acquisition incorrect. In the system, the equipment car-
ried by S and U is fixed, and the transmitting and receiving antennas are fixed. Therefore,
under the condition that the receiver sensitivity is certain and the wavelength is certain, the
emission energy is related to the transmission distance of the system. The UAV can obtain
real-time spatial position information through global navigation satellite system (GNSS)
equipment during the overhead operation. The real-time position distance dSUt(t) between
the UAV and the ED can be expressed as

dSUt(t) =
√
(x(t)− xs)2 + (y(t)− ys)2 + (h(t)− hs)2 (11)

Figure 3. UAV locations in different times.

In the communication system, because the UAV performs irregular random motion,
the ED obtains the position information of the UAV by transmitting the instantaneous
position information of the UAV to the ED through wireless from the UAV side. After the
MEC performs the calculation, the ED adjusts the emission energy to send the required
relay information to the relay UAV. In this process, communication delay and computation
delay are generated, so the UAV position information acquired by the ED is lagged. This
can lead to errors in the transmit energy obtained by the computation. In a 6G environment,
the communication channel will have a larger bandwidth and lower latency; thus, WD,
TD and QD will be negligible compared to PD [36]. As shown in Figure 4, the UAV at t
moment sends its position information to S and receives the upload signal in time t + ε.
After amplification, the UAV sends the download signal to D at τ time. The time for D to
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receive the download signal is τ + ∆. In general, the transmission distance does not vary
much, and the PD can be considered as a constant. Therefore, we set the time delay to
ε, then the actual communication distance between the ED and the UAV when the relay
UAVs load data transmitted by the ED can be expressed as

dSUa(t) =
√
(x(t + ε)− xs)2 + (y(t + ε)− ys)2 + (h(t + ε)− hs)2 (12)

During flight operations, the UAV moves in the air, generally dSUa(t) 6= dSUt(t) due to
the existence of communication time delay. In order to obtain the correct emission energy
of the ED, it is necessary to obtain more accurate real-time position information of the
UAV. Specifically, we need to predict the real position of the UAV when the information
is loaded based on the historical position information after obtaining the historical real
motion trajectory of the UAV. We will predict the actual location information of the UAV
through DL and then change the ED emission energy based on the geometric information.

Figure 4. UAV working time chart.

3.2.1. DL

DL can mimic the mechanisms of the human brain to interpret data. In this paper, long
short-term memory (LSTM) and its related algorithms are used to predict the trajectory
of the UAV. LSTM is a specific type of recurrent neural network (RNN). LSTM differs
from RNN in that LSTM can solve gradient exploding problems and learn from long-term
dependent information. As shown in Figure 5, an LSTM cell consists of four components:
forget gate, input gate, output gate and cell state. The cell of LSTM can be represented by
the mathematical formula 

G ft = σ
[
W f (ht−1, Xt) + b f

]
Git = σ[Wi(ht−1, Xt) + bi]
Gc̃t = tanh[Wc̃(ht−1, Xt) + bc̃]
Got = σ[Wo(ht−1, Xt) + bo]
Ct = G ft

⊙
Ct−1 + Git

⊙
Gc̃t

ht = Got

⊙
tanh(Ct)

(13)

where G ft denotes the forget gate, whose value is restricted between (0, 1) by the sigmoid
activation function. W f and b f denote the weights and biases of the forget gate neurons,
respectively. Git denotes the input gate, whose value is restricted between (0, 1) by the
sigmoid activation function, and Wi and bi denote the weights and biases of the input
gate neurons, respectively. Gc̃t denotes the candidate cell state, whose value is restricted
between (−1, 1) by the hyperbolic tangent activation function, and Wc̃ and bc̃ denote the
weights and biases of the candidate cell state neurons, respectively.
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Figure 5. Unit structure of LSTM.

Got denotes the output gate, whose value is restricted between (0, 1) by the sigmoid
activation function, and Wo and bo denote the weights and biases of the output gate neurons,
respectively. Ct denotes the cell state, and

⊙
denotes the product of elements. ht is the

hidden layer state. Xt denotes the input of the neural network at the current moment, and
ht−1 denotes the state of the hidden layer at the previous moment.

