
Citation: Wang, Y.-K.; Guo, J.;

Pan, T.-M. Multidomain Joint

Learning of Pedestrian Detection for

Application to Quadrotors. Drones

2022, 6, 430. https://doi.org/

10.3390/drones6120430

Academic Editor: Anastasios Dimou

Received: 17 November 2022

Accepted: 16 December 2022

Published: 19 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Multidomain Joint Learning of Pedestrian Detection for
Application to Quadrotors
Yuan-Kai Wang 1 , Jonathan Guo 1 and Tung-Ming Pan 2,*

1 Department of Electrical Engineering, Fu Jen Catholic University, New Taipei 242, Taiwan
2 Holistic Education Center, Department of Information Innovation and Digital Life, Fu Jen Catholic University,

New Taipei 242, Taiwan
* Correspondence: macgyver@fju.edu.tw

Abstract: Pedestrian detection and tracking are critical functions in the application of computer
vision for autonomous driving in terms of accident avoidance and safety. Extending the application to
drones expands the monitoring space from 2D to 3D but complicates the task. Images captured from
various angles pose a great challenge for pedestrian detection, because image features from different
angles tremendously vary and the detection performance of deep neural networks deteriorates. In this
paper, this multiple-angle issue is treated as a multiple-domain problem, and a novel multidomain
joint learning (MDJL) method is proposed to train a deep neural network using drone data from
multiple domains. Domain-guided dropout, a critical mechanism in MDJL, is developed to self-
organize domain-specific features according to neuron impact scores. After training and fine-tuning
the network, the accuracy of the obtained model improved in all the domains. In addition, we also
combined the MDJL with Markov decision-process trackers to create a multiobject tracking system
for flying drones. Experiments are conducted on many benchmarks, and the proposed method is
compared with several state-of-the-art methods. Experimental results show that the MDJL effectively
tackles many scenarios and significantly improves tracking performance.

Keywords: pedestrian detection; multiobject tracking; multitask learning; multidomain joint learning;
MDJL; drone application

1. Introduction

Pedestrian detection and tracking applications involving intelligent robots or flying
drones [1–3] facilitate the determination of the position of a human to avoid collisions and
the appropriate direction of a camera when walking or acquiring images. Both applications,
which are used in autonomous cars, can assist computers in determining whether braking
should be performed to slow down or avoid pedestrians [4,5].

Pedestrian detection and tracking in flying drones are used as examples because these
miniature aircraft can move arbitrarily in the sky; the acquired images will be different
because of the flight height and angle of the mounted camera. Thus, pedestrian images
obtained with a downward orientation are different from those acquired with a forward-
pointed camera. This causes significant challenges when pedestrian detection and tracking
are applied to drones.

However, to train a network that covers multiple domains in an application scenario,
the collection of videos and the preparation of annotations to create a dataset that meets
our needs is time-consuming and labor intensive. Such multiple domains can then be
integrated to use the resulting multidomain datasets [6]. However, after referring to the
relevant literature regarding this approach, we found that such datasets will influence
each other in each domain, making it difficult for the network to learn how to extract key
features, reducing performance. This paper proposes a training method based on domain-
guided dropout [7] that uses network domain information to enhance the performance of

Drones 2022, 6, 430. https://doi.org/10.3390/drones6120430 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones6120430
https://doi.org/10.3390/drones6120430
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-0676-5886
https://doi.org/10.3390/drones6120430
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones6120430?type=check_update&version=2

Drones 2022, 6, 430 2 of 29

the network when learning. In addition, our detection method was applied to a pedestrian
tracking system that is suitable for drones.

In practice, it is time-consuming to collect video data and generate the corresponding
annotations. The most intuitive method is to combine multiple ready-made datasets to train
the model. However, in the experiments, the classification accuracy of the model trained
with this method was slightly reduced when applied to the test data of each dataset. We
believe that this phenomenon occurred because the different video datasets have different
scenes, angles, shooting lengths, and equipment. Therefore, the features of the video data
in each dataset varied. The neural network is easily affected by these differences during
training, and learning a method for efficiently extracting pedestrian features is impossible,
resulting in performance degradation.

In computer vision, a domain can be broadly referred to as a collection of data groups
with the same features. For example, Figure 1 shows three pedestrian detection datasets
that belong to different domains. The objective is to train the pedestrian detection network
by combining the datasets of multiple domains so that the learned model can be more
generalized to cope with the challenges of different domains.

Drones 2022, 6, x FOR PEER REVIEW 2 of 29

features, reducing performance. This paper proposes a training method based on domain-
guided dropout [7] that uses network domain information to enhance the performance of
the network when learning. In addition, our detection method was applied to a pedestrian
tracking system that is suitable for drones.

In practice, it is time-consuming to collect video data and generate the corresponding
annotations. The most intuitive method is to combine multiple ready-made datasets to
train the model. However, in the experiments, the classification accuracy of the model
trained with this method was slightly reduced when applied to the test data of each
dataset. We believe that this phenomenon occurred because the different video datasets
have different scenes, angles, shooting lengths, and equipment. Therefore, the features of
the video data in each dataset varied. The neural network is easily affected by these
differences during training, and learning a method for efficiently extracting pedestrian
features is impossible, resulting in performance degradation.

In computer vision, a domain can be broadly referred to as a collection of data groups
with the same features. For example, Figure 1 shows three pedestrian detection datasets
that belong to different domains. The objective is to train the pedestrian detection network
by combining the datasets of multiple domains so that the learned model can be more
generalized to cope with the challenges of different domains.

(a) (b) (c)

Figure 1. Pedestrian detection datasets belonging to different domains: (a) videos recorded using
the driving recorder, (b) videos of campus surveillance, and (c) aerial videos obtained using flying
drones.

The emergence of superlarge datasets, such as ImageNet, has led to the flourishing
of neural networks [8]. Starting from the pretrained model using a superlarge dataset to
perform further fine-tuned training, also known as transfer learning, has a better effect
than using a randomly generated initial network. However, it is difficult to obtain this
large dataset in various domains. Therefore, research units in different domains often
create smaller datasets, but the simultaneous use of multiple datasets to train a model is
challenging. In this paper, we call this dataset, composed of multiple datasets of different
domains, a multidomain dataset.

Domain-guided dropout (DGD) [7] is a dropout method wherein neurons that
respond strongly to a specific domain may not respond as strongly to other domains. By
analyzing the degree of response of each neuron in the network to each domain, the
probability of neuron dropout during the training can be adjusted. This improves the
specificity and sensitivity of the neuron to features, thereby improving accuracy.

Our proposed pedestrian detection method, multidomain joint learning (MDJL), is
derived from multitask learning. It uses the DGD characteristics to allow the network to
effectively learn the features during training with the multidomain dataset to improve
accuracy and generalizability across the domains. It was applied to the multi-pedestrian
tracking algorithm for use in the changeable environment of a flying drone.

Figure 2 shows the flowchart for the proposed method. First, initialization training is
performed so that the network can initially learn the features of each domain. The neuron

Figure 1. Pedestrian detection datasets belonging to different domains: (a) videos recorded using the
driving recorder, (b) videos of campus surveillance, and (c) aerial videos obtained using flying drones.

The emergence of superlarge datasets, such as ImageNet, has led to the flourishing
of neural networks [8]. Starting from the pretrained model using a superlarge dataset to
perform further fine-tuned training, also known as transfer learning, has a better effect
than using a randomly generated initial network. However, it is difficult to obtain this
large dataset in various domains. Therefore, research units in different domains often
create smaller datasets, but the simultaneous use of multiple datasets to train a model is
challenging. In this paper, we call this dataset, composed of multiple datasets of different
domains, a multidomain dataset.

Domain-guided dropout (DGD) [7] is a dropout method wherein neurons that respond
strongly to a specific domain may not respond as strongly to other domains. By analyzing
the degree of response of each neuron in the network to each domain, the probability of
neuron dropout during the training can be adjusted. This improves the specificity and
sensitivity of the neuron to features, thereby improving accuracy.

Our proposed pedestrian detection method, multidomain joint learning (MDJL), is
derived from multitask learning. It uses the DGD characteristics to allow the network to
effectively learn the features during training with the multidomain dataset to improve
accuracy and generalizability across the domains. It was applied to the multi-pedestrian
tracking algorithm for use in the changeable environment of a flying drone.

Figure 2 shows the flowchart for the proposed method. First, initialization training
is performed so that the network can initially learn the features of each domain. The
neuron impact score (NIS) of each domain is then calculated. The dropout in the network
is replaced with the DGD, and training is continued. Finally, domain-specific fine-tuning is
performed for each domain-specific neuron.

