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Abstract: Multi-UAV cooperative systems are highly regarded in the field of cooperative multi-target
localization and tracking due to their advantages of wide coverage and multi-dimensional perception.
However, due to the similarity of target visual characteristics and the limitation of UAV sensor
resolution, it is difficult for UAVs to correctly distinguish targets that are visually similar to their
associations. Incorrect correlation matching between targets will result in incorrect localization
and tracking of multiple targets by multiple UAVs. In order to solve the association problem of
targets with similar visual characteristics and reduce the localization and tracking errors caused
by target association errors, based on the relative positions of the targets, the paper proposes a
globally consistent target association algorithm for multiple UAV vision sensors based on triangular
topological sequences. In contrast to Siamese neural networks and trajectory correlation, the relative
position relationship between targets is used to distinguish and correlate targets with similar visual
features and trajectories. The sequence of neighboring triangles of targets is constructed using the
relative position relationship, and the feature is a specific triangular network. Moreover, a method
for calculating topological sequence similarity with similar transformation invariance is proposed, as
well as a two-step optimal association method that considers global objective association consistency.
The results of flight experiments indicate that the algorithm achieves an association accuracy of
84.63%, and that two-step association is 12.83% more accurate than single-step association. Through
this work, the multi-target association problem with similar or even identical visual characteristics
can be solved in the task of cooperative surveillance and tracking of suspicious vehicles on the ground
by multiple UAVs.

Keywords: multi-target association; topological sequences; triangular networks; global consistency;
similar transformation invariance

1. Introduction

Multi-UAV cooperative technology has advanced rapidly in recent years. UAVs
have been widely used in the fields of surveillance [1], reconnaissance [2], tracking and
positioning [3–7] due to their superior remote perception capabilities. In the multi-target
localization problem, the triangulation method [8] is a frequently used method, which
first matches the line of sight of the UAV platform pointing at the target [9]. When the
view axis is incorrectly matched, it inevitably leads to incorrect positioning results. In real
application scenarios, the limitations of high UAV flight altitude and low sensor resolution
add the difficulties to target detection and classification. In particular, targets with relatively
similar visual features cannot be distinguished and classified by conventional vision-based
detection algorithms. These reasons can lead to a large number of incorrect associations,
which can produce incorrect targeting results [10,11]. Due to the importance of multi-target
correlation problem in the field of localization and tracking, the multi-target association
problem has become a key problem to be solved in the field of cooperative multi-UAV
detection [12,13]. The main objective of this work is to solve the association problem of
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targets with similar visual features, and to propose an association method that does not
use the visual features of the targets but only the relative position relationship between the
targets to improve the accuracy of association of such targets.

Three primary methods can be used to solve the target association problem in UAV
sensors: image, trajectory, and relative position [14]. The image-based methods require
clear images of the target and a variety of image features [15]. Since UAVs are so maneu-
verable, the difficulty of extracting target trajectories is also significantly increased [16].
To distinguish and associate targets, relative position-based methods rely heavily on the
topological and geometric relationships between them. This method does not require a
high-resolution image and does not make use of other data from the UAV [17]. In this
paper, we propose a method for constructing a specific topological network using the
relative position relationship between targets, which is inspired by topological association
methods used in the field of radar detection technology [18]. As illustrated in Figure 1,
the method distinguishes and associates the targets based on their adjacent triangular
topological sequences. This method does not require the extraction of target image and
trajectory features and does not make use of the background of the images or the UAV’s
attitude information.
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Figure 1. A schematic diagram of multi-UAV target association based on a triangular topological
sequence.

Considering the issues raised in this paper and the shortcomings of existing multi-
target association algorithms, this paper proposes a globally consistent two-step multi-
target association algorithm that solves the multi-sensor multi-target association problem
solely using the relative position features of multiple targets. First, this paper triangulates
all targets and determines their triangular topological characteristics based on their connec-
tivity relationships in the triangular network. Second, to avoid the dependence of features
on the coordinate system, this paper calculates the similarity of two triangles using the
difference in triangle angles. Meanwhile, the feature similarity with similar transformation
invariance is determined by calculating the weighted mean of all neighboring triangles’
similarity. Finally, considering the global goal association’s consistency, a two-step comple-
tion association is proposed. The partial correlation results from the first step are used to
solve the transformation relationship between the two sensor coordinate systems. After
eliminating the incorrect association in the first step, the transformation matrix is used
to investigate possible associations in the unassociated results. The two-step association
method not only improves the algorithm’s correct association rate, but also enables it
to perform better when some targets are not detected. These benefits are confirmed in
simulation experiments.
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The method’s primary contribution to innovation is that it augments the geometric
topology-based association method with the following three enhancements. The first is
consistency of global association, which is achieved by combining knowledge about multi-
view geometry, which has the same mapping relationship for two photos taken from the
same viewpoint, and which is considered in this paper. The second is to rely on specific
rules rather than empirical thresholds for the construction of topological features. Ref. [18]
used thresholds to determine which neighbors should be included in the constructed
features, which is not an easy task in practice. By comparison, the structure formed through
triangular dissection is more scientific. Thirdly, because the method for calculating feature
similarity is similar in terms of transformation invariance, i.e., the same structure remains
unchanged after rotation, translation, and scaling, the similarity values obtained using this
method are identical. The algorithm’s primary contributions are as follows:

(1) Rather than relying on image and trajectory features, it distinguishes and associates
identical targets within a single context using their relative positions.

(2) The method for calculating similarity exhibits similar transformation invariance. The
method used to generate feature sequences is a non-empirical one.

(3) The association process considers the target coordinates’ global consistency.
(4) The algorithms are applicable to vision and vision sensors, as well as vision and

infrared sensors, as well as infrared and infrared sensors.

The remainder of this paper is organized as follows: Section 2 discusses some recent
research on multi-objective association algorithms. Section 3 describes the multi-objective
association algorithm proposed in this paper, which entails the construction of target
detection, triangular topological networks, the calculation of the target similarity matrix
using neighboring triangular sequences, and a two-step optimal association algorithm
based on global consistency. Section 4 conducts simulation experiments to determine
the algorithm’s association accuracy under various conditions and comparison tests to
determine the algorithm’s association accuracy in comparison to various other algorithms.
Section 5 summarizes the entire paper and provides an outlook on future work.

2. Related Works

Three primary algorithms for multi-objective association are described in the pub-
lished work [14]. They include methods for associating trajectory similarity [16,19], image
matching algorithms based on deep neural networks [20,21], and methods for associating
reference topology [18]. Additionally, some researchers have attempted to process target
trajectories using neural networks [22]. Trajectory-based association, in general, necessitates
fixed sensor positions and high-quality extracted trajectories. Correlating images based on
their clarity and feature density is difficult for drones flying at high altitudes to accomplish.

The methods for trajectory correlation primarily analyze data using probabilistic and
statistically relevant methods. The Nearest Neighbor method was proposed by Singer
and Kanyuch [23]. Then, Singer et al. [24] advanced the idea of trajectory association
by introducing the concept of hypothesis testing and establishing a weighted trajectory
association algorithm under the assumption that the estimation errors are mutually in-
dependent. On this basis, Bar-Shalom [25] modified this algorithm’s distance metric to
remove the requirement that the estimation errors of trajectory sequences be independent
of one another and proposed a modified weighted method. Chang et al. [26] introduced
the concept of allocation to operations research to extend the weighted method and pro-
posed the classical allocation method for solving the trajectory association problem. The
outcomes of trajectory association-based methods are significant and widely applied in the
field of visual perception [14]. However, extracting high-quality target trajectories from
maneuverable UAV image sensors is challenging.

In terms of Siamese neural network research, Ref. [27] pioneered the concept of a
Siamese network based on dual target–environment data streams. Ref. [15] proposed a
Siamese network architecture with dual data streams capable of extracting spatial and
temporal information from RGB frames and optical flow vectors, respectively, to match



Drones 2022, 6, 119 4 of 17

pedestrians to distinct data frames. Ref. [28] achieved vehicle association between cameras
at various locations by utilizing a license plate-body dual data stream Siamese neural
network. Ref. [29] proposed a novel relative geometry-aware Siamese neural network
that improves the performance of deep learning-based methods by exploiting the relative
geometric constraints between images explicitly. To address the issue of target associa-
tion robustness, Ref. [30] added a SE-block and a temporal attention mechanism to the
framework of the Siamese neural network to enhance the network’s discriminative ability
and the tracker’s recognition ability. The preceding conclusions are predicated on the
assumption that the sensor images are of high quality and that the image features of the
targets are distinguishable.

