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Abstract: This paper presents a real-time and multi-sensor-based landing area recognition system
for UAVs, which aims to enable UAVs to land safely on open and flat terrain and is suitable for
comprehensive unmanned autonomous operation. The landing area recognition system for UAVs
is built on the combination of a camera and a 3D LiDAR. The problem is how to fuse the image
and point cloud information and realize the landing area recognition to guide the UAV landing
autonomously and safely. To solve this problem, firstly, we use a deep learning method to realize
the landing area recognition and tracking from images. After that, we project 3D LiDAR point cloud
data into camera coordinates to obtain the semantic label of each point. Finally, we use the 3D LiDAR
point cloud data with the semantic label to build the 3D environment map and calculate the most
suitable area for UAV landing. Experiments show that the proposed method can achieve accurate
and robust recognition of landing area for UAVs.

Keywords: autonomous landing; deep learning; multi-sensor fusion; semantic segmentation; object
tracking; 3DLiDAR

1. Introduction

Generally speaking, existing UAVs have high requirements for the terrain of the
landing area. If the landing area is uneven, it may cause the UAV to overturn, which
will not only seriously damage the UAV and destroy the ground facilities but can also
cause harm to pedestrians on the ground. For existing autonomous UAV landing systems,
it is usually necessary to set a fixed safe landing area and ensure that the landing area
is relatively open and flat. Image or LiDAR sensors can be used to guide the UAV to
achieve safe and autonomous landing. However, in most cases, the UAV does not have a
priori information about the terrain of the landing area, such as disaster relief, geographic
information survey and express delivery. In this kind of task, it is necessary for the people to
monitor the landing situation or use manual remote control to land UAVs, which seriously
affects the efficiency of the overall unmanned autonomous operation. In addition, in some
emergencies, such as fuel shortage, signal loss and weather change, the UAV needs to land
autonomously in unknown terrain areas. However, existing UAV systems do not have
corresponding emergency response strategies.

Therefore, the autonomous recognition of a landing area is very important for UAVs.
It can realize the comprehensive unmanned autonomous operation of UAVs, benefit the
development of related applications, and avoid unnecessary risks and losses. The existing
similar research is mainly divided into two streams: The first one pays attention to the
mechanical structure design and control strategy of the UAV landing gear and does not
actively acquire the terrain information of the landing area. For example, Sarkisov [1]
designed a landing gear that can automatically adapt to the terrain of the landing point
and automatically adjust the length of the landing gear and the contact angle with the
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ground according to the feedback of sensors during landing. For the second one, the UAV
is equipped with sensors to obtain the terrain information of the landing area in real-time
and is guided to land autonomously and safely based on the acquired terrain information.
There have been various recent research efforts for the successful landing of UAVs, and
most of them have used vision sensors [2–7].

The goal of this paper is to propose an autonomous and safe landing solution. The
existing methods for autonomous landing are mainly based on a single sensor to realize
the recognition and tracking of the landing area and guide the UAV to achieve safe and
autonomous landing. According to the different sensors used, these studies can be divided
into three categories: landing area recognition based on a monocular camera [8–18], landing
area recognition based on a stereo camera [19–24], and landing area recognition based
on 3D LiDAR [25–30]. Although these methods have good performance in some specific
scenes, it is difficult to identify the landing area accurately and stably in some more complex
scenes or with poor illumination.

Therefore, in order to solve this problem, this paper proposes a UAV landing area
recognition system based on multi-sensor fusion. This system firstly uses the method based
on image semantic segmentation to identify the landing area below the UAV, uses image
target tracking to guide the UAV to fly towards the landing area, and finally uses the fusion
data of the image and point cloud to realize safe and autonomous landing. From simulation
and real experimental tests, it is shown that the system can realize a robust recognition of
the landing area and guide the UAV to land safely.