Drones 2022, 6, 430 3 of 29

Drones 2022, 6, x FOR PEER REVIEW 3 of 29

impact score (NIS) of each domain is then calculated. The dropout in the network is
replaced with the DGD, and training is continued. Finally, domain-specific fine-tuning is
performed for each domain-specific neuron.

Figure 2. MDJL flow chart.

This process divides the network into several subnets, as shown in Figure 3, and each
subnet is specialized to a specific domain. Given the characteristics of the DGD, subnets
may overlap, which means that the domains have common data features.

Figure 3. Schematic of MDJL subnet segmentation.

The remainder of this paper is organized into different sections. Section 2 reviews
related deep learning methods and tracking schemes. The MDJL method is presented in
Section 3. Experimental results and comparisons of the proposed technique with state-of-
the-art methods are presented in Section 4. Finally, the conclusions and suggestions for
future work are summarized in Section 5.

2. Related Works
Pedestrian detection and human pose estimation are typical surveillance applications

[9–11]. Pedestrian detection algorithms can use traditional machine-learning methods on
the basis of feature extraction and a learnable classifier. The architecture of this method
extracts the specified features of the image (e.g., Haar feature [12], histogram of oriented
gradients (HOG) [13], and deformable part models (DPM) [14]) and then uses sliding
windows of different sizes to sample the feature images. These samples are finally sent to

Figure 2. MDJL flow chart.

This process divides the network into several subnets, as shown in Figure 3, and each
subnet is specialized to a specific domain. Given the characteristics of the DGD, subnets
may overlap, which means that the domains have common data features.

Drones 2022, 6, x FOR PEER REVIEW 3 of 29

impact score (NIS) of each domain is then calculated. The dropout in the network is
replaced with the DGD, and training is continued. Finally, domain-specific fine-tuning is
performed for each domain-specific neuron.

Figure 2. MDJL flow chart.

This process divides the network into several subnets, as shown in Figure 3, and each
subnet is specialized to a specific domain. Given the characteristics of the DGD, subnets
may overlap, which means that the domains have common data features.

Figure 3. Schematic of MDJL subnet segmentation.

The remainder of this paper is organized into different sections. Section 2 reviews
related deep learning methods and tracking schemes. The MDJL method is presented in
Section 3. Experimental results and comparisons of the proposed technique with state-of-
the-art methods are presented in Section 4. Finally, the conclusions and suggestions for
future work are summarized in Section 5.

2. Related Works
Pedestrian detection and human pose estimation are typical surveillance applications

[9–11]. Pedestrian detection algorithms can use traditional machine-learning methods on
the basis of feature extraction and a learnable classifier. The architecture of this method
extracts the specified features of the image (e.g., Haar feature [12], histogram of oriented
gradients (HOG) [13], and deformable part models (DPM) [14]) and then uses sliding
windows of different sizes to sample the feature images. These samples are finally sent to

Figure 3. Schematic of MDJL subnet segmentation.

The remainder of this paper is organized into different sections. Section 2 reviews
related deep learning methods and tracking schemes. The MDJL method is presented in
Section 3. Experimental results and comparisons of the proposed technique with state-of-
the-art methods are presented in Section 4. Finally, the conclusions and suggestions for
future work are summarized in Section 5.

2. Related Works

Pedestrian detection and human pose estimation are typical surveillance applica-
tions [9–11]. Pedestrian detection algorithms can use traditional machine-learning methods
on the basis of feature extraction and a learnable classifier. The architecture of this method
extracts the specified features of the image (e.g., Haar feature [12], histogram of oriented
gradients (HOG) [13], and deformable part models (DPM) [14]) and then uses sliding
windows of different sizes to sample the feature images. These samples are finally sent to

Drones 2022, 6, 430 4 of 29

a trained classifier (e.g., support vector machine (SVM) [15]) for classification to achieve
pedestrian detection.

Traditional object detection methods typically use image pyramid and sliding-window
methods to address a problem in which the size of objects in an image is not fixed. In
addition, to reduce the number of samples for a single image, some methods analyze
additional information extracted from the image, such as the dominant ground plane,
to limit the sliding-window range [16]. Methods such as Viola–Jones [12], HOG [13],
convolutional channel filter [17], and checkerboard [18] are the representative methods of
traditional machine learning.

Another pedestrian detection algorithm is the neural-network method [19]. However,
the developed multilayer perceptron (MLP) cannot efficiently process multidimensional
video data. LeCun et al. [20] proposed the convolutional neural network (CNN) as network
architecture. CNN can be divided into two layers: feature extraction and classification
networks. Its function is equivalent to that of the HOG or DPM feature extraction meth-
ods. The features extracted by the CNN are not manually designed but are generated
by the network via a learning stage. The classification network is equivalent to an SVM
classifier, which is a set of classifications that learns how to use the information provided
by a previous network. This neural network does not rely on manually designed feature
extraction methods.

The advantage of CNN is that it can effectively solve manually designed feature
extraction problems using traditional methods. Provided that the network parameters
are adjusted via backpropagation using end-to-end training, the CNN can learn a filter
to effectively extract the key features of the object and categorize the feature classifier
extracted by this filter.

Some object detection methods using neural networks also use the sliding-window
method [21] when the size of objects in an image is not fixed but the computation time is
generally long. Therefore, in recent years, the mainstream method has been to adopt the
strategy of object proposal by analyzing the bounding box that is likely to appear as the
target object in the image. These possible bounding boxes are then inputted into the neural
network for further analysis to obtain the final result. Moreover, some methods use the
bounding box regression algorithm to correct the error of the bounding box for improved
accuracy. In this study, algorithms such as faster R-CNN [22], Deepparts [23], UDN [24],
and MS-CNN [25] were used as the baseline methods of deep learning.

MS-CNN uses different depths of CNN features with varying sizes of receptive fields
to increase the detection range of object sizes. The implemented MS-CNN follows the
feature-sharing concept proposed in [26] and uses a CNN trunk to detect long-distance
object features. The difference is that the image features used by MS-CNN are extracted
from different depths of the CNN trunk and sent to the region proposal network for analysis.
This approach can address the problem in which the features of objects that are too small
disappear in the deep CNN layer because of max pooling.

To enable the application of MS-CNN to drones, DGD, which is used in traditional
neural-network training, is used to replace dropout [27]. Different datasets are regarded
as independent domains, and the dropout probability is adjusted by analyzing the degree
of response of each neuron to each domain. Consequently, the network can learn how to
extract the most valuable features in each domain to improve its overall performance.

Recently, multiobject tracking methods have adopted the tracking-by-detection ap-
proach, which primarily aims to obtain the best connection between the bounding boxes in
each frame. Therefore, most multiobject tracking methods aim to maximize a posteriori
probability (MAP). The solutions to MAP problems can be divided into two categories. The
first type of deterministic optimization problem is amenable to offline tracking methods.
A commonly used method is based on a graphical solution, which uses the detection
information to define a directed graph and obtain the best association tracklet via cost
minimization [28,29]. Alternatively, an energy function can be utilized to detect the scene’s

Drones 2022, 6, 430 5 of 29

fixed action mode and the constraint rules. Energy minimization is then used to obtain the
best solution [30].

The second method uses probabilistic inference and a probability inference method
based on current detection information to estimate the target state distribution. Given that
only present and past information is used, it is more suitable for online tracking methods.
It uses single-object tracking to predict the location, surface feature, and motion to model
the target. These two models are used to predict the location of a target object. The data
association algorithm is then used to associate the relevant bounding box. Finally, the target
model is updated, and the aforementioned steps are performed in a loop to achieve online
multiobject tracking. The Kalman filter combined with the Hungarian algorithm for data
association has been used to achieve multiobject tracking [31,32]. In addition to using the
Kalman filter as the motion model, mean-shift tracking has been used as an appearance
model, using the Hungarian algorithm to perform data association. The Markov decision-
process (MDP) tracker [33] introduces the concept of learning to automatically obtain the
similarity function for data association and uses the MDP model to determine the object’s
state in the adopted tracking strategy.

3. MDJL Method

Multitask learning (MTL) is a training method that has been commonly used in deep
learning networks in recent years. The application of MTL includes natural language
processing, speech recognition, and computer vision.

Figure 4 shows the differences between single- and multitask learning. Single-task
learning is optimized for a specific task or even a particular domain during training and
learning. However, MTL combines training information from multiple different but related
tasks, such that the backpropagation results between different domains can compete to
achieve a more generalized network model.

Drones 2022, 6, x FOR PEER REVIEW 5 of 29

detect the scene’s fixed action mode and the constraint rules. Energy minimization is then
used to obtain the best solution [30].