As Figure 6 shows, the LSTM uses cell states Ct and hidden states ht to obtain infor-
mation from the history x1, . . . , xt−1 and the current input xt, and the final hidden state is
completely dependent on the previous historical input information. However, in many
cases, the current state is not only related to historical information but also future informa-
tion and can reflect some information about the current state. Bidirectional long short-term
memory (Bi-LSTM) solves this problem.

Figure 6. Expansion diagram of LSTM.

Bi-LSTM can merge the future information xt+1, . . . , xT near the current input informa-
tion for model building in order to obtain the current output. As Figure 7 shows, Bi-LSTM
can achieve this function by using two separate hidden layers to process the forward data
and backward data and then merging them into the same output layer.

In Figure 7, the black arrow points to the forward LSTM branch and the green arrow
points to the backward LSTM branch. The data are input into two independent branches,
respectively, and the two independent outputs are finally combined into one output. The
Bi-LSTM calculates the forward hidden state hF

t , the backward hidden state hB
t and the final

output ht by Equations (14)–(16).
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GF
ft
= σ

[
WF

f (h
F
t−1, Xt) + bF

f

]
GF

it = σ
[
WF

i (h
F
t−1, Xt) + bF

i
]

GF
c̃t
= tanh

[
WF

c̃ (h
F
t−1, Xt) + bF

c̃
]

GF
ot = σ

[
WF

o (hF
t−1, Xt) + bF

o
]

CF
t = GF

ft

⊙
CF

t−1 + GF
it
⊙

GF
c̃t

hF
t = GF

ot

⊙
tanh(CF

t )

(14)



GB
ft
= σ

[
WB

f (h
B
t+1, Xt) + bB

f

]
GB

it = σ
[
WB

i (h
B
t+1, Xt) + bB

i
]

GB
c̃t
= tanh

[
WB

c̃ (ht+1, Xt) + bB
c̃
]

GB
ot = σ

[
WB

o (hB
t+1, Xt) + bB

o
]

CB
t = GB

ft

⊙
CB

t+1 + GB
it
⊙

GB
c̃t

hB
t = GB

ot

⊙
tanh(CB

t )

(15)

ht = WFhF
t + WBhB

t + bh (16)

Equation (14) is the mathematical expression for the forward branch in the Bi-LSTM
model, where the parameters are consistent with the traditional LSTM. Equation (15) is the
mathematical expression of the backward branch. The only difference with Equation (14)
is that the hidden state which calculates the value of each gate together with the current
input Xt is not obtained based on the historical input information ht−1 but on the future
input information ht+1.

Figure 7. Expansion diagram of Bi-LSTM.

Taking the UAV path time-series data XT with length T as the input of this network,
the features extracted through the first layer of bidirectional LSTM network are passed to
the next layer of overlay network as the input, loop until the last hidden layer of LSTM
of the last layer is used as the input to the fully connected network. The fully connected
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network predicts and outputs the future position value ŷt of UAV with one time step, which
can be expressed as

ŷt = whL
T (17)

where w is an n× m matrix, n is the dimensionality of the output features and m is the
dimensionality of the hidden layer states. In this way, we can predict the UAV coordinates
Up after the time ε by Bi-LSTM is (xp(t), yp(t), hp(t)).

3.2.2. The DEO

We use the position Up(t) predicted by DL as the UAV position input system to obtain
the UAV and transmitter position relationship.

dSUp(t) =
√
(xp(t)− xs)2 + (yp(t)− ys)2 + (hp(t)− hs)2 (18)

Then, predict real-time minimum emission energy of the transmitter can be ex-
pressed as

PSmin(t) = (4π)2dSUp(t)
2PRminL/GTGRλ(t)2 (19)

The details of this algorithm are summarized in Algorithm 1. To obtain a more
approximate adaptive emission energy of the transmitter, we need the following steps:
Steps 1–2 select the DL model adapted to the system for the system delay ε, train the UAV’s
historical flight path and output the UAV’s flight path prediction model based on DL.
Steps 4–5 input the real-time UAV position information Ut(t) received by the transmitter
to the prediction model and obtain the predicted position information Up(t) of the UAV
after the moment ε. Steps 6–7 calculate the optimized emission energy PSmin(t) based on
the receiver sensitivity PRmin, spatial noise δR, transmitter antenna gain GT and receiver
antenna gain GR.