2. Related Works
2.1. Methods Based on Monocular Camera

Some researchers pay attention to the study on the recognition method of landing area.
Some early methods are based on the known landing areas to realize the recognition of
UAV’s landing areas. Barber et al. [8] proposed a method for using vision-based feedback
to land a miniature air vehicle accurately on a visually identifiable target of approximately
known location. Millet et al. [9] presented a method to perform precision landings of a
tailsitter unmanned air vehicle (UAV) using an onboard camera, the UAV’s orientation,
and its altitude above ground level (AGL). Recently, some methods select the area suitable
for UAV landing by extracting the features of the area under the UAV. Desaraju et al. [10]
employed an active perception strategy utilizing Gaussian processes to estimate feasible
rooftop landing sites along with the landing site uncertainty as assessed by the vision
system. Silva et al. [11] used Viola-Jones technique to extract features from the camera
images. Cheng et al. [12] presented a vision-based motion estimation as an aid to improve
landing performance. Lee et al. [13] proposed landing area localization and obstruction
detection for UAVs that were based on deep learning faster R-CNN and a feature matching
algorithm. Other methods use maps and artificial landmarks to help identify landing areas.
Forster et al. [14] proposed an approach that built a 2D probabilistic robot-centric elevation
map from which landing spots were detected over regions where the surface of the terrain
was flat. Wubben et al. [15] presented a solution for high-precision landing based on the
use of ArUco markers.

Other researchers are concerned with the study of recognition systems of landing areas.
Templeton et al. [16] presented a terrain-mapping and landing system for autonomous
helicopters. Lin et al. [17] presented a vision system designed for autonomously landing
an unmanned aerial vehicle on a ship’s flight deck. Garciapulido et al. [18] proposed an
automatic expert system based on image segmentation procedures, which assisted safe
landing through the recognition and relative orientation of the UAV and the platform.

Those methods based on monocular cameras usually require multi-frame image
information to calculate the 3D space position of the landing area, which not only has
poor accuracy but also has low real-time performance and has certain risks in guiding the
UAV landing.
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2.2. Methods Based on Stereo Camera

We can use stereo cameras to obtain 3D geometric information by calculating the
position deviation between corresponding points in the image. In the early stage study,
Theodore et al. [19] generated the depth topography map by combining the pixel difference
between the left and right images in the stereo camera and selected the optimal landing site.
Afterwards some researchers made some improvements on this basis. Firstly, Garg et al. [20]
used the stereo image of the stereo camera to calculate the depth information of the ground
image to find a suitable landing area. Jongho et al. [21] presented a stereovision-based
landing site search algorithm, in which a performance index for landing was computed
considering the depth, flatness, and energy required to reach a specific site. Furthermore,
Mittal et al. [22] used the stereo image of a stereo camera to calculate the depth information
of the ground image, and then the appropriate landing area was selected according to the
evaluation scores. In recent years, researchers had paid more attention to some algorithm
frameworks. Jiang [23] presented stereo vision intelligent control common framework for
the landing position of quadrotor UAV based on fuzzy control. Cui et al. [24] proposed
a precise landing algorithm for quadrotor Unmanned Aerial Vehicles (UAV) based on
improved the stereo visual SLAM system.

However, the accuracy of the depth measurement of the stereo camera is poor com-
pared with the LiDAR sensors. On the other hand, the stereo camera is more sensitive to
environmental illumination, and it is difficult to accurately estimate the depth in the scene
with insufficient illumination.

2.3. Methods Based on 3D LiDAR

With the gradual maturity of 3D LiDAR technology, more and more researchers are
using LiDAR as the sensor for landing area recognition because 3D LiDAR can provide
more accurate pose information. In the initial research, Maturana [25] determined the more
suitable landing area according to the different reflection results when the LiDAR irradiated
rigid ground (such as concrete ground) and sparse porous ground (such as grass). Afer-
wards, some researchers made some improvements on this basis. Firstly, Mango et al. [26]
presented an original approach for hazard detection and landing site selection, exploiting LIDAR
measurements, to be used in the framework of autonomous planetary exploration scenarios.
Furthermore, Ikura et al. [27] proposed a real-time landing gear control system with adaptive
3D sensing for safe landing on an unknown ground. In recent years, Ikura et al. [28] improved
the previous algorithm and proposed a real-time landing gear control system based on adaptive
and high-speed 3D sensing to enable the safe landing of UAVs on rough ground. In addition,
Kalinov et al. [29] presented a novel high-precision UAV localization system. Tsintotas et al. [30]
proposed a low-complexity algorithm for recognizing the suitability of the ground surface based
on three laser range-finders.

In addition to the methods based on monocular camera, stereo camera and 3D LiDAR,
there are also the methods of camera and LiDAR fusion. Chen et al. [31] constructed a UAV
system equipped with low-cost LiDAR and stereo cameras to realize autonomous landing
in non-co-operative environments by detecting the flat and safe ground area. However,
these methods can simply identify the geological information of the landing area. They
have limited types of geological information, lower accuracy, and slower speed compared
with image-based recognition and are also difficult to be applied to complex scenes.