The second method uses probabilistic inference and a probability inference method
based on current detection information to estimate the target state distribution. Given that
only present and past information is used, it is more suitable for online tracking methods.
It uses single-object tracking to predict the location, surface feature, and motion to model
the target. These two models are used to predict the location of a target object. The data
association algorithm is then used to associate the relevant bounding box. Finally, the
target model is updated, and the aforementioned steps are performed in a loop to achieve
online multiobject tracking. The Kalman filter combined with the Hungarian algorithm
for data association has been used to achieve multiobject tracking [31,32]. In addition to
using the Kalman filter as the motion model, mean-shift tracking has been used as an
appearance model, using the Hungarian algorithm to perform data association. The
Markov decision-process (MDP) tracker [33] introduces the concept of learning to
automatically obtain the similarity function for data association and uses the MDP model
to determine the object’s state in the adopted tracking strategy.

3. MDJL Method
Multitask learning (MTL) is a training method that has been commonly used in deep

learning networks in recent years. The application of MTL includes natural language
processing, speech recognition, and computer vision.

Figure 4 shows the differences between single- and multitask learning. Single-task
learning is optimized for a specific task or even a particular domain during training and
learning. However, MTL combines training information from multiple different but
related tasks, such that the backpropagation results between different domains can
compete to achieve a more generalized network model.

Figure 4. Single-task learning vs. multitask learning.

Labeled training data are available for a set of k tasks 𝒯 = {𝒯ଵ, 𝒯ଶ, … , 𝒯௞}, where each
task is associated with a different domain, 𝒟 = {𝒟ଵ, 𝒟ଶ, … , 𝒟௞} [34]. It is nearly impossible
to reliably estimate the empirical joint distribution 𝑃෠௞(𝑋, 𝑌) by using data from the kth
domain only at the kth task, where 𝑋 = {𝑥ଵ, 𝑥ଶ, … , 𝑥௡} is the set of samples from the
feature space and 𝑌 = {𝑦ଵ, 𝑦ଶ, … , 𝑦௡} is the label of the sample. A better approximation for 𝑃෠௞(𝑋, 𝑌) is learned by exploiting the training data from all domains and learning all tasks

Figure 4. Single-task learning vs. multitask learning.

Labeled training data are available for a set of k tasks T = {T1, T2, . . . , Tk}, where
each task is associated with a different domain, D = {D1,D2, . . . ,Dk} [34]. It is nearly
impossible to reliably estimate the empirical joint distribution P̂k(X, Y) by using data from
the kth domain only at the kth task, where X = {x1, x2, . . . , xn} is the set of samples from
the feature space and Y = {y1, y2, . . . , yn} is the label of the sample. A better approximation

Drones 2022, 6, 430 6 of 29

for P̂k(X, Y) is learned by exploiting the training data from all domains and learning all
tasks simultaneously. Thus, in the training process, the exchange of information between
tasks and the competition between domains can improve the performance of each task.

In [35], the MTL of deep learning networks was divided into two categories: hard and
soft parameter sharing. Hard parameter sharing primarily uses shared hidden layers in a
deep learning network with multiple task outputs, as shown in Figure 5a. This approach
can force the network to find a more generalized model that can satisfy all tasks during
training and is easy to overfit. Soft parameter sharing means that different tasks have
independent models and parameters; however, each model mutually restricts the distance
between its parameters during training, as shown in Figure 5b. This method can encourage
each model to improve each other’s similarities, but they retain the ability to complete
the specified task. There are many ways to calculate the distance, such as the Euclidean
distance or trace norm.

Drones 2022, 6, x FOR PEER REVIEW 6 of 29

simultaneously. Thus, in the training process, the exchange of information between tasks
and the competition between domains can improve the performance of each task.

In [35], the MTL of deep learning networks was divided into two categories: hard
and soft parameter sharing. Hard parameter sharing primarily uses shared hidden layers
in a deep learning network with multiple task outputs, as shown in Figure 5a. This
approach can force the network to find a more generalized model that can satisfy all tasks
during training and is easy to overfit. Soft parameter sharing means that different tasks
have independent models and parameters; however, each model mutually restricts the
distance between its parameters during training, as shown in Figure 5b. This method can
encourage each model to improve each other’s similarities, but they retain the ability to
complete the specified task. There are many ways to calculate the distance, such as the
Euclidean distance or trace norm.

(a) hard parameter sharing (b) soft parameter sharing

Figure 5. Parameter-sharing diagram.

An inductive bias obtained via MTL seems intuitively plausible. However, the
following features highlight the advantages of this approach. First, MTL can indirectly
increase the amount of training information. The second feature is that this method allows
the deep learning network to focus on more-valuable features during training. The third
feature is that MTL causes the network to exhibit a representative bias when learning. In
addition, the MTL can import inductive bias during in-depth learning network training
to make the network model less easy to overfit. Finally, it can also add an eavesdropping
training mechanism to make it easier for the network to learn different tasks.

3.1. Multidomain Joint Learning
The MDJL approach proposed in this paper addresses the following problem: when

a multidomain dataset is used to train a deep learning network, the final model performs
worse on individual domains than on separate training on single domains. As defined in
[34] for MTL, if we treat pedestrian detection in different domains as a different task, we
can treat the aforementioned problem as an MTL problem.

The utilized MTL method has the hard parameter-sharing architecture described in
[35]. It includes a shared feature extraction network, a task-specific hidden layer, and the
output of each task. However, given that all the outputs have the same class probability
and bounding box, we combine and share the outputs of various tasks. Figure 6 shows a
simple architectural diagram. The colored blocks in the figure represent task-specific
hidden layers. The objective is that the network will independently construct each task
block during the training process. Therefore, we used DGD to facilitate the self-allocation
of hidden layer resources in the network, according to the response of neurons to different
tasks in the hidden layer.

Figure 5. Parameter-sharing diagram.

An inductive bias obtained via MTL seems intuitively plausible. However, the follow-
ing features highlight the advantages of this approach. First, MTL can indirectly increase
the amount of training information. The second feature is that this method allows the deep
learning network to focus on more-valuable features during training. The third feature is
that MTL causes the network to exhibit a representative bias when learning. In addition,
the MTL can import inductive bias during in-depth learning network training to make
the network model less easy to overfit. Finally, it can also add an eavesdropping training
mechanism to make it easier for the network to learn different tasks.

3.1. Multidomain Joint Learning

The MDJL approach proposed in this paper addresses the following problem: when a
multidomain dataset is used to train a deep learning network, the final model performs
worse on individual domains than on separate training on single domains. As defined
in [34] for MTL, if we treat pedestrian detection in different domains as a different task, we
can treat the aforementioned problem as an MTL problem.

The utilized MTL method has the hard parameter-sharing architecture described
in [35]. It includes a shared feature extraction network, a task-specific hidden layer, and the
output of each task. However, given that all the outputs have the same class probability
and bounding box, we combine and share the outputs of various tasks. Figure 6 shows
a simple architectural diagram. The colored blocks in the figure represent task-specific
hidden layers. The objective is that the network will independently construct each task
block during the training process. Therefore, we used DGD to facilitate the self-allocation
of hidden layer resources in the network, according to the response of neurons to different
tasks in the hidden layer.

Drones 2022, 6, 430 7 of 29Drones 2022, 6, x FOR PEER REVIEW 7 of 29

Figure 6. MDJL hard parameter-sharing architecture diagram.

MDJL divides the classification network into the same number of subnetworks
according to the number of domains in the multidomain dataset. The division standard
was determined on the basis of the response strength of each neuron in the classification
network of different domains. Thus, each subnet can be specialized in a specific domain
to more efficiently learn the information of various domains contained in the multidomain
dataset and improve the network’s overall performance in each domain.

To calculate the degree of response of a specific neuron to a specific domain, we used
the NIS in the DGD, which is defined in Equation (1) as follows: 𝑠௜ = 𝐿൫𝑔(𝑥)\௜൯ − 𝐿൫𝑔(𝑥)൯, (1)

where 𝑔(𝑥)\௜ is the output of the entire network when the ith neuron is ignored, 𝑔(𝑥) is
the original output, and 𝐿(𝑥) is a loss function. Because our network has two outputs, a
bounding box and category probability distribution, we use the multitask loss to evaluate
the network’s performance.

A DGD has two modes: deterministic and stochastic. Equation (2), which expresses
the deterministic mode, is used to drop out all neurons with a nonpositive impact score
(NIS) of less than zero. ൜ 𝑘𝑒𝑒𝑝, 𝑖𝑓 𝑠௜ > 0𝑑𝑟𝑜𝑝𝑜𝑢𝑡, 𝑖𝑓 𝑠௜ ≤ 0 (2)

The stochastic mode uses the sigmoid function to determine the dropout probability
of a neuron, which is defined in Equation (3) as follows: 𝑝(𝑠௜) = 11 + 𝑒ି௦೔ ்⁄ , (3)

where 𝑇 is an adjustable parameter, and its value determines the degree of the NIS
influence probability. If 𝑇 → 0, then it becomes deterministic. If 𝑇 → ∞, it returns to the
traditional dropout. In this paper, MDJL adopts the deterministic mode in the preliminary
training stage, whereas the stochastic mode is used for fine-tuning.