The reference topology-based approach solves the multi-target association problem
in terms of different trajectories and images, without relying on any image features and
without requiring a consistent sensor coordinate system [18,31]. Yue et al. [32] pioneered
the reference topology association method. On this basis, Ref. [33] switched to a topological
sequence rather than a single reference topology. Zhang et al. [34] correlated topological
sequences using the gray correlation method. Instead of a sequence, Wu et al. [35] attempted
to construct a more complex target topological matrix. Hao et al. [36] used triangles as the
basic topology instead of all neighboring targets in cases such as dense multi-target and
formation targets. Hasan et al. [37] used the reference topology to solve the asynchronous
trajectory association problem. In other words, Li et al. [38] proposed a topological sequence
association method based on a one-dimensional position distribution of multiple targets
for determining the characteristics of visual sensors in air-ground systems and applied the
method to air-ground systems for the first time. You et al. [39] recovered lost objects using
temporal topological constraints based on the continuity and consistency of the multi-target
topology in continuous frames. Ref. [17] groups targets according to their positions and
velocities before applying a topology-based group target tracking algorithm to the tracking
problem of dense target groups. Ref. [35] proposes a method for target association based
on the target mutual support topology model, in which the mutual support matrix is
defined, and the correct target relationship is determined using the optimal method with
constraints. While research on reference topology is expanding, the following issues persist
with the current results: (1) since topological features cannot adapt to coordinate system
transformations, the reference target must be determined empirically; (2) existing work is
primarily concerned with local topology and neglects global consistency; (3) in practice,
the correlation error rate is significantly less than the simulation effect.

3. Materials and Methods

The algorithm described in this paper is divided into three sections: (1) detecting the
target and constructing a triangular network; (2) computing topological similarity; and
(3) a two-step optimal association algorithm. The algorithm’s main flow is depicted in
Figure 2, and this paper will use TTS as an abbreviation for proposed association algorithm
based on Triangular Topological Sequence. The targets are first detected using vision images
from Sensor_A and Sensor_B, and then their pixel coordinates {za

i }
na
i=1 and {zb

i }
nb
i=1 are

extracted. Their pixel coordinates {za
i }

na
i=1 and {zb

i }
nb
i=1 are used to construct a specific

triangular network, and their target’s topological triangular sequence Ta
i = {∆b

ijk} and

Tb
i = {∆b

ijk} are extracted. Then, using a similarity calculation method based on the triangle
angle, the similarity of the target triangular topological sequence is calculated, and the
similarity matrix Wm×n, which contains the degree of similarity between all combinations
of m targets in Sensor_A and n targets in Sensor_B, is obtained. Finally, in two steps, the
target association is completed. The first step processes the similarity matrix Wm×n and
extracts the global consistency matrix Ĥ to obtain partial target association results R. The
second step employs the global consistency matrix Ĥ to eliminate incorrect associations
discovered in the first step’s association results R and to identify possible new associations
R1 with the remaining unassociated targets under the new law. R′ is the result obtained by
eliminating the wrong association in R.
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Figure 2. The overall flow chart of multi-objective two-step association algorithm based on triangular
topological sequence.

3.1. Constructing Triangular Topological Sequences

The input raw data are the visual image of the UAV, and an efficient target detection
algorithm is needed to extract the relative position relationship of multiple targets. Many
object detection algorithms are introduced in survey [40–43]. Considering the detection
speed and accuracy of the algorithms mentioned in the above survey, this paper chooses
yolov5 [44] as the target detection algorithm. Figure 3 illustrates the results of two UAV
vision sensors’ multi-target detection. The results are parsed to extract the set of target
points, and a triangular topology network is constructed.
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Figure 3. Construction of triangular topological features for a multi-target point set and calculation
of topological similarity.
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In this paper, the Cartesian coordinate systems Ua and Ub are established with refer-
ence to the pixel coordinate system of the vision sensor. Meanwhile, the real coordinates
of target i in the coordinate system Us at time t can be expressed as xs

i . Due to the image
resolution and the detection algorithm, the target pixel coordinates typically carry an
observation error x̃s

i . Thus, the target coordinates of the detected target in sensor s in the
coordinate system Us with observation error can be expressed as:

zs
i = xs

i + x̃s
i . (1)

where x̃s
i ∼ U(−Ps

i , Ps
i ) is the observation error of the target i pixel coordinates in sensor s.

Let (zs
i )

ns
i=1 = {zs

1, zs
2, · · · , zs

(ns)
} be the set of pixel coordinates of all targets in sensor s at

moment t, where ns denotes the total number of targets detected in sensor s. According
to [45], pictures taken at various angles for the same scene have a unique perspective
transformation relationship, i.e.,

∃Ĥ, s.t. za
i = Ĥ · zb

i . (2)

where Ĥ is the optimal estimate transformation matrix from Ua to Ub.
The following topological features are constructed for (zs

i )
ns
i=1 = {zs

1, zs
2, · · · , zs

(ns)
}.

Ref. [18] used empirical thresholds to determine neighboring nodes based on their distance,
which can be used only within the same coordinate system. This paper employs a method
of feature construction that is not dependent on empirical thresholds or coordinate systems.
First, Delaunay triangulation [46] is used to create a unique triangular network from (zs

i )
ns
i=1.