3. System Description

In this section, we give a detailed description of the hardware and software of our system.
We first describe the hardware system, then present the architecture of the software system.

3.1. Hardware System

The hardware system is mainly composed of a Manifold2-C and a Manifold2-G
onboard processor, a Robosense Bpearl 3D LiDAR, and a Realsense D435i camera. The
hardware system is shown in Figure 1. The weight of the hardware system is 2.3 kg, and
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the dimensions are 180× 180× 110 mm in length, width, and height. Because the hardware
system weighs 2.3 kg, it is suitable for slightly larger drones, such as DJI Matrice 600 Pro or
unmanned helicopters.

Figure 1. The hardware system.

The hardware system uses robosense bpearl 3D LiDAR as the acquisition module to
detect the terrain of the landing area and the realsense D435i camera as the recognition
module to recognize and track the landing area. The robosense bpearl 3D liDAR sensor has
a vertical viewing angle of 90 and a horizontal viewing angle of 360, a measuring distance
of 0.1 m to 100 m, and an accuracy of 3 cm. When the UAV lands, it needs to sense the
environment directly below and around it, and the vertical and horizontal viewing angles
of the robosense bpearl 3D LiDAR sensor are more suitable for this application scenario.
Therefore, the robosense bpearl 3D LiDAR is selected for capturing 3D environment data.
The Manifold2-C is used as an intermediate processing unit module for the onboard
computing and trajectory control of the UAV. The Manifold2-G is used as a processing unit
for recognizing and tracking the landing area.

3.2. Software System

The system mainly consists of modules of searching and tracking the landing area
based on image, 3D environment modeling based on the point cloud, 3D environment
segmentation based on the fusion of image and point cloud, and real-time landing point
search. The main structure block diagram of the system is shown in the Figure 2. Section 4
describes the implementation details of each module.

Figure 2. The main structure block diagram of the system.
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4. System Implementation
4.1. Searching for Landing Area Based on Image

The purpose of image semantic segmentation is to assign every pixel of a picture or
video stream taken by a camera with a corresponding category label. When the drone is at
a high altitude, the point cloud captured by the LiDAR sensor is sparse, so it is impossible
to identify the landing area. Fortunately, the camera can obtain high-resolution images
to identify interesting areas. Therefore, through image feature extraction and semantic
segmentation of the image data, the position of the landing area in the picture or video
stream can be determined, which provides a preliminary recognition for the next step of
tracking the landing target area. Since this system needs to process the input images in
real-time on the UAV, the real-time performance of the semantic segmentation network
should be considered firstly. In our system, we use a lightweight image extraction network
to improve the running speed of the network. The model structure of the network is shown
in Figure 3, the network model parameters are shown in Table 1, and the specific algorithm
flow is as follows.

Learning to 
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Figure 3. The model structure of the image semantic segmentation network.

Table 1. The semantic segmentation network uses standard convolution (Conv2D), depthwise
separable convolution (DSConv), residual bottleneck blocks (bottleneck), a pyramid pooling module
(PPM), and a feature fusion module block (FFM). Parameters channels, stride, and n represent number
of output channels, stride parameter, and number of times block, respectively.

Input Block Channels Stride n

1024 × 2048 × 3 Conv2D 32 2 1
512 × 1024 × 32 DSConv 48 2 1
256 × 512 × 48 DSConv 64 2 1

128 × 256 × 64 bottleneck 64 2 3
64 × 128 × 64 bottleneck 96 2 3
32 × 64 × 96 bottleneck 128 1 3

32 × 64 × 128 PPM 128 - -

32 × 64 × 128 FFM 128 - -

128 × 256 × 128 DSConv 128 1 2
128 × 256 × 11 Conv2D 128 1 1

Firstly, the input image is downsampled by a convolution neural network, and three
convolution layers are used to ensure that the low-level features can be effectively shared
and used. The first layer is a standard convolution layer, and the other two layers are depth-
wise separable convolution (DSConv) layers. Different from the standard convolution, in
the depth-separable convolution layer, one convolution kernel is only responsible for one
channel, and one channel is convolved by only one convolution kernel, so the parameters
required for its operation are greatly reduced compared with standard convolution. Al-
though the DSConv has high computational efficiency, there are only three channels in the
input image, which makes the advantage of DSConv’s computational speed not reflected
at this stage. Therefore, a convolution layer is added before the DSConv layer to improve
the input channel of the DSConv. These three layers of networks use a step size of 2 with
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a batch normalization layer and a Relu activation layer. The convolution kernel of the
standard convolution layer and the kernel size of the DSConv layer are both 3 × 3.