Given that MDJL has two types of outputs (class and bounding box), the bounding
box’s output is meaningful only when the object is classified as nonbackground to
facilitate end-to-end training in the network and obtain the best parameters 𝑾∗ .
Therefore, multitask loss was used as the evaluation basis for training the network. The
sample set used in training was Ｓ＝{(𝑋௜, 𝑌௜)}௜ୀଵ௄ , where 𝑋௜ is the sample image, 𝑌௜ =(𝑦௜, 𝑏௜) is the category 𝑦௜ ∈ {1,2,3, … , 𝐾} to which the sample belongs, and the bounding

Figure 6. MDJL hard parameter-sharing architecture diagram.

MDJL divides the classification network into the same number of subnetworks ac-
cording to the number of domains in the multidomain dataset. The division standard
was determined on the basis of the response strength of each neuron in the classification
network of different domains. Thus, each subnet can be specialized in a specific domain to
more efficiently learn the information of various domains contained in the multidomain
dataset and improve the network’s overall performance in each domain.

To calculate the degree of response of a specific neuron to a specific domain, we used
the NIS in the DGD, which is defined in Equation (1) as follows:

si = L
(

g(x)\i
)
− L(g(x)), (1)

where g(x)\i is the output of the entire network when the ith neuron is ignored, g(x) is
the original output, and L(x) is a loss function. Because our network has two outputs, a
bounding box and category probability distribution, we use the multitask loss to evaluate
the network’s performance.

A DGD has two modes: deterministic and stochastic. Equation (2), which expresses
the deterministic mode, is used to drop out all neurons with a nonpositive impact score
(NIS) of less than zero. {

keep, i f si > 0
dropout, i f si ≤ 0

(2)

The stochastic mode uses the sigmoid function to determine the dropout probability
of a neuron, which is defined in Equation (3) as follows:

p(si) =
1

1 + e−si/T , (3)

where T is an adjustable parameter, and its value determines the degree of the NIS influence
probability. If T → 0 , then it becomes deterministic. If T → ∞ , it returns to the traditional
dropout. In this paper, MDJL adopts the deterministic mode in the preliminary training
stage, whereas the stochastic mode is used for fine-tuning.

Given that MDJL has two types of outputs (class and bounding box), the bounding
box’s output is meaningful only when the object is classified as nonbackground to facilitate
end-to-end training in the network and obtain the best parameters W∗. Therefore, multitask
loss was used as the evaluation basis for training the network. The sample set used in
training was S = {(Xi, Yi)}K

i=1, where Xi is the sample image, Yi = (yi, bi) is the category
yi ∈ {1, 2, 3, . . . , K} to which the sample belongs, and the bounding box position of the

Drones 2022, 6, 430 8 of 29

actual object is bi =
(

bx
i , by

i , bw
i , bh

i

)
. Using this information, we can write the multitask loss

function as follows, in Equation (4):

(W) =
M

∑
m=1

∑
i∈Sm

αmlm(Xi, Yi|W), (4)

where M is the number of branches, αm is the weight of lm, and Sm in S =
{

S1, S2, . . . , SM}
is the collection of objects in charge of this branch. Thus, lm calculates the loss from two
aspects: the correctness of classification and the accuracy of the bounding box. It takes the
form of Equation (5):

l(X, Y|W) = Lcls(p(X), y) + λ[y ≥ 1]Lloc

(
b, b̂

)
(5)

p(X) = {p0(X), p1(X), . . . , pK(X)} is the probability distribution of each category,
and Lcls is the classified cross-entropy loss, which is defined in Equation (6) as follows:

Lcls(p(X), y) = − log py(X) (6)

b̂ =
{

bx, by, bw, bh
}

are the calculated bounding boxes. MS-CNN uses Equation (7),
defined in [26], to calculate the bounding box loss.

Lloc =
1
4 ∑

j∈{x,y,w,h}
smooth

(
bj, b̂j

)
(7)

From Equation (5), Lloc is valid only for nonbackground categories, and λ is the weight
parameter. After the error has been obtained, the best parameter W∗ = argminW L(W)
can be obtained using the stochastic gradient descent method.

To equitably calculate the NIS of each domain, it is necessary to calculate the NIS of all
validation samples in the domain, followed by the calculation of the average to obtain the
final score. Figure 7 shows a schematic of the MDJL network. To replace the initially used
dropout with DGD in the MS-CNN and reduce the error caused by the difference in the
implementation, we adopted the DGD three-stage training method. The detailed training
process is explained in Section 3.3.

Drones 2022, 6, x FOR PEER REVIEW 8 of 29

box position of the actual object is 𝑏௜ = ൫𝑏௜௫, 𝑏௜௬, 𝑏௜௪, 𝑏௜௛൯. Using this information, we can
write the multitask loss function as follows, in Equation (4):

(𝑾) = ෍ ෍ 𝛼௠𝑙௠(𝑋௜, 𝑌௜|𝑾)௜∈ௌ೘
ெ

௠ୀଵ , (4)

where M is the number of branches, 𝛼௠ 𝑖s the weight of 𝑙௠, and 𝑆௠ in 𝑆 = {𝑆ଵ, 𝑆ଶ, … , 𝑆ெ}
is the collection of objects in charge of this branch. Thus, 𝑙௠ calculates the loss from two
aspects: the correctness of classification and the accuracy of the bounding box. It takes the
form of Equation (5): 𝑙(𝑋, 𝑌|𝑾) = 𝐿௖௟௦(𝑝(𝑋), 𝑦) + 𝜆ሾ𝑦 ≥ 1ሿ𝐿௟௢௖൫𝑏, 𝑏෠൯ (5)𝑝(𝑋) = {𝑝଴(𝑋), 𝑝ଵ(𝑋), … , 𝑝௄(𝑋)} is the probability distribution of each category, and 𝐿௖௟௦ is the classified cross-entropy loss, which is defined in Equation (6) as follows: 𝐿௖௟௦(𝑝(𝑋), 𝑦) = −log𝑝௬(𝑋) (6)𝑏෠ = ൛𝑏௫, 𝑏௬, 𝑏௪, 𝑏௛ൟ are the calculated bounding boxes. MS-CNN uses Equation (7),
defined in [26], to calculate the bounding box loss. 𝐿௟௢௖ = 14 ෍ 𝑠𝑚𝑜𝑜𝑡ℎ(𝑏௝, 𝑏෠௝)௝∈{௫,௬,௪,௛} (7)

From Equation (5), 𝐿௟௢௖ is valid only for nonbackground categories, and 𝜆 is the
weight parameter. After the error has been obtained, the best parameter 𝑾∗ =𝑎𝑟𝑔𝑚𝑖𝑛𝑾 ℒ(𝑾) can be obtained using the stochastic gradient descent method.

To equitably calculate the NIS of each domain, it is necessary to calculate the NIS of
all validation samples in the domain, followed by the calculation of the average to obtain
the final score. Figure 7 shows a schematic of the MDJL network. To replace the initially
used dropout with DGD in the MS-CNN and reduce the error caused by the difference in
the implementation, we adopted the DGD three-stage training method. The detailed
training process is explained in Section 3.3.

Figure 7. MDJL schematic.

Figure 7. MDJL schematic.

Drones 2022, 6, 430 9 of 29

3.2. Domain-Oriented Fine-Tuning

To further improve the network’s performance, the consensus in the research com-
munity is to fine-tune a preliminarily trained network. In this section, domain-oriented
fine-tuning is presented as a method that uses domain information to effectively fine-tune
the MDJL.

We use Equation (1) to calculate the NIS of each neuron for each domain and use the
rules of Equation (2) to allocate the domain for which the neuron is responsible. Because
the same neuron may be responsible for more than one domain, we can represent the
distribution of the neurons that are responsible for different domains by using a Venn
diagram, as shown in Figure 8. This figure shows that each domain has unique neurons
(red, yellow, and blue blocks). These neurons are known as domain-exclusive neurons
(DENs). DENs are responsible for only a single domain; therefore, it is feasible that fine-
tuning these neurons can further improve the network’s performance.

Drones 2022, 6, x FOR PEER REVIEW 9 of 29

3.2. Domain-Oriented Fine-Tuning
To further improve the network’s performance, the consensus in the research

community is to fine-tune a preliminarily trained network. In this section, domain-
oriented fine-tuning is presented as a method that uses domain information to effectively
fine-tune the MDJL.