Due to the nature of Delaunay triangulation, which is closest, unique, and regional, each
point in the constructed triangular network forms a triangle with only the nearest finite
point. When a point is removed from the mesh, it affects only the triangles associated
with that point. Due to the uniqueness of the result of Delaunay triangulation and the fact
that the similarity transformation does not alter the ratio of angles and side lengths of any
triangle in the network, the similarity transformation has no effect on the connectivity of
points in the triangular network.

In the constructed network, let L be the set of all connected lines in the network
and ljk ∈ L denote the line connecting zs

j and zs
k. For target i, all triangles adjacent to zs

i
constitute the triangular topological features of target i:

Ts
i = {4s

ijk|lij, lik, ljk ∈ L; j = 1, · · · , ns
i ; k = 2, · · · , ns

i , 1}

= {4s
i12,4s

i23, · · · ,4s
ins

i 1}.
(3)

where ns
i denotes the total number of reference points connected to target i in sensor s, and

4s
ijk denotes the triangle composed of zs

i , zs
j , zs

k.

3.2. Calculate the Similarity of the Triangular Topological Sequence

For the triangular topological sequence depicted in Figure 3, we introduce a method for
calculating the similarity between a single triangle and the triangular topological sequence
Ts

i . To calculate triangle similarity, Ref. [36] devised a method based on triangle side
lengths, but this method is inapplicable when the scales of the two coordinate systems
are different. To address this issue, this paper develops a more discriminating similarity
calculation function based on the difference in triangle angles. A function for calculating
triangle similarity that has a high degree of differentiation should exhibit the following
characteristics: (1) The similarity value decreases monotonically as the difference between
the two triangles increases. (2) The smaller the triangle difference, the larger the change
in similarity caused by the unit change in the triangle. That is, a concave function that
decreases monotonically. Let the three angles of 4s

is jk be ∠αs
i , ∠αs

j , and ∠αk. Then, the

difference between4a
ia jk and4b

ib jk can be expressed as4iaib = ∑p=i,j,k |∠αa
p −∠αb

p|. Thus,

the similarity of the xth triangle of Ta
ia

and Tb
ib

is calculated as:
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ωiaib−x = 1− ln(1 + λ ·
4αiaib

180
). (4)

where λ adjusts the range of values of ω. In this paper, we take λ = 1.72. Wm×n is the
similarity association matrix of m targets in sensor a and n targets in sensor b, where ωiaib is
the element of the iath row and ibth column ofWm×n, the similarity between za

ia
and zb

ib
:

ωiaib =

min
(

na
ia ,nb

ib

)
∑
x=1

(
∠αa

ia−x +∠αb
ib−x

)
αiaib

·ωiaib−x. (5)

αiaib =

na
ia

∑
x=1

∠αa
ia−x +

nb
ib

∑
y=1

∠αb
ib−y. (6)

where ∠αs
is−x is the ∠αs

i of the xth triangle in Ts
is . This method can be described as taking a

weighted average of the similarity of the neighboring triangles. The angle occupied by the
neighboring triangle4s

ijk around the point zs
i is used as the weight of4s

ijk.

3.3. Two-Step Global Constraint-Based Association Algorithm

This section discusses the two-step association algorithm based on the similarity
association matrixWm×n and the consistency of global association, where the consistency
of global association has not been considered in previous works. The global association
consistency entails that all association targets in (za

i )
na
i=1 and (zb

i )
nb
i=1 satisfy Equation (2).

In the first step of association, the similarity matrixWm×n that contains local feature
information is processed, and the association result of the first step is derived. The principle
of global optimal allocation is as follows: (1) only one element from each row of the matrix
is chosen; (2) only one element is chosen from each column of the matrix; (3) the greatest
possible sum of all selected elements’ values. In the first step, all selected pairs inWm×n
form the global optimal association result R in the first step.

As shown in Figure 4, in practice, the triangular topological sequence of some targets
produces local variations due to partial target occlusion and the influence of observation
errors x̃s

i . For the case of multi-target formation, the targets have a similar relative position
relationship with each other, so the triangular topological features of the targets are similar,
and the similarity difference is small. These factors are not conducive to distinguishing
the triangular topological sequence, so that the result of the global optimal assignment
principle contains some wrong matches. Among the total association results, the wrong
match has the different Ĥ from the other associations. For the case where most of the
correct association results contain a few incorrect associations, the Ransac algorithm can
be used to compute the transformation matrix Ĥ based on R and eliminate the incorrect
associations. The result that contains only the correct association after algorithm processing
is denoted as R′.

The second association step is to find potential associations among unassociated target
points using Ĥ and R′. (za

ia
, zb

ib
) ∈ R′ indicates that za

ia
and zb

ib
are accurately associated.