Then, the down-sampled image features are input to the global feature extraction
module, which aims to capture the global environment information needed for image
segmentation. Different from the common semantic segmentation network, it takes a
low-resolution tensor as input, that is, the output of the learning down-sampling module
as input, and its resolution is one-eighth of the original input image. In order to further
speed up the running of the network, we use an efficient bottleneck residual block to build
a feature extraction network. This module uses an efficient deep separable convolution,
which improves computational efficiency and reduces the number of network parameters
and the memory burden. We use the residual connection layer in the bottleneck residual
module to fuse the information of each layer. Finally, we add a pyramid pooling module
(PPM) at the end of the global feature extraction module. This PPM module can fully
aggregate the local information of different sizes obtained under different receptive fields
and improve the accuracy and robustness of the network.

The high-level image features extracted by the global feature extraction module are
input to the feature fusion module, which processes the features obtained by learning
down-sampling through the convolution layer and adds them directly with the high-level
features obtained by the global feature extraction module. This fusion method can reduce
the computation as much as possible and improve the computation speed of the model
without losing the original features and depth features.

The features fused by the feature fusion module are input into the classifier module.
This classifier module uses two depth-separable convolution layers and a standard convolu-
tion layer. It can output the obtained tensor into a picture with the semantic category label
so that the input picture information can be classified to find the preliminary landing area,
which provides a basis for the UAV to identify the accurate landing area at low altitude.

We conduct experiments on the PyTorch platform using Python, and our experiments
are executed on a workstation with Nvidia 2080Ti GPU with CUDA 11.4 and CuDNN v8.
We use stochastic gradient decent (SGD) with momentum 0.9, batchsize 16, and learning rate
0.001. Because the training data for semantic segmentation are limited, we apply various
data augmentation techniques: random resizing between 0.5 and 2, translation/crop,
horizontal flip, color channels noise, and brightness. Our model is trained with cross-
entropy loss. We train our model for 150 epochs using the Aeroscapes dataset. Our model
can achieve 68.88% mIoU.

4.2. Tracking of Landing Area Based on Image

After the UAV identifies the landing area, it needs to track the landing area in the
subsequent image frames, so we design an image-based tracking algorithm for the land-
ing area.

In this system, the output of the landing area search algorithm is used as the input of
the landing area tracking algorithm. Four coordinates (X, Y, W, H) are used to represent
a rectangular frame, where X, Y represent the center pixel coordinates of the rectangular
frame, and W, H represent the width and length of the rectangular frame. The rectangular
frame contains the area to be tracked. The output of this algorithm is the UAV flight control
quantity, and the expression form is the UAV flight target control quantity mapped by
coordinate difference (target pixel coordinate–actual pixel coordinate).

Considering the performance of the processor on the UAV and the demand of the
whole system for deep learning computing power, the tracking algorithm should be as
lightweight as possible. In order to ensure real-time and high accuracy, we build the Siamese
network structure to track the image target. In addition, the algorithm also segments the
foreground and background of the tracking target area, and the final output results are
presented in the form of a mask. The matrix frame is also obtained by rotating rectangle
fitting through the mask, which has a good performance for the situation that the geometric
shape of the landing area might be irregular.
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The image-based landing area tracking algorithm uses the Siamese network as the
basic architecture of the whole network. The network structure of the Siamese network
consists of two identical branches, as shown in the Figure 4. The two branches receive
different inputs and then pass through the same feature extraction network to extract high-
dimensional image features. In feature extraction, the two branch networks share weights.
After that, the high-dimensional features obtained by the branches can be combined with
the ground-truth data to construct a loss function. The network can be trained in the way
of minimizing the loss so that the network can learn the most similar features of the two
branches. The model structure of the network is shown in the Figure 5, and the specific
algorithm flow is as follows.

Figure 4. The model structure of the Siamese network.
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Figure 5. The model structure of the image tracking network.