We use Equation (1) to calculate the NIS of each neuron for each domain and use the
rules of Equation (2) to allocate the domain for which the neuron is responsible. Because
the same neuron may be responsible for more than one domain, we can represent the
distribution of the neurons that are responsible for different domains by using a Venn
diagram, as shown in Figure 8. This figure shows that each domain has unique neurons
(red, yellow, and blue blocks). These neurons are known as domain-exclusive neurons
(DENs). DENs are responsible for only a single domain; therefore, it is feasible that fine-
tuning these neurons can further improve the network’s performance.

Figure 8. Schematic of neuron distribution in MDJL according to NIS classification.

By using the characteristics of stochastic DGD, the drop rate can be significantly
increased during the training of neurons that do not belong to DENs by manipulating the
NIS of each neuron for different domains. Thus, the fine-tuned DENs in the network can
be further improved. To obtain the DENs 𝓔 that belongs to each domain, we used the
previously calculated NIS score 𝓢𝒋 = {𝑠ଵ௝, 𝑠ଶ௝, 𝑠ଷ௝, … , 𝑠௜௝, … , 𝑠௡௞} for all n neurons for all k
domains 𝓓 = ൛𝒟ଵ, 𝒟ଶ, 𝒟ଷ, … , 𝒟௝, … , 𝒟௞ൟ and Equation (2) to determine the neuron set 𝒩௝
responsible for domain 𝒟௝ . Then, if 𝐼 = {1,2,3, … , 𝑘} , we obtain the DENs ℇ௝ =𝒩௝\൫⋃ 𝒩௜௜∈ூ & ௜ஷ௝ ൯ that belong to domain 𝒟௝. Finally, we used Equation (8) to obtain the
adjusted NIS of each neuron 𝑛௜, called the exclusive neuron impact score (eNIS). R, known
as the reserve constant, is a parameter less than 0 that can be adjusted to modify the
reserve rate of neurons that do not belong to the DENs so that it is smaller than the reserve
rate of neuron DENs. The reserve rate used in fine-tuning is the result calculated using
Equation (3) and using eNIS, as shown in Figure 9. 𝑠̂௜௝ = ൜𝑠௜௝, 𝑖𝑓 𝑛௜ ∈ ℇ௝𝑅, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (8)

3.3. Multidomain Joint Learning Training
Backpropagation was used as the training algorithm. Training of the MDJL was

divided into three stages. The first stage synthesized the initial training of all the datasets.
We used VGG16 as our initial model to obtain a basic network that had learned all the
domains. The second stage analyzed the NIS of the basic network obtained in the first
stage, replaced the dropout in the network with DGD, and performed subsequent training
actions. In this stage, the DGD dropped the specified neuron according to the NIS of the
domain to which the input sample belonged during the training process, thereby
strengthening the network’s concept of the domain to improve its performance. In the

Figure 8. Schematic of neuron distribution in MDJL according to NIS classification.

By using the characteristics of stochastic DGD, the drop rate can be significantly
increased during the training of neurons that do not belong to DENs by manipulating
the NIS of each neuron for different domains. Thus, the fine-tuned DENs in the network
can be further improved. To obtain the DENs ε that belongs to each domain, we used
the previously calculated NIS score S j =

{
s1j, s2j, s3j, . . . , sij, . . . , snk

}
for all n neurons

for all k domains D =
{
D1,D2,D3, . . . ,Dj, . . . ,Dk

}
and Equation (2) to determine the

neuron set Nj responsible for domain Dj. Then, if I = {1, 2, 3, . . . , k}, we obtain the DENs
εj = Nj\

(
∪i∈I & i 6=jNi

)
that belong to domain Dj. Finally, we used Equation (8) to obtain

the adjusted NIS of each neuron ni, called the exclusive neuron impact score (eNIS). R,
known as the reserve constant, is a parameter less than 0 that can be adjusted to modify the
reserve rate of neurons that do not belong to the DENs so that it is smaller than the reserve
rate of neuron DENs. The reserve rate used in fine-tuning is the result calculated using
Equation (3) and using eNIS, as shown in Figure 9.

ŝij =

{
sij, i f ni ∈ εj
R, otherwise

(8)

Drones 2022, 6, 430 10 of 29

Drones 2022, 6, x FOR PEER REVIEW 10 of 29

final stage, we propose domain-oriented fine-tuning to optimize the network model
further.

Figure 9. Adjusted reserve rate.

The network architecture used in this paper was MS-CNN; therefore, the first stage
of initialization training was conducted according to the MS-CNN training method. This
method also has two training stages. The main difference between the two stages is the
negative sampling mode. The first stage adopts the random sampling mode, and the
second stage adopts the bootstrapping sampling mode. Bootstrapping is a type of hard-
negative mining-sampling method. It can be used to determine whether a sample can be
used for training according to the objectness score of the sample. Its goal is to facilitate
easier misjudging of the collected sample, thereby reducing the network chance of
misjudgment.

During training, the training sample set of the branch detection layer m is defined as 𝑆௠ = {𝑆ା௠, 𝑆௠ି} , where 𝑆ା௠ represents positive samples and 𝑆௠ି represents negative
samples. Assume that a single sample is defined as 𝑆＝(𝑋௜, 𝑌௜), where 𝑋௜ is the sample
image and 𝑌௜ = (𝑦௜, 𝑏௜) is the category to which the sample belongs and the location of the
bounding box. Here, 𝑜∗, as defined in Equation (9), determines whether the sample is
positive or negative. 𝑜∗ = max௜∈ௌ೒೟ 𝐼𝑜𝑈(𝑏, 𝑏௜) (9)𝑆௚௧ is the ground truth, and 𝐼𝑜𝑈 is the intersection between the two bounding boxes.
Thus, when 𝑜∗ is greater than or equal to 0.5, the sample is added to the positive sample
set; when 𝑜∗ is less than 0.2, the sample is added to the negative sample set, and all other
samples are discarded. Typically, the distribution of objects and nonobjects in an image is
asymmetric. Therefore, to achieve a balance between the two, we set |𝑆௠ି| = 𝛾|𝑆ା௠| .
Random sampling and bootstrapping sampling are then used to obtain the final negative
sample set.

To ensure that each detection layer detects objects only within a fixed scale range, the
training set of each layer is composed of a subset of 𝑆, and the samples of this subset
correspond to the scale range of the layer detection. However, this method may cause a
specific layer to have no available positive samples and indirectly cause learning
instability. Therefore, it is necessary to modify the cross-entropy, as shown in Equation
(10), to solve this problem. 𝐿௖௟௦ = 11 + 𝛾 1|𝑆ା| ෍ −𝑙𝑜𝑔𝑝௬೔(𝑋௜)௜∈ௌశ + 11 + 𝛾 1|𝑆ି| ෍ −𝑙𝑜𝑔𝑝଴(𝑋௜)௜∈ௌష (10)

Figure 9. Adjusted reserve rate.

3.3. Multidomain Joint Learning Training

Backpropagation was used as the training algorithm. Training of the MDJL was
divided into three stages. The first stage synthesized the initial training of all the datasets.
We used VGG16 as our initial model to obtain a basic network that had learned all the
domains. The second stage analyzed the NIS of the basic network obtained in the first stage,
replaced the dropout in the network with DGD, and performed subsequent training actions.
In this stage, the DGD dropped the specified neuron according to the NIS of the domain to
which the input sample belonged during the training process, thereby strengthening the
network’s concept of the domain to improve its performance. In the final stage, we propose
domain-oriented fine-tuning to optimize the network model further.

The network architecture used in this paper was MS-CNN; therefore, the first stage
of initialization training was conducted according to the MS-CNN training method. This
method also has two training stages. The main difference between the two stages is the
negative sampling mode. The first stage adopts the random sampling mode, and the second
stage adopts the bootstrapping sampling mode. Bootstrapping is a type of hard-negative
mining-sampling method. It can be used to determine whether a sample can be used
for training according to the objectness score of the sample. Its goal is to facilitate easier
misjudging of the collected sample, thereby reducing the network chance of misjudgment.