Considering the effect of observation error x̃s
i , for ∀zb

ib
/∈ R′, zba

ia
= Ĥ · zb

ib
, if ∃za

ia
/∈ R′ is the

closest point in (za
i )

na
i=1 at distance zba

ia
and satisfies the following formula:

W(4a
ia jaka

,4b
ib jbkb

) = max
x

(ωiaib−x).(
za

ja , zb
jb

)
∈ R′,

(
za

ka
, zb

kb

)
∈ R′.

(7)

za
ia

and zb
ib

are determined as the new correct association, whenW(4a
ia jaka

,4b
ib jbkb

) denotes

the similarity of4a
ia jaka

and4b
ib jbkb

.
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Figure 4. (a) Topological sequences when a few targets are missing; (b) topological sequence when
most targets are missing.

In the next experiment part, this paper uses association precision and accuracy as
metrics for evaluating the experimental results:

Precision =
TP

TP + FP
, Accuracy =

TP + TN
TP + TN + FP + FN

. (8)

where TP is the number of correct associations predicted as correct associations, TN is the
number of incorrect associations predicted as incorrect associations, FP is the number of
incorrect associations predicted as associations, and FN is the number of correct associations
predicted as incorrect associations.

4. Results

This section simulates and tests the proposed algorithm, with the simulation test
consisting of three major sections. The first section contains a series of tests to determine the
correlation’s precision under various experimental conditions. Several experimental con-
ditions were established in the following manner: (1) the sensor coordinate systems have
a similar transformation relationship; (2) specific targets are obscured or missed; (3) the
experimental area contains a variable number of targets; and (4) errors in observation. The
second section compares the correlation accuracy of the proposed TTS, the neighboring
reference topological feature association algorithm (RTF) [18], and the triangle topological
feature association algorithm (TTF) [36,47] under the four experimental conditions men-
tioned previously. The third part compares the proposed TTS to the RTF [18], TTF [36,47],
and the Siamese neural network method [48,49] for the association accuracy and precision
in a physical flight test.

Figure 5 shows the experiments of target detection using yolov5 [44] for UAV vision
images in this paper, and the algorithm is fast and accurate for UAV platforms. However,
the algorithm also cannot achieve the detection of all targets at all times. Figure 5a shows
vehicles moving at high speed on the road, and Figure 5b shows a dense and neatly
distributed vehicle in a square, where there are two undetected targets.
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(a) (b)
Figure 5. Two scenarios for testing the target detection algorithm, (a) is high-speed moving vehicles,
and (b) is dense and neatly distributed targets.

4.1. Testing on the Proposed Algorithm

The first section examines the effect of various experimental conditions on associa-
tion accuracy and compares the accuracy of single-step and two-step association in this
algorithm. As illustrated in Figure 1, multiple targets are randomly distributed throughout
the scene and are monitored by two UAV sensors. We set a square area with a shape of
100 m × 100 m, and then fly drones equipped with visual sensors over it. Considering
the effect of the number of targets on the association algorithm, we varied the number of
targets in the experimental region at intervals of ten in the range of 10 to 100. We created
a set of basic tests with a total of 12 combinations for each target quantity setup, which
included three different rotation angles of 30°, 75°, and 135°, two scale transformations of
0.5× and 50×, and two translational transformations of 10 m and 50 m.

Figure 6a shows the results of the experiments on the algorithm’s similar invariance.
The experiments were repeated several times with the same experimental setup, and 10%
of the targets were not detected simultaneously by both sensors in each experiment due
to occlusion or other factors. The two-step association algorithm’s experimental results
were analyzed statistically (shown in Table 1), and the mean values of association precision
were 98.40%, 98.39%, and 98.34% for three different rotation angles, 98.44% and 98.28% for
two scale transformations, and 98.37% and 98.39% for two translational transformation
experiments. The mean value of association precision for all results was 98.38%, with 58.90%
of experiments achieving 100% correct association. The data indicate that the association
precision under different similar transformations is within the overall mean ±0.1% (shown
in Figure 6c), indicating that the similar transformation relationship between coordinates
has no significant effect on the association precision and that the algorithm has similar
transformation invariance. The effect of single-step and double-step association is depicted
in Figure 6b, with single-step precision significantly lower than double-step precision.
Single-step associations have an average precision of 63.3%, which is significantly less than
that of two-step associations. Single-step association precision decreases as the number of
targets increases and is greatest when the number of targets is small. The experimental
results demonstrate that the association method proposed in this paper has comparable
transformation invariance and that the two-step association significantly outperforms the
single-step association.