Firstly, the image information of the target region to be tracked is obtained by using
the results of the image-based landing region search algorithm through the initial frame to
define the target region to be tracked. This part of the image is then input to the ResNet50
backbone network for feature extraction, and the high-dimensional features of the target
area to be tracked are generated as the tracking template area. The subsequent image frame
input is clipped through the template area range of the first frame to obtain the initial search
area. This part is input as a tracking search branch to the ResNet50 branch network with
the same parameters as the backbone network for feature extraction, and high-dimensional
search area features are obtained.

After obtaining the high-dimensional features of the template branch and the search
branch, we carry out cross-correlation between them to obtain the feature map representing
the similarity information.

Finally, we use the RPN network to map the similarity feature information map to
the original map. There are two branches in the RPN network, namely, the classification
branch and regression branch. In addition, a mask branch is added based on these two
branches, and the mask of the segmentation field is introduced into the expression of
tracking results so that the final result is expressed as the accuracy of the pixel sector, which
greatly improves the accuracy of the tracking results. We judge which part of the area has
the largest response from the response degree of the network output, which corresponds to
the area that best matches the template, that is, the most likely position of the landing area
in the next frame.
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We conduct experiments on the PyTorch platform using Python, and our experiments
are executed on a workstation with Nvidia 2080Ti GPU with CUDA 11.4 and CuDNN
v8. We train our model for 120 epochs using the VOT-2018 dataset. The loss function is
as follows:

L(θ, φ) = ∑
n

(
1 + yn

2wh ∑
ij

log
(

1 + e−cij
n mij

n

))
(1)

where yn ∈ ±1 is the ground-truth binary label, cn is a pixel-wise ground-truth mask whose
size is w× h, and cij

n ∈ ±1 is the label corresponding to pixel (i, j) of the object mask in the
n-th candidate.

4.3. 3D Environment Modeling Based on Point Cloud

When the UAV identifies the approximate landing area, we guide the UAV towards the
landing area, and then map the environment of the candidate landing area by 3D LiDAR
carried by the UAV to obtain the terrain information of the landing area. Because the UAV
needs accurate spatial information and needs to establish an accurate 3D map for landing
point calculation, we use 3D LiDAR as the main sensor to create a 3D point cloud map of
the environment. Considering that the landing environment of the UAV is an outdoor open
area, there may be insufficient environmental features in the surrounding environment,
which makes the motion estimation only by LiDAR fail. Therefore, the algorithm combines
LiDAR odometer and IMU data to provide the spatial position information of the UAV mo-
tion, enhancing the robustness and accuracy of the UAV motion estimation. The algorithm
framework of 3D environment modeling is shown in Figure 6.

Figure 6. The algorithm framework of 3D environment modeling.

Because the LiDAR sensor scans the surrounding environment all the time, when the
UAV moves, the laser point itself has a certain motion state, which makes the point cloud of
one frame of LiDAR distort, caused by motion. In order to obtain the correct environmental
point cloud information, it is necessary to dedistort the LiDAR point cloud. To remove
the motion distortion of LiDAR point clouds, it is necessary to compensate for the motion
change in LiDAR point clouds relative to the beginning of the laser frame. In this system,
the motion change obtained by IMU is used to compensate for the motion of the LiDAR
point clouds to obtain the point cloud data without motion distortion.

In order to calculate the motion pose of the UAV, we need to obtain the attitude
transformation relationship between consecutive frames, so as to estimate the motion state.
Considering the real-time requirement of the system, we use the feature points of the point
cloud instead of the whole frame point cloud to solve the pose estimation. In order to
improve the accuracy of pose estimation, for point cloud feature extraction, we extract the
plane features of point clouds. The plane features in the point cloud are extracted, and
the curvature of the local point cloud is calculated by using the surrounding points of the
current point. The calculation method is as follows:

c =
1

|M| ×
∥∥∥XL

(k,i)

∥∥∥
∥∥∥∥∥ ∑

j∈M,j 6=i

(
XL
(k,i) − XL

(k,j)

)∥∥∥∥∥ (2)

where XL
(k,i) is the i point in the laser coordinate system in the k frame point cloud, M

is the surrounding point set corresponding to this point, and XL
(k,j) is the J point in the
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surrounding point set M. The large curvature points are considered as edge points, and the
small curvature points are considered as plane points, so the local point clouds with small
curvature are selected as plane features.