During training, the training sample set of the branch detection layer m is defined
as Sm =

{
Sm
+, Sm

−
}

, where Sm
+ represents positive samples and Sm

− represents negative
samples. Assume that a single sample is defined as S = (Xi, Yi), where Xi is the sample
image and Yi = (yi, bi) is the category to which the sample belongs and the location of
the bounding box. Here, o∗, as defined in Equation (9), determines whether the sample is
positive or negative.

o∗ = max
i∈Sgt

IoU(b, bi) (9)

Sgt is the ground truth, and IoU is the intersection between the two bounding boxes.
Thus, when o∗ is greater than or equal to 0.5, the sample is added to the positive sample
set; when o∗ is less than 0.2, the sample is added to the negative sample set, and all other
samples are discarded. Typically, the distribution of objects and nonobjects in an image
is asymmetric. Therefore, to achieve a balance between the two, we set

∣∣Sm
−
∣∣ = γ

∣∣Sm
+

∣∣.
Random sampling and bootstrapping sampling are then used to obtain the final negative
sample set.

To ensure that each detection layer detects objects only within a fixed scale range,
the training set of each layer is composed of a subset of S, and the samples of this subset
correspond to the scale range of the layer detection. However, this method may cause a
specific layer to have no available positive samples and indirectly cause learning instability.

Drones 2022, 6, 430 11 of 29

Therefore, it is necessary to modify the cross-entropy, as shown in Equation (10), to solve
this problem.

Lcls =
1

1 + γ

1
|S+| ∑

i∈S+

−logpyi (Xi) +
1

1 + γ

1
|S−| ∑

i∈S−

−logp0(Xi) (10)

3.4. Multiobject Tracking System for Flying Drones

The operation process of the proposed online multiobject tracking system is shown
in Figure 10. It can be divided into two parts: the object detector and the tracker. The
MDJL algorithm proposed in this paper is used for the former, whereas the MDP tracker
algorithm is used for the latter. The MDP tracker is an online tracking algorithm that can
instantaneously calculate and output results by using new data input. These algorithms
are more suitable for applications that require real-time feedback, applications such as
flying drones.

Drones 2022, 6, x FOR PEER REVIEW 11 of 29

3.4. Multiobject Tracking System for Flying Drones
The operation process of the proposed online multiobject tracking system is shown

in Figure 10. It can be divided into two parts: the object detector and the tracker. The MDJL
algorithm proposed in this paper is used for the former, whereas the MDP tracker
algorithm is used for the latter. The MDP tracker is an online tracking algorithm that can
instantaneously calculate and output results by using new data input. These algorithms
are more suitable for applications that require real-time feedback, applications such as
flying drones.

Figure 10. Flow chart of multiobject tracking system.

Our online tracking system utilized MDJL as the pedestrian detector, and the MDP
was used as the tracker. By combining the pedestrian detection methods proposed in this
paper, it is expected that the multiobject tracking system will be more effective in
multidomain situations. In an MDP tracker, each object builds an MDP model. This model
is composed of four elements (), where 𝑆 represents the state of the object; 𝐴 and 𝑇(∙)
represent the action and transfer equations executed when the object is transferred,
respectively; and 𝑅(∙) represents the reward function after the 𝐴 action has been
performed.

In the MDP model, S has four states: active, tracked, lost, and inactive. Figure 11 is a
flowchart of the status of the MDP tracker. First, when the object detector detects an object,
it is initialized and enters the active state. In this state, it determines whether subsequent
tracking should be performed and changes the status to either tracked or inactive. When
the status is tracked, the target is continuously tracked and maintained in the tracked
status. However, when tracking is not possible, such as when the target is obscured or
exits the field of view of the camera, the MDP changes the status to lost. If the target
appears again and is successfully associated, the state is changed to tracked; otherwise, it
remains lost. When the status is lost for more than a period, the MDP changes to an
inactive status. Moreover, the MDP aborts all tracking actions and does not change the
status.

Figure 10. Flow chart of multiobject tracking system.

Our online tracking system utilized MDJL as the pedestrian detector, and the MDP was
used as the tracker. By combining the pedestrian detection methods proposed in this paper,
it is expected that the multiobject tracking system will be more effective in multidomain
situations. In an MDP tracker, each object builds an MDP model. This model is composed
of four elements (), where S represents the state of the object; A and T(·) represent the
action and transfer equations executed when the object is transferred, respectively; and
R(·) represents the reward function after the A action has been performed.

In the MDP model, S has four states: active, tracked, lost, and inactive. Figure 11 is a
flowchart of the status of the MDP tracker. First, when the object detector detects an object,
it is initialized and enters the active state. In this state, it determines whether subsequent
tracking should be performed and changes the status to either tracked or inactive. When
the status is tracked, the target is continuously tracked and maintained in the tracked status.
However, when tracking is not possible, such as when the target is obscured or exits the
field of view of the camera, the MDP changes the status to lost. If the target appears again
and is successfully associated, the state is changed to tracked; otherwise, it remains lost.
When the status is lost for more than a period, the MDP changes to an inactive status.
Moreover, the MDP aborts all tracking actions and does not change the status.

During tracking, each target has an appearance model consisting of several appearance
templates that were created during the tracking process. These templates record the
appearance of the target during tracking. To maintain the validity of the appearance model,
they must be updated. Therefore, these templates adopt a lazy-update rule. It is updated
for the current appearance only when the tracked target status changes from lost to tracked.

Drones 2022, 6, 430 12 of 29

Drones 2022, 6, x FOR PEER REVIEW 12 of 29

Figure 11. Flowchart of MDP tracker status.

During tracking, each target has an appearance model consisting of several
appearance templates that were created during the tracking process. These templates
record the appearance of the target during tracking. To maintain the validity of the
appearance model, they must be updated. Therefore, these templates adopt a lazy-update
rule. It is updated for the current appearance only when the tracked target status changes
from lost to tracked.

The decision on the lost state can be considered as a data association problem.
Therefore, the MDP tracker continues to be associated with the new bounding box in the
new frame in this state. If there is an association with the bounding box, it changes the
state to track; otherwise, it continues to maintain the lost state. When the lost state is
maintained for more than a specific frame number, the target is considered to have left
the camera’s field of view, and the state is changed to inactive, to terminate tracking.

During the training process, the MDP adopts reinforcement learning. First, given
multiple video sequences as training data, it can track all objects in these videos, and the
training goal is to facilitate the successful tracking of all objects. The MDP tracks the target
according to this strategy for each state, uses the reward equation to evaluate the
performance of the tracker, and maximizes the result of the final tracker’s reward equation
by adjusting the parameters of the reward equation for the lost state. The training
algorithm processes all the training videos and tracks the training targets in a loop, and
the training does not end until all the targets have been successfully tracked. During
training, data association is updated only when an error occurs during this process. There
are two possible errors: the first case is associated with a nontarget bounding box, and the
second case occurs when a target bounding box appears but is not associated. When these
errors occur, an incorrect association is added to the negative training sample. Conversely,
a correct association was added to the positive training sample for training.

4. Experimental Results
The experiment was conducted in two parts. In the first part, we evaluated the

performance of our proposed MDJL pedestrian detection method. In the second part, we
adjusted the pedestrian tracking parameters on the basis of our MDJL for comparison with
other advanced tracking algorithms.

The computer hardware specifications used in the experiment included an Intel Core
i7-930 CPU with 24 GB RAM and an Nvidia GTX 1080Ti GPU with 11 GB RAM. The
operating system was Ubuntu 14.04 LTS, and CUDA 8.0, CUDNN 5.1, and MATLAB
R2014b were the primary software programs.

Figure 11. Flowchart of MDP tracker status.

The decision on the lost state can be considered as a data association problem. There-
fore, the MDP tracker continues to be associated with the new bounding box in the new
frame in this state. If there is an association with the bounding box, it changes the state to
track; otherwise, it continues to maintain the lost state. When the lost state is maintained
for more than a specific frame number, the target is considered to have left the camera’s
field of view, and the state is changed to inactive, to terminate tracking.

During the training process, the MDP adopts reinforcement learning. First, given
multiple video sequences as training data, it can track all objects in these videos, and
the training goal is to facilitate the successful tracking of all objects. The MDP tracks
the target according to this strategy for each state, uses the reward equation to evaluate
the performance of the tracker, and maximizes the result of the final tracker’s reward
equation by adjusting the parameters of the reward equation for the lost state. The training
algorithm processes all the training videos and tracks the training targets in a loop, and the
training does not end until all the targets have been successfully tracked. During training,
data association is updated only when an error occurs during this process. There are two
possible errors: the first case is associated with a nontarget bounding box, and the second
case occurs when a target bounding box appears but is not associated. When these errors
occur, an incorrect association is added to the negative training sample. Conversely, a
correct association was added to the positive training sample for training.

4. Experimental Results

The experiment was conducted in two parts. In the first part, we evaluated the
performance of our proposed MDJL pedestrian detection method. In the second part, we
adjusted the pedestrian tracking parameters on the basis of our MDJL for comparison with
other advanced tracking algorithms.