Algorithm 1 The DEO

Require: Us, Ut(t), PRmin, ε, δR, GT , GR, tmax;
Ensure: PSmin(t);

1: choose the DL model based on time delay ε;
2: train the DL model;
3: while t < tmax do
4: put Ut(t) into the DL model;
5: obtain Up(t);
6: calculate dSUp(t);
7: calculate PSmin(t);
8: end while
9: return PSmin(t);

4. Experiments and Results

In this section, we test the DEO. First, we compare the predicted effect of several DL
methods. Then, we test the performance of the algorithm under the effect of different time
delays. Finally, we test the practicality of the algorithm in a motion environment.

The parameters of the UAV we use are shown in Table 1. We collect flight data at
Fuzhou University, which consists of 12 training sets with a total length of 19,886 points;
4 verification sets, with a total length of 5487 points; and 4 test sets, each with 800 points in
length. We use airborne sensors to collect the actual flight data, including the longitude,
latitude and altitude of the UAV. We use the Haversine formula [48] to change the coor-
dinates of the UAV from the geographic coordinate system to the Cartesian coordinate
system. After removing outliers and averaging and normalizing the data, it is then divided
into a training set, a validation set and a test set according to the 3:2:2 division principle.
After starting from the starting point, the UAV approaches the end at a variable speed, and
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it undergoes an altitude change, attitude change and flight angle change on the way, as
shown in Figure 8.

Table 1. Parameters of the UAV.

Hardware Parameter

Flight Controller Pixhawk

GPS 10 Hz

Maximum speed 1 m/s

Figure 8. Path 3D diagrams for testing the data set.

In this algorithm, the UAV uses only simpler airborne sensors, such as a GNSS. For
these reasons, the following characteristics are defined for the relay UAV:

• Global longitude, which is used to account for the movement of the UAV in the
longitude direction.

• Global latitude, which is used to account for the movement of the UAV in the latitude
direction.

• Height above ground, the height above ground relative to the altitude of the start-
ing UAV, which is used to account for the movement of the UAV in the direction
perpendicular to the ground.

The data from the above three dimensions are transformed into a data set with 3D
characteristics in the Cartesian coordinate system. In the experiment, we normalize the
data to ensure that the features in each dimension make the same contribution to the results.
The processing method is shown below

x̂i =
xi −min

max−min
(20)
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where xi denotes the ith element in a set of data, min denotes the minimum value in the set,
max denotes the maximum value in the set and x̂i denotes the value of the corresponding
element after normalization.

In this paper, we use a PC as the simulation platform. The platform has a CPU of Xeon
E5 and a GPU of RTX 3080TI. We implement the design of various LSTM network models
required for the experiments on the Keras framework [49]. The output of the model is a
regression of the latitude and longitude and altitude of the UAV position, i.e., a prediction
of the future position of the UAV at the next moment. Use MEAN, RMSE and WMAPE as
the evaluation index of the model:

MEAN =
1
n

n

∑
i=1

(yt − ŷt) (21)

RMSE =

√
1
n

n

∑
i=1

(yt − ŷt)2 (22)

WMAPE =
∑n

i=1 |yt − ŷt|
∑n

i=1 yt
(23)

where yt denotes the true value, which corresponds to the label value of the training data
in this paper, ŷt denotes the model prediction value, which corresponds to the predicted
value given by the model. The network is weight trained by using the mean square error as
the loss function, and the smaller the mean square error is, the closer the predicted value
of the model is to the true value. In addition, to save training expenses, this paper uses
supervised learning for training and uses the Adam optimizer [50] as an optimizer for
training the model weights so that the model can converge quickly and accurately.

We test the performance of different algorithms under different time delays. The per-
formance results of the no-prediction algorithm, LSTM algorithm, Stacked LSTM algorithm
and Bi-LSTM are shown in Table 2. From the results, it can be seen that the LSTM and
Bi-LSTM algorithms achieve a positive effect in the system when the delay ε > 0.4 s. Their
error box diagrams of predicted and true values are shown in Figure 9, and the data are
shown in Table 3. In the time of positive effect, LSTM has a better performance when the
delay is small. As the delay increases, Bi-LSTM will perform better.

Table 2. Performance comparison of path prediction algorithms under different time delays.