After extracting the features of point clouds in each frame, we need to match the
features of point clouds between different frames, so as to find the pose transformation
between the two frames of point clouds. We transform the feature points of the previous
frame point cloud into the current frame coordinate system and find the nearest three
points in the previous frame point cloud: X(k,j), X(k,l), and X(k,m). The three points form
a planar block, thus completing the feature matching between the current frame and the
previous frame. Then, according to the matched surface blocks, we find the corresponding
point–plane distance, and the calculation method is as follows:

d =

∣∣∣(XL
i − XL

j

)
×
((

XL
j − XL

k

)
×
(

XL
j − XL

m

))∣∣∣∣∣∣(XL
j − XL

k

)
×
(

XL
j − XL

m

)∣∣∣ (3)

According to the calculated point–plane distance d, the point–plane distance constraint
is constructed. Based on this, the least square problem of point cloud feature point matching
is established, which optimizes the relative pose change between laser frames and outputs
the motion state of the UAV.

After the laser odometer is obtained, the point clouds can be spliced according to
the position and orientation relationship of the point cloud frames. However, due to the
interframe motion, the estimated odometer will have accumulated errors, which makes the
error of point cloud mosaic increase only by using the odometer. Therefore, it is necessary
to register the current frame point cloud with the global point cloud map, so as to eliminate
the accumulated errors of the odometer and establish a globally consistent point cloud map.
In order to reduce the amount of point cloud data, point cloud space is divided into voxels:
only point clouds within a certain voxel space are considered, and unimportant point
clouds in the environment are ignored. Then, a local voxel map is established according
to odometer information by registering the plane features in the local voxel map with
the global voxel map, accurate pose changes are obtained, and the accumulated errors
existing in the front-end odometer are eliminated. According to the optimized pose, point
clouds are spliced to obtain an accurate and globally consistent 3D environmental point
cloud map.

4.4. 3D Environment Segmentation Based on Image and Point Cloud Fusion

Although the method based on semantic features of 2D images can estimate the
position of the landing area roughly, the results of feature extraction may have some errors,
and it is often difficult to accurately estimate the accurate 3D position of the landing area.
If the UAV wants to complete the autonomous landing task more stably and safely, it
needs to obtain accurate 3D position information of the landing area, so this system needs
to realize 3D environment segmentation through point cloud information. The current
3D environment segmentation method based on point cloud needs high memory and
computing power; however, our UAV has a limited onboard payload and cannot carry a
GPU with stronger computing power. Therefore, this system does not use the deep learning
method to directly extract semantic features of point clouds but indirectly obtains point
cloud data with semantic tags through the image semantic segmentation method.

As shown in Figure 7, firstly, the image semantic segmentation method proposed in
the aforementioned section is used to segment the image semantically. Then, the point
cloud data of LiDAR are projected into the camera coordinate system through the transfor-
mation matrix between the camera and LiDAR, and then they are projected into the image
coordinate system of the camera through the internal reference coordinate system of the
camera. Since we have obtained the camera image with pixel-by-pixel semantic category
labels, the projected point cloud also has the semantic information from the image, and the
semantic category label corresponding to the image pixel is the semantic label of the point.
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Finally, the point cloud data with semantic labels are obtained by transforming the point
cloud back to the LiDAR coordinate system.

Figure 7. The algorithm framework of 3D environment semantic segmentation.

4.5. Real-Time Landing Point Search

We can obtain the candidate landing area by screening the semantic tags of the point
cloud. However, considering the robustness of semantic feature extraction and other factors,
not all the candidate landing areas can be used as landing areas for the UAV. The area
suitable for the UAV landing should also have the following characteristics: Firstly, the
landing area should be flat enough without large bumps or depressions. Secondly, the
landing area should be horizontal enough. If it lands on a slope, the drone may not stop
smoothly. Thirdly, the re-landing area should be large enough for the UAV to land and far
enough from the boundary of the area. Because our UAV is a vertical take-off and landing
drone, there should be no obstacles above the landing area to avoid possible collision during
landing. Finally, because the UAV makes contact with the ground through the landing gear,
the terrain structure of the landing area should remain stable when the landing gear of the
UAV makes contact with it. In order to ensure the correctness and stability of the algorithm,
we add the geometric features of the point cloud as constraints based on semantic features
to achieve accurate detection and recognition of the landing area.