Figure 7 presents the experimental results of this paper for some target loss condi-
tions. Target loss occurs when a target is not detected due to obstructions or the detection
algorithm, most commonly certain randomly existing undetected targets and targets in a
portion of the area obscured by obstacles. We repeated the 12 base experiments several
times at 5% intervals, varying each of the 11 loss rates from 0% to 50%. The statistical
data of the results of the two-step correlation experiment are depicted in Figure 7a. When
the target is obscured within the local area, the experimental precision exceeds 98% and
remains stable when the missing rate is less than 20%. When the missing rate exceeds 20%,
the precision of the correlation decreases linearly. When the target is missed by 40%, the
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correlation precision falls below 30%. The experimental precision is greater than 98% for
randomly distributed undetected targets and remains stable at a missing rate of 10% or less.
When the rate of missing data exceeds 10%, the correlation precision decreases linearly.
Correlation precision decreases to less than 30% at a target missing rate of 30%. In this
case, a missing rate of less than 10% has little effect on the association algorithm’s precision,
whereas the random presence of undetected targets has a greater effect on the algorithm’s
precision when the missing rate exceeds 10%. In Figure 7a, the precision of the single-step
association is significantly lower than the precision of the two-step association, and the
two-step association has a significant improvement in association precision. The results of
one experiment are depicted in Figure 7b, where the precision of two-step correlation is
either extremely high or extremely low. To ensure that the algorithm maintains a higher
correlation precision more frequently, the following analysis of this phenomenon is made:
The critical step in the two-step association is to identify the global association consistency
and estimate the value of Ĥ. When the value of Ĥ is estimated accurately, incorrect asso-
ciations are eliminated, correct associations are increased, and association precision are
improved. When the value of Ĥ is estimated incorrectly, the correct association is reduced,
and the incorrect association is increased. Analysis of the experimental data reveals that
the two-step association algorithm has 88.10% probability of finding the correct Ĥ when
the single-step association precision is more than 30%.
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Figure 6. (a) The effect of the number of targets in the region on the correlation precision at three
rotation angles; (b) the effect of the number of targets in the experimental area on the correlation preci-
sion under different scale transformation and translational transformation conditions; (c) association
precision histogram and standard deviation curve of the proposed TTS under various conditions.

Table 1. Statistics of association precision under different similarity transformation experiments.

Rotation Translation Scale

Setup 30° 75° 135° 10 m 50 m 0.5× 5×
Two-Step (%) 98.40 98.39 98.34 98.44 98.28 98.37 98.39
One-Step (%) 65.37 63.78 60.68 63.84 62.77 62.30 64.26

The effect of uniformly distributed observation error x̃s
i ∼ U (−Ps

i , Ps
i ) on the cor-

relation precision is illustrated in Figure 8. In this paper, we set 31 values of Ps
i in the

range of 0 3 m at 0.1 m intervals and conduct 12 basic experiments used in Figure 6 under
each value to study the trend of algorithm association precision with observation errors.
Assuming that the size of the target is 1.5 m, the multiplier of the error relative to the target
is used for the horizontal axis. Figure 8a depicts the effect of observation error on average
correlation precision. When the observation error is less than 1.5 times, the correlation
precision fluctuates steadily above 90% with no decreasing trend. When the observation
error exceeds 1.5 times, the correlation precision rapidly decreases to approximately 70%,
and the fluctuation increases. In comparison, the precision of the single-step correlation was
always around 60%, indicating a slowing trend with insignificant fluctuations. Obviously,
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the two-step correlation algorithm has advantages. Figure 8b illustrates the effect of obser-
vation error on the correlation’s precision in one experiment. According to the data in the
figure, the two-step association algorithm maintains an association precision close to 100%
for observation errors less than 1.5 times, whereas the single-step association algorithm
maintains an association precision of around 60%, which is always less than the two-step
association. When observation errors exceed 1.5 times, the two-step correlation method
begins to exhibit increased fluctuation and the correlation precision decreases further. The
experimental results indicate that, while smaller observation errors have a smaller effect on
the correlation method proposed in this paper, observation errors greater than 1.5 times
have a greater effect on correlation precision, which may be due to observation errors
causing Ĥ estimation errors.
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Figure 7. (a) The effect of target missing rate of statistical results on correlation precision; (b) the
effect of target missing rate on association precision in a specific experiment.
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Figure 8. (a) The effect of observation error on correlation precision; (b) the effect of observation error
on correlation precision in a specific experiment.