The computer hardware specifications used in the experiment included an Intel Core
i7-930 CPU with 24 GB RAM and an Nvidia GTX 1080Ti GPU with 11 GB RAM. The
operating system was Ubuntu 14.04 LTS, and CUDA 8.0, CUDNN 5.1, and MATLAB
R2014b were the primary software programs.

In the experiment, we used datasets primarily from three sources. The Caltech pedes-
trian detection dataset [36] (Caltech dataset) is a driving video. The format of the video is
640 × 480 pixels at 30 Hz. This dataset includes images with approximately 250,000 frames,
350,000 bounding boxes, and 2300 unique pedestrians. Among them, set00–set05 was
defined as the training dataset, and set06–set10 was defined as the testing dataset. To

Drones 2022, 6, 430 13 of 29

ensure data integrity, set05 in the training dataset was excluded from the validation dataset
that was used during training. The shooting angle used in this dataset was of a forward
orientation, as shown in Figure 12a.

Drones 2022, 6, x FOR PEER REVIEW 13 of 29

In the experiment, we used datasets primarily from three sources. The Caltech
pedestrian detection dataset [36] (Caltech dataset) is a driving video. The format of the
video is 640 × 480 pixels at 30 Hz. This dataset includes images with approximately 250,000
frames, 350,000 bounding boxes, and 2300 unique pedestrians. Among them, set00–set05
was defined as the training dataset, and set06–set10 was defined as the testing dataset. To
ensure data integrity, set05 in the training dataset was excluded from the validation
dataset that was used during training. The shooting angle used in this dataset was of a
forward orientation, as shown in Figure 12a.

(a) (b)

(c) (d)

Figure 12. Different shooting angles of each dataset: (a) Caltech dataset—forward orientation angle,
(b) PETS09 dataset—top view angle, and (c) DroneFJU—45-degree downward and (d) 90-degree
downward orientations.

The primary purpose of the PETS09 dataset [37] was to track an individual within a
crowd and to detect flow and crowd events. Eight cameras and eight angles were used to
capture a designated area at the same time on the campus. The video format used was 768
× 576 pixels at 7 Hz. In this paper, to prevent the PETS09 and Caltech datasets from using
videos with repeated shooting angles, only the downward-oriented (top view angle)
videos in PETS09 were used, as shown in Figure 12b. We divided these seven videos into
three sets: training (S1L2-1, S2L1, S2L3, and S3MF1); validation (S1L1-1 and S1L1-2); and
testing (S2L2).

The DroneFJU dataset was obtained on the Fu Jen Catholic University campus using
a quadrotor. The equipment included a DJI Matrice 100 + Zenmuse-integrated PTZ
camera. The shooting format was 1080 × 1920 pixels at 60 Hz, and the shooting angle was
divided into a 45-degree downward-facing orientation (Figure 12c) and a 90-degree
downward orientation (Figure 12d). The latter shooting angle was the challenging aspect
of this dataset. In addition, because a wide-angle lens was used for video acquisition, the
pedestrian’s face and overall outline changed depending on their position (as shown in
Figure 12d, red box) and various body postures.

In Section 4.1, the performance of the proposed MDJL pedestrian detection method
is analyzed by using an ablation study; moreover, the network characteristics of the MDJL
are analyzed in Section 4.2. In Section 4.3, domain-oriented fine-tuning is implemented,
and its ability to improve network performance is evaluated. In Section 4.4, we discuss

Figure 12. Different shooting angles of each dataset: (a) Caltech dataset—forward orientation angle,
(b) PETS09 dataset—top view angle, and (c) DroneFJU—45-degree downward and (d) 90-degree
downward orientations.

The primary purpose of the PETS09 dataset [37] was to track an individual within a
crowd and to detect flow and crowd events. Eight cameras and eight angles were used
to capture a designated area at the same time on the campus. The video format used was
768 × 576 pixels at 7 Hz. In this paper, to prevent the PETS09 and Caltech datasets from
using videos with repeated shooting angles, only the downward-oriented (top view angle)
videos in PETS09 were used, as shown in Figure 12b. We divided these seven videos into
three sets: training (S1L2-1, S2L1, S2L3, and S3MF1); validation (S1L1-1 and S1L1-2); and
testing (S2L2).

The DroneFJU dataset was obtained on the Fu Jen Catholic University campus using a
quadrotor. The equipment included a DJI Matrice 100 + Zenmuse-integrated PTZ camera.
The shooting format was 1080 × 1920 pixels at 60 Hz, and the shooting angle was divided
into a 45-degree downward-facing orientation (Figure 12c) and a 90-degree downward
orientation (Figure 12d). The latter shooting angle was the challenging aspect of this dataset.
In addition, because a wide-angle lens was used for video acquisition, the pedestrian’s face
and overall outline changed depending on their position (as shown in Figure 12d, red box)
and various body postures.

In Section 4.1, the performance of the proposed MDJL pedestrian detection method is
analyzed by using an ablation study; moreover, the network characteristics of the MDJL
are analyzed in Section 4.2. In Section 4.3, domain-oriented fine-tuning is implemented,
and its ability to improve network performance is evaluated. In Section 4.4, we discuss and
optimize the parameters of domain-oriented fine-tuning and compare it with the current
state-of-the-art pedestrian detection method.

Finally, we used the PET09 and the TUD datasets with pedestrians as tracking objects
and compared them with the original MDP and several more advanced tracking methods.
In Section 4.5, we introduce the evaluation methods and present the adjustments we
performed to facilitate pedestrian detection, in addition to the influence of the pedestrian

Drones 2022, 6, 430 14 of 29

tracking parameters on the final results. We present the optimization results of our method
using an experimental video and a comparative analysis with other tracking methods.

4.1. Ablation Study

MDJL is a network training method designed for a multidomain dataset. Our objective
is to use this method to address the reduction in network accuracy that occurs when using
a multidomain dataset for training. In this experiment, we discuss the aforementioned
issues and evaluate the effectiveness of our method.

In the following experiments, we used the Caltech dataset (referred to as c), PETS09
(referred to as p), and DroneFJU (referred to as d) for different sizes and different shooting
methods, to combine them into several multidomain datasets and use these datasets to train
the baseline network (MS-CNN) and our proposed method (MDJL). The method of evaluat-
ing the network uses an appropriate setting of the Caltech pedestrian detection benchmark
to assess the network’s average miss rate and the receiver-operating characteristic (ROC)
curve in the test set of the aforementioned three datasets.

Table 1 summarizes the number of training, validation, and testing samples for each
dataset. The number of training samples of PETS09 is approximately one-third of that of the
Caltech dataset, whereas the number of training samples of DroneFJU is approximately one-
half of that of the Caltech dataset. This difference may affect the final network performance.
Therefore, in this experiment, it was necessary to increase the number of training samples
of the smaller datasets to the same or more than that of the Caltech dataset. We used
two data augmentation methods to create two additional PETS09 training images and a
DroneFJU training image. The first method flips the original image left and right, and the
second method adds Gaussian noise to the original image. The Gaussian noise parameters
had an average of 0 and a standard deviation of 0.01. Using these two data augmentation
methods, we increased the number of training samples of PETS09 to 36,504, whereas that
of DroneFJU increased to 35,632 via the addition of Gaussian noise. Finally, to balance the
number of samples in each dataset, we used the number of training samples of the Caltech
dataset as the standard and randomly extracted the same number of samples from the
expanded dataset to obtain the final dataset.

Table 1. Number of dataset samples.

Dataset Name
Sample Count

Training Validation Testing

Caltech dataset 34,927 3346 33,043
PETS09 12,168 8813 14,474

DroneFJU 17,816 4286 6460

Eight types of multidomain datasets were used, and the abbreviations used for the
new dataset combine the names of each. Therefore, for example, for Caltech + PETS09, the
multidomain dataset is called cp, and for Caltech + PETS09 + DroneFJU, the dataset is called
cpd. If the multidomain dataset used data augmentation to balance the number of samples,
the symbol * was used next to the abbreviation. For example, Caltech + PETS09 with data
augmentation is denoted as cp*, and Caltech + PETS09 with data augmentation + DroneFJU
with data augmentation is denoted as cp*d*.

First, let us examine the evaluation results for different datasets when we use a single
dataset, the so-called single-domain dataset, to train the model. We used the Caltech
dataset, PETS09, and DroneFJU to train the MS-CNN model and to evaluate the three
trained models, c, p, and d, on the test set of each dataset. The results are shown in
Figure 13.

Drones 2022, 6, 430 15 of 29

Drones 2022, 6, x FOR PEER REVIEW 15 of 29

First, let us examine the evaluation results for different datasets when we use a single
dataset, the so-called single-domain dataset, to train the model. We used the Caltech
dataset, PETS09, and DroneFJU to train the MS-CNN model and to evaluate the three
trained models, c, p, and d, on the test set of each dataset. The results are shown in Figure
13.