Path 1 Path 2 Path 3 Path 4

Time Delay Algorithm MEAN RMSE MEAN RMSE MEAN RMSE MEAN RMSE

ε = 0.4

no-prediction 0.4819 0.3019 0.4970 0.3103 0.5105 0.3197 0.5263 0.3284

LSTM 0.3266 0.2624 0.3132 0.2602 0.3228 0.2713 0.3406 0.2883

Stacked LSTM 0.6932 0.5103 0.5646 0.4232 0.6148 0.4420 0.7904 0.5988

Bi-LSTM 0.4407 0.3454 0.4382 0.3239 0.4492 0.3521 0.4185 0.3198

ε = 0.6

no-prediction 0.7218 0.4513 0.7424 0.4631 0.7637 0.4773 0.7868 0.4899

LSTM 0.6214 0.5778 0.5693 0.5594 0.5996 0.5780 0.6515 0.6364

Stacked LSTM 0.8860 0.7675 0.8241 0.7429 0.9067 0.7868 0.8149 0.7396

Bi-LSTM 0.7003 0.6340 0.6629 0.6232 0.6813 0.6317 0.7600 0.7028

ε = 0.8

no-prediction 0.9606 0.5993 0.9851 0.6139 1.0143 0.6329 1.0447 0.6490

LSTM 0.6976 0.6772 0.6630 0.6864 0.6930 0.6887 0.7164 0.7347

Stacked LSTM 0.6451 0.5656 0.7002 0.5747 0.6992 0.6339 0.7362 0.5658

Bi-LSTM 0.6282 0.5674 0.5549 0.5512 0.6156 0.5743 0.6243 0.6257
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Figure 9. Error box diagram of path 1.
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Table 3. Algorithm error box graph of path 1.

Time Delay Algorithm Median Upper Quarterback Lower Quarterback

ε = 0.4

no-prediction 0.50484 0.64050 0.37535

LSTM 0.32191 0.43489 0.19843

Stacked LSTM 0.62651 0.86377 0.36274

Bi-LSTM 0.39045 0.63977 0.21414

ε = 0.6

no-prediction 0.75086 0.95843 0.55587

LSTM 0.58762 0.86116 0.40217

Stacked LSTM 0.82599 1.23710 0.47102

Bi-LSTM 0.73654 0.92789 0.38704

ε = 0.8

no-prediction 0.97781 1.18270 0.73878

LSTM 0.61504 0.99237 0.41395

Stacked LSTM 0.63471 0.94299 0.37450

Bi-LSTM 0.63198 087407 0.37119

We test the adaptive energy optimization algorithm in simulation. In this case, the
data of the UAV are the data from the collection predictions mentioned in this section. The
parameters used in the simulation are shown in Table 4. The DL method we use is selected
according to different time delays, as shown in Table 2. The simulation results are shown in
Figures 10–13.

Table 4. Simulation parameters.

f (t) 1000 MHz

δR 10 dBm

GT 0

GR 0

Path loss between UAV and ED 32.45 + 20 log( f (t)) + 20 log(dSUp(t)) [47]

PRmin −110 dBm

US (0,2,0)

The path of the experiment Path 1

Figure 10 shows the location of the ED and the real trajectory of the UAV flight.
Figure 10a–c show the performance of algorithms for the UAV’s flight path prediction
under the effect of the time delay of ε = 0.4, ε = 0.6 and ε = 0.8, respectively. Obviously, it
can be seen that the algorithm we use is closer to the ground truth and can better describe
the actual UAV flight trajectory. It can be seen in Figures 11 and 12 that without the
prediction algorithm, the larger the time delay, the larger the error in the calculated path
loss and the minimum required emission power, and the system performance crashes as the
time delay increases. In contrast, the predictive algorithm can maintain the robustness of
the system. Compared with the non-predictive algorithm, our energy optimization method
is closer to the true value. Figure 13 shows the minimum received power of the receiver
under the action of our algorithm for different time delays.
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Figure 10. Performance of DEO path prediction under different time delays.
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Figure 11. Path loss using DEO under different time delays.
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Figure 12. Adaptive emission power using DEO under different time delays.
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Figure 13. Energy received by the UAV using DEO under different time delays.
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Table 5 shows the algorithm’s performance predictions for PS under different time-lag
systems, and it can be seen that our algorithm outperforms the other algorithms, with
better results under the influence of systems with delays greater than 0.4 s. The WMAPE
is 0.54%, 0.80% and 1.15% for time delays of 0.4 s, 0.6 s and 0.8 s, respectively. Without
the intervention of the prediction algorithm, with the increase in time delay, the difference
between the energy obtained by the receiver and the true value is larger, and it cannot
be adjusted adaptively. Meanwhile, with the involvement of the prediction algorithm,
the energy obtained by the receiver is close to the receiver sensitivity. We can see that
the DEO can better optimize the energy output at the transmitter under the condition of
guaranteed communication.