4.2. Simulation Comparison Experiments

The second section compares TTS’s association accuracy to proposed TTS, RTF, and
TTF under the same experimental conditions. We conducted another series of experiments
on three different dimensions: (1) certain components are not detected; (2) the error as-
sociated with the observation is encoded in the coordinates; (3) the coordinate system of
the sensor is scaled differently. The association accuracy variation curves for the three
algorithms in different scale sensor coordinate systems are depicted in Figure 9a. Because
all three algorithms compared in this paper are rotation and translation invariant, this ex-
periment considers only cases with different scales. According to the experimental results,
the correlation accuracy of the current algorithm remains stable at around 98% across a
range of scales, whereas the accuracy of the other two algorithms decreases significantly
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as the coordinate system scales change. This demonstrates that the present algorithm
possesses similar transformation invariance to that of other algorithms. Figure 9b illustrates
the performance of the three algorithms in the presence of missing targets due to occlusion
by a local obstacle. The experiments demonstrate that, as the occluded area increases, the
association accuracy decreases. However, the algorithm described in this paper always
maintains a high association accuracy, which is on average 19.88% and 27.46% higher than
the association accuracy of the other two algorithms. The trend of association accuracy for
the three algorithms with varying observation errors is depicted in Figure 9c. The results
indicate that, when the observation error is less than 0.73 times of target size, the algorithm
in this paper maintains the highest association accuracy. When the observation error is
greater than 0.73 times, the results of TTS are lower than the results of TTF. Within the range
of observation error distributions of 0 to 2 times, this algorithm’s association accuracy is
always greater than that of RTF, by an average of 5.2%. When compared to the data in
Figure 9, the TTS algorithm outperforms the other algorithms in all three experimental
conditions, and its overall performance is optimal.
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Figure 9. The proposed TTS comparison experiments with other algorithms, (a) is the variation curve
of the effect on association accuracy at different scale transformations (b) the variation curve of the
effect of target occlusion rate on association accuracy (c) is the variation curve of the effect of different
observation errors on association accuracy.

4.3. Physical Comparison Experiments

The third section compares the proposed TTS to the RTF [18], TTF [36,47], and the
Siamese neural network method [48,49] for the association accuracy and precision in the
scenario shown in Figure 10.

Figure 10a depicts the algorithm described in this article being tested on a road with
heavy traffic and vehicles traveling at high speeds. Two DJI drones are used in this article to
capture video above the road. The two drones flew continuously between 80 m and 100 m
in altitude, following a predetermined trajectory to observe the vehicles on the road from
various angles. The targets are associated using the proposed TTS, RTF [18], TTF [36,47]
and Siamese neural networks [49], respectively, and the association precision and accuracy
are analyzed (shown in Figure 11). To develop the Siamese neural network’s recognition
model, we collected training data on the opposite road.

The proposed TTF, RTF, and TTF are compared in Figure 10a scenario in Figure 11a,b,
with experimental data for 50 s shown in Table 2. The RTF algorithm must implement the
specified threshold value, and Table 3 contains information about the threshold value and
association results obtained during the experiments. The proposed two-step TTF achieves
an association accuracy of 84.63%, while RTF and TTF achieve only 63.51% and 68.63%, re-
spectively. The proposed two-step TTF achieves a correlation accuracy of 67.87%, while the
RTF and TTF achieve only 20.31% and 61.81%, respectively. The proposed TTS’s single-step
association accuracy and accuracy are 71.80% and 79.99%, respectively, which are higher
than the RTF and TTF algorithms’ corresponding data. The experimental data demonstrate
that the proposed algorithm outperforms comparable algorithms implemented in this
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paper in terms of association accuracy and association accuracy, with a significant improve-
ment in association accuracy for the second-step association. The curves in Figure 11a,b
demonstrate how significantly the association results of all three algorithms vary in actual
flight experiments. While the algorithm performs better most of the time, there are times
when it performs poorly.

(a) (b) (c)

Figure 10. The results of target detection and triangular network construction in three flight test
scenarios. (a) is a scenario with a large number of randomly distributed moving targets. (b) is a
scenario with a large number of neatly arranged stationary targets. (c) is a scene with a small number
of neatly arranged stationary targets.
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Figure 11. (a,b) is the comparison of the proposed TTS with TTF and RTF in the scene shown in
Figure 10a. (c) is precision curves of the association between the proposed TTS and Siamese neural
networks in real flight experiments.

Table 2. Statistical data of experimental results of proposed TTF, RTF, and TTF comparative experi-
ments.

Index
Algorithm Proposed TTS RTF TTF

Two-Step-Precision 84.63% 63.51% 68.63%

One-Step-Precision 71.80% 38.61% 55.66%

Two-Step-Accuracy 67.87% 20.31% 61.81%

One-Step-Accuracy 79.99% 41.45% 42.87%
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Table 3. Correlation result for different thresholds in the RTF method.