The structure of the algorithm is shown in Figure 8. First, we search the terrain on
the ground in the point cloud map with semantic labels, select the area where the most
suitable terrain is located as the possible landing area, and extract the corresponding
point cloud in this area. According to the difficulty of the UAV landing in different terrain
environments, the priority of the terrain is usually paved ground, hard land, grass land, and
sand. However, even in suitable terrain, not every position is suitable for landing the UAV.
There may also be slopes, bulges, depressions, etc., in the actual landable environment, such
as paved ground, which are often not conducive to the UAV landing. However, the above-
mentioned methods based on deep learning have difficulty identifying these conditions
accurately and stably, so we use the geometric features of point clouds as constraints to
select the most suitable landing site. Firstly, we down-sample the point cloud and obtain
a sparse point cloud map of the possible landing areas. We assume that the final landing
area of the UAV is circular, and each point in the point cloud is set as the center point of the
possible candidate landing area of the UAV. For each possible center point, we extract the
nearest point cloud corresponding to the point in the original point cloud. The point cloud
can reflect the terrain of the candidate landing area. We use geometric methods to calculate
the attributes of this part of the point cloud to estimate the terrain of the candidate landing
area. First of all, we count the number of points in the point cloud of the candidate landing
area. If the number of point clouds is not enough, it means that this part of the area has
not been fully detected or there are terrains such as water surface that are not suitable for
landing. Then, we calculate the standard deviation of the zcoordinate value of each point in
the point cloud. If the standard deviation is too large, it means that the candidate landing
area may be inclined or uneven, which is also unsuitable for the landing area. Finally, in
order to further determine whether the candidate landing area is a horizontal plane, we try
to use the RANSAC algorithm [32] to fit the plane from the point cloud. If the plane cannot
be fitted or the slope of the fitted plane is too large, it means that the candidate landing



Drones 2022, 6, 118 11 of 17

area is not suitable as the landing area. We use the angle between the plane normal and the
z coordinate axis to calculate the slope of the plane, namely:

α = arccos
(

vT
upn
)

(4)

where vT
up = (0, 0,−1) is the vector of the z axis, n is the vector of the plane normal fitted

by the RANSAC algorithm, and α is the slope of the plane.

Figure 8. The algorithm framework of 3D environment modeling.

Because the UAV makes contact with the ground through the landing gear during
take-off and landing, the contact between the ground and the landing gear is an important
factor for the UAV to maintain stability when landing. On the premise that the central
landing site is determined, we assume that there are eight possible landing directions for
the UAV. Therefore, there are four possible contact situations between the landing gear
of the UAV and the ground. For each possible case, we can calculate the contact point
between the landing gear of the UAV and the ground, and then calculate the torque of the
UAV when landing. The smaller the T, the more stable the UAV when landing. In order to
calculate the best landing site for the UAV landing, we calculate a score for each candidate
landing area by quantitative calculation. The score calculation formula is:

Score =
1

σzαT
(5)

where σz is the standard deviation of the z coordinate value of each point in the landing
area, α is the slope of the fitting plane of the landing area, and T is the stability of the UAV
when landing. For all candidate landing sites, we choose the point with the largest score as
the best landing area to provide landing area position information for autonomous landing
of the UAV.

5. Experiment
5.1. Experiment in Simulation Environment

In order to verify the effectiveness of each part of the system, we build a virtual
simulation scene and a UAV simulation platform equipped with virtual sensors by using
gazebo simulation tools. The simulation environment is shown in Figure 9.
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Camera Data 3D LiDAR Data

Camera

3D LiDAR

Figure 9. The simulation environment. The picture on the left is the UAV simulation platform
equipped with virtual sensors, and the picture on the right is the virtual simulation scene.

After we build the simulation environment, we can perform a qualitative test on the
effectiveness of the system algorithm in the simulation environment. The Figure 10 shows
the experimental results of semantic segmentation and tracking of the landing area based
on images during the UAV landing from high altitude to low altitude. The Figure 11 shows
the results of 3D environment modeling based on point cloud and semantic segmentation
of 3D point cloud fused with image semantic information in the descending process of the
UAV. In the simulation environment, we also conducted 30 automatic landing tests. As
shown in Figure 12, the first figure (a) shows the 5 m high landing area platform built in the
gazebo simulation environment. The remaining three figures (b, c, d) show the autonomous
landing trajectories of the UAV at three different initial positions. In the tests, the absolute
value of the distance between the actual landing point of the drone and the center point of
the landing area was measured. The statistical data of the average and variance are shown
in Table 2. In the process of simulation test, the UAV can obtain the recognition and tracking
results of the landing area in real-time and can be guided to realize autonomous landing.

Table 2. The distance between the actual landing point of the drone and the center point of the
landing area (30 times).