Table 5. Comparison of PS performance obtained by calculating at different time delays.

Path 1 Path 2

Time Delay Algorithm MEAN RMSE WMAPE MEAN RMSE WMAPE

ε = 0.4

Prevost et al. [42] 0.1169 0.1803 0.55% 0.1192 0.1895 0.60%

Shu et al. [45] 0.2634 0.3851 1.24% 0.3302 0.4857 1.64%

Ours 0.0890 0.1074 0.42% 0.1084 0.1400 0.54%

ε = 0.6

Prevost et al. [42] 0.1722 0.2644 0.81% 0.1460 0.2259 0.67%

Shu et al. [45] 0.2521 0.3025 1.19% 0.2267 0.2752 1.04%

Ours 0.1687 0.2011 0.80% 0.1382 0.1748 0.64%

ε = 0.8

Prevost et al. [42] 0.2341 0.3589 1.10% 0.2229 0.3535 1.09%

Shu et al. [45] 0.2167 0.2590 1.02% 0.2447 0.3466 1.20%

Ours 0.1944 0.2564 0.92% 0.1943 0.3010 0.95%

Path 3 Path 4

Time Delay Algorithm MEAN RMSE WMAPE MEAN RMSE WMAPE

ε = 0.4

Prevost et al. [42] 0.1257 0.1868 0.65% 0.1258 0.1844 0.65%

Shu et al. [45] 0.3036 0.4460 1.56% 0.3195 0.5157 1.63%

Ours 0.0993 0.1385 0.52% 0.1049 0.1517 0.54%

ε = 0.6

Prevost et al. [42] 0.1587 0.2455 0.74% 0.1683 0.2593 0.78%

Shu et al. [45] 0.2462 0.2865 1.14% 0.2033 0.2485 0.95%

Ours 0.1430 0.1801 0.66% 0.1614 0.2102 0.75%

ε = 0.8

Prevost et al. [42] 0.2613 0.3861 1.37% 0.2500 0.3651 1.29%

Shu et al. [45] 0.2978 0.4502 1.56% 0.2891 0.4494 1.49%

Ours 0.2053 0.3095 1.08% 0.2231 0.3343 1.15%

5. Conclusions

EDs carry limited energy, and 6G requires a higher transmit energy consumption. In
this paper, we study the problem of the emission energy of EDs during UAV relaying. We
propose a DEO to adjust the optimal emission power of EDs. Specifically, we use the DL
algorithm to predict the path using the historical trajectory characteristics of relay UAVs.
Based on the predicted position, the minimum ground emission power that satisfies the
receiver sensitivity at the moment the UAV receives the signal under the action of the
time-lag system is calculated and obtained to achieve reliable communication between the
ED and the relay UAV with the lowest emission energy. We test a variety of DL algorithms
in different time-delay systems. The simulation results show that the proposed algorithm
can work for time-lag systems with time delays greater than 0.4 s. The WMAPE is 0.54%,
0.80% and 1.15% under the effect of 0.4 s, 0.6 s and 0.8 s time-lag systems, respectively.
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However, the method can have some limitations in the face of increasingly complex
communication conditions. Therefore, there are still some potential problems that need to
be further investigated. We list below some potential research directions in this area.

1. The complex environment can interfere with the establishment of communication
links. In this paper, we mainly consider UAV communication in an LOS environ-
ment. Although the air environment will make the communication environment more
friendly, during the mission, UAV communication may be interfered with by many
aspects, i.e., multipath effect, occlusion, etc. In this case, the free-space propagation
model is not as suitable as the computational model. Therefore, the study of the
implemented communication links in complex environments is needed.

2. The optimization of computational power in practical fields. Small mobile devices
have weak edge computing power and high energy consumption, which makes it dif-
ficult to support low-power and long-time work in the field. In short-range UAV emer-
gency communication, the energy used by artificial intelligence to make predictions
may be greater than the energy used during communication. Thus, the low-energy
algorithm with the precise result is still a challenging task in UAV communications.
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