Index
Threshold 150 250 300 400 500 700 800 1000

Precision 0% 36.98% 42.74% 41.47% 53.27% 61.08% 63.51% 43.72%

Accuracy 0% 15.53% 24.08% 22.33% 21.69% 19.76% 20.31% 12.50%

The algorithm’s association results are depicted in Figure 10 and Table 4. The preci-
sion of two-step association is generally greater than that of single-step association, and
the Siamese neural network does not perform as well in practical tests as the algorithm
described in this paper. The mean precision of two-step associations is 84.63%, single-step
associations are 71.80%, and Siamese neural network associations are 38.25%. The algo-
rithm described in this paper outperforms the Siamese neural network-based approach in
terms of association precision. In terms of association accuracy, the algorithm in this paper
achieves an average of 67.87%, while the Siamese neural network achieves an average
of 38.25%, indicating that the algorithm in this paper outperforms the Siamese neural
network. They demonstrate that the indicators produced by this algorithm are superior to
those produced by the Siamese neural network, and that the two-step association results
produced by this algorithm are superior to the single-step association results.

Table 4. Statistical table of flight test results of proposed TTS and Siamese neural network in two
typical scenarios.

Scenes
Index One-Step-Pre Two-Step-Pre Two-Step-Acc Siamese-Acc

Fast Moving (Figure 10a) 71.80% 84.63% 67.87% 38.25%

Dense Stationary (Figure 10b) 67.19% 100.00% 93.75% 5.08%

Table 5 summarizes the major advantages and disadvantages of the four algorithms
used in this paper based on the analysis of the aforementioned experimental results.
Figures 6 and 9a demonstrate that TTS transforms similarly to RTF and TTF without
distortion. As illustrated in Table 3, RTF must rely on empirical thresholds, whereas TTS
does not. To demonstrate the validity of global consistency, the improved correctness of
two-step correlation is obtained. In comparison to Siamese neural networks, TTS, RTF, and
TTF do not require consideration of the target’s image features to complete the association.
Among them, this paper considers non-empiricality, similar transformation invariance, and
global consistency for the first time, which is a novel contribution to the field.

Table 5. Comparison of advantages and disadvantages of proposed TTS, RTF, and TTF and Siamese
neural networks.

Characteristic
Algorithm Proposed TTS RTF TTF Siamese

Similarity Transformation Invariance X X X X

Non-empirical X X X X

Global Consistency X X X X

Not Using Image Features X X X X

Additionally, the algorithm described in this paper has some limitations. In the
scenario depicted in Figure 10b, where targets are densely aligned within the scene, the
topological features constructed by the peripheral targets are more extreme and unsuitable
for association, and small changes in the features can result in large changes. Indeed, this
paper’s algorithm is applicable to a more decentralized target. The Siamese neural network
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outperforms the algorithm in this paper in terms of association for the two columns of
neatly aligned targets shown in Figure 10c. In addition, this algorithm is influenced by
global consistency matrix Ĥ, in which, when solved incorrectly, the association effect of
this method significantly decreases.

The preceding experiments are divided into three sections: the algorithm’s associ-
ation precision is evaluated in simulation experiments under a variety of experimental
conditions, and the association accuracy of multiple topological association methods is
compared. Additionally, the results of this algorithm’s association with Siamese neural
networks are compared under flight test conditions. Experiments demonstrate that the
algorithm described in this article has a high correlation accuracy and correctness, similar
transformation invariance, and performs well when the observation contains an error, and
the target is true. The present algorithm associates significantly better than the Siamese
neural network in the flight test and performs admirably in practical applications. Simul-
taneously, the experiment revealed several flaws in the algorithm described in this paper.
First, when the global consistency matrix is solved incorrectly, the algorithm’s association
effect is weakened. Second, due to the law of triangular dissection’s limitation, the topo-
logical characteristics of the target construction with neatly aligned boundaries are more
extreme and unsuitable for target association.

5. Conclusions

The paper proposes a new multi-target association algorithm based on triangular
topology sequences that utilizes global consistency and a two-step process to improve asso-
ciation accuracy. The algorithm constructs the feature sequence using a specific triangular
network and exhibits similar transformation invariance. The experimental results demon-
strate that the proposed multi-target association method achieves a high level of accuracy
and precision, and that the two-step association method improves the association effect
significantly. Under three experimental conditions, this algorithm had the best association
effect when compared to other algorithms. However, the algorithm described in this paper
has some limitations. When targets are neatly aligned, association results for targets on
the periphery are poor. The results of the association are strongly influenced by the global
consistency matrix, and any error in solving the consistency matrix results in a significant
reduction in the association’s accuracy.

The work presented in this paper can be applied to problems involving correlation
in UAV cluster reconnaissance of multiple ground targets, particularly when the visual
characteristics of the targets are very similar. For instance, drones are used in conjunction
to monitor many suspicious vehicles that share similar characteristics. The following will
be improved in future work: We will consider the category information associated with the
targets, and we will construct topological networks containing various types of targets and
associate them using topological sequences containing various types of targets.
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