Average Value (/m) Variance (/m2)

The distance between the two 0.0220 0.02369

Figure 10. The experimental results of semantic segmentation and tracking of the landing area based
on images during the UAV landing from high altitude to low altitude.
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Figure 11. The raw point cloud data (Left). The results of 3D environment modeling based on
point cloud and semantic segmentation of 3D point cloud fused with image semantic information
(Right).The red bounding box represents the tracking result of the landing area.

Figure 12. The landing area in the simulation environment (a) and the autonomous landing trajectory
of the UAV (b–d). The yellow box is the landing area. The blue box is the initial position and the red
box is the landing point.

5.2. Experiment in Real Environment

After we verify the whole system in the simulation environment, we test it in the real
environment. We perform experiments of image-based descent area searching and tracking,
point cloud-based 3D environment modeling, and point cloud-based 3D environment
segmentation. The average speed of the whole algorithm is 10 Hz, which can satisfy a
real-time system.

For the landing area searching of the image, we test our algorithm on a M600 Pro UAV
in a real environment. The UAV performs real-time semantic segmentation to identify the
landing area and send the pixel coordinates corresponding to the 3D environment semantic
segmentation based on point clouds. It is easy to obtain the category information of each
3D laser point through the image and the external parameter between the LiDAR and
the camera. According to the semantic segmentation results of the high-altitude images
from the UAV, the target tracking based on images is realized in the landing area, which
makes the UAV land slowly from high altitude to low altitude. The results of searching
and tracking the landing area based on the image are shown in the Figure 13, which shows
that the landing area can be tracked well.
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Figure 13. The results of searching and tracking the landing area based on the image. The landing
area is a square whose side length is 1 m.

For the 3D environment modeling of the point cloud, we collect the actual environment
data on M600 Pro UAV, and then process the collected LiDAR point cloud data to establish
the 3D model of the actual environment. The actual environment model is shown in
Figure 14. In this figure, we can see that the surrounding environment is modeled by the
landing area recognition system.

Figure 14. The actual environment model.The red bounding box in the figure is the paved ground
which we preset. We use the paved ground to verify the effectiveness of the algorithm, and the
picture shows the paved ground in different states across different sensors and stages.

The accurate recognition results of the landing area based on the 3D semantic environ-
ment model of landing area are shown in Figure 15. From the figure, it can be seen that the
landing area recognition algorithm gives the position of the landing area (red part). The
area is located in the suitable landing area with a slope of 3.4 and a roughness of 0.29, which
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meet the requirements of the UAV for a landing site. Therefore, the algorithm proposed
in this paper can also accurately identify the landing site according to the 3D semantic
environment model of the landing area in a real environment.

Figure 15. The accurate recognition results of landing site based on the 3D semantic environment
model of landing area.

In order to further verify the effectiveness of the recognition system, we attach the
terrain recognition system module to a middle-size unmanned helicopter for practical
verification. As shown in Figure 16, the top figure shows the location where the landing
area recognition system is installed in the unmanned helicopter, and the bottom figure
shows the process from take-off to landing of the unmanned helicopter. The red trajectory
in the bottom figure shows the flight trajectory of the unmanned helicopter and the yellow
area shows the location of the landing area of the unmanned helicopter. From the bottom
figure, it can be seen that our proposed method can accurately identify the landing area on
different UAV platforms in a real environment.

Figure 16. The orange areas are the results of recognition of the landing area, and the green lines are
the results of the tracking of the landing area (Left). The red box represents the location of the landing
area recognition system in the unmanned helicopter (Right-Top). The red trajectory represents the
process from take-off to landing of the unmanned helicopter and the yellow area represents the
landing area (Right-Bottom).

6. Conclusions

In this paper, a multi-sensor UAV landing area recognition system is designed to realize
the robust and accurate recognition and estimation of suitable landing area. Firstly, we
determine the approximate position of the possible landing area by semantic segmentation
of the image data taken by the camera. Then, the image tracking algorithm continuously
tracks the area and guides the UAV to fly to the possible landing area, and then fuses the
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data of LiDAR, IMU, and camera sensors to obtain the accurate 3D position information
of the landing area. We also combine the point cloud semantic features with the point
cloud features extracted by traditional geometric methods to further improve the accuracy
and robustness of the algorithm. Both simulation and real experiments demonstrated the
effectiveness of the proposed method. In the future, we will carry out more experiments in
much more challenging environments.
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