Caltech PETS09

DroneFJU

Figure 13. Evaluation results of single-domain dataset model in different datasets.

Figure 13 shows that all the single-domain dataset models yield better evaluation
results only for the dataset of the same domain and perform poorly on other domains.
These results show that a model trained using a single dataset can be applied only to the
same domain and cannot be generalized to other domains.

Table 2 lists the test results of the models trained using different multidomain
datasets with appropriate settings of the test set of the Caltech dataset. We also include
the evaluation results for the same setting when MS-CNN uses only the Caltech dataset
as the baseline for comparison. The corresponding data are not shown for MDJL because
they form a network designed for a multidomain dataset. Therefore, we did not consider
the performance when using a single dataset for training. To perform a fair comparison,
we selected only the multidomain dataset containing the Caltech dataset.

Figure 13. Evaluation results of single-domain dataset model in different datasets.

Figure 13 shows that all the single-domain dataset models yield better evaluation
results only for the dataset of the same domain and perform poorly on other domains.
These results show that a model trained using a single dataset can be applied only to the
same domain and cannot be generalized to other domains.

Table 2 lists the test results of the models trained using different multidomain datasets
with appropriate settings of the test set of the Caltech dataset. We also include the evaluation
results for the same setting when MS-CNN uses only the Caltech dataset as the baseline for
comparison. The corresponding data are not shown for MDJL because they form a network
designed for a multidomain dataset. Therefore, we did not consider the performance when
using a single dataset for training. To perform a fair comparison, we selected only the
multidomain dataset containing the Caltech dataset.

Table 2. Average miss rates of different multidomain dataset models for the Caltech test set.

Training Dataset
Average Miss Rate

MS-CNN MDJL

cp* 0.12103 0.114468
cp*d* 0.115921 0.113062
cd* 0.11407 0.113394
cpd 0.113918 0.106365
cp 0.112784 0.112716
cd 0.112092 0.108718
c 0.110483

Drones 2022, 6, 430 16 of 29

The MS-CNN section is summarized in Table 2. When training was performed with the
cp, cd, and cpd datasets without data augmentation, it was determined that simply adding a
domain (such as cp and cd) to the dataset increased the average miss rate by approximately
0.2%, whereas adding cpd to the three domains increased it by approximately 0.5%. If we
examine cp*, cd*, and cp*d* that use data augmentation, it is determined that the average
miss rate further increased by approximately 1%. Thus, the overall average miss rate
increased by 0.5%, with a standard deviation of 0.006. This indicates that the greater the
number of domains involved in training the network with a multidomain dataset, the more
significant the impact on the network performance. Moreover, using data augmentation to
balance the number of samples increased the influence of the initially small dataset on the
network training and also affected the accuracy of the network.

The experimental results of MDJL show that regardless of the number of domains con-
tained in the multidomain dataset, the average miss rate increased by only approximately
0.2%. Furthermore, even if data augmentation was used, the average miss rate increased
by only approximately 0.3%. Thus, the overall average increase in the average miss rate
was 0.1%, and the standard deviation was 0.002. This indicates that MDJL is more stable
when using multidomain dataset training and is not highly susceptible to the number of
domains or the number of data. In addition, regardless of the multidomain dataset used
for training, the average miss rate of MDJL was lower than that of MS-CNN. This implies
that MDJL can improve the overall accuracy when training with a multidomain dataset.

In the following table, we compare the performance of the models trained using each
multidomain dataset on the test set. Therefore, we indicate the dataset name used in the
training after the method name to facilitate comparison. For example, the MDJL model
trained with the cpd dataset is called MDJL-cpd.

We used the MS-CNN and MDJL models, which were trained on the eight multido-
main datasets, to evaluate the test sets of the Caltech, PETS09, and DroneFJU datasets,
and we recorded the average miss rates in Table 3. Two aspects were analyzed in this
table. First, the performance of the MS-CNN and MDJL models that were trained using
the same multidomain dataset for each evaluation dataset is identified by using a thick
box. We investigated the network trained using the three datasets of cpd, cd, and pd, and
it was determined that the average miss rate evaluated for PEST09 and DroneFJU using
MDJL was higher than that of MS-CNN. None of these datasets used data augmentation to
balance the sample size difference between the domains. Therefore, we speculate that even
if our method can effectively divide the network into several small networks for fine-tuning
on the basis of the response to each domain, as shown in Figure 14, shared and generalized
neurons will still exist across the domains. These neurons are more susceptible to larger
datasets (Caltech) during training and are dominated by these datasets, thus affecting the
network performance on smaller datasets (PETS09 and DroneFJU). However, suppose we
use the same domain combination of cp*d*, cd*, and p*d* for data augmentation. In this
case, this problem is not encountered, which establishes that our assertion is reasonable. To
optimize and balance the network’s performance on each dataset, the number of samples of
each domain in the multidomain dataset must also be balanced. Therefore, when discussing
other phenomena, we will use the data augmentation model.

Second, the three blocks in Table 3 that are identified by using a gray color represent
the network trained by each multidomain dataset. The performance on the test set of the
dataset is interesting in each case. The results indicate that the model was trained using
two datasets, cp* and cd*. It is foreseeable that the evaluation results of these models on
the datasets, which have never been observed, are not satisfactory. However, the data show
that MDJL-cp* exhibits an improvement of 2.7% in the average miss rate compared with
MS-CNN-cp* and that MDJL-cd* is 1.7% better than MS-CNN-cd*. This improvement is
not insignificant, so we believe that the model trained by MDJL has better generalizability.

Drones 2022, 6, 430 17 of 29

Table 3. Average miss rate for each model for each dataset.

Model
Average Miss Rate

Caltech PETS09 DroneFJU

MS-CNN-cpd 0.113918 0.537132 0.080445
MDJL-cpd 0.106365 0.546494 0.087827
MS-CNN-cp*d* 0.115921 0.498298 0.054163
MDJL-cp*d* 0.113062 0.487953 0.051723
MS-CNN-cp 0.112784 0.566055 0.578502
MDJL-cp 0.112716 0.556025 0.516990
MS-CNN-cp* 0.121030 0.523379 0.444892
MDJL-cp* 0.114468 0.517952 0.417621
MS-CNN-cd 0.112092 0.764734 0.079890
MDJL-cd 0.108718 0.794011 0.100103
MS-CNN-cd* 0.114070 0.799884 0.061482
MDJL-cd* 0.113394 0.782861 0.055286
MS-CNN-pd 0.782319 0.517785 0.020215
MDJL-pd 0.801515 0.538508 0.022154
MS-CNN-p*d* 0.805207 0.529371 0.024825
MDJL-p*d* 0.810766 0.519591 0.018935

Drones 2022, 6, x FOR PEER REVIEW 18 of 29

whether there was a relationship between the response degree (NIS) of each neuron to
different domains in the network. Three sets of comparisons were conducted, each of
which selected two domains, A and B. We then sorted the NIS of domain A from small to
large, arranged domain B in the same order, and represented the results as a line chart. As
shown in Figure 15, domain A is the blue curve, and domain B is the red curve. The three
results in the figure show that the NIS among the various domains does not exhibit a
correlation, which means that the neurons in the network that strongly respond to each
domain are not the same.

(a) Without data augmentation (b) With data augmentation

Figure 14. Degree of subnetwork overlaps of each domain.

PETS09 vs. Caltech DroneFJU vs. PETS09 Caltech vs. DroneFJU

Figure 15. NIS correlation between different domains.

Next, we analyze the degree of overlap in the subnetworks divided according to the
deterministic rule (NIS > 0), according to the NIS of each domain, and the results are
represented as a Venn diagram. Figure 14 shows the distribution of neurons according to
the models trained using the datasets with and without data augmentation.

First, in Figure 14a, a dataset without data augmentation is used to train the model,
and the distribution of neurons is allocated to more or fewer neurons according to the
training sample size of each domain.

Thus, a large domain (e.g., Caltech) is assigned to more neurons, and small domains
(e.g., PETS09) are assigned to fewer neurons. This phenomenon is consistent with the
observations summarized in Table 3. Therefore, large domains dominate the network. In
Figure 14b, the neurons are distributed according to the complexity of the domain because
of data augmentation. PETS09 was used because the pedestrians in the video were
sometimes dense and sometimes loose. The shooting angle is a downward projection; it
can easily cause pedestrian deformation, and the situation is complex. Therefore, when

Figure 14. Degree of subnetwork overlaps of each domain.

However, if we examine the MS-CNN-p*d*and MDJL-p*d*models trained using the
p*d* dataset, this phenomenon is not observed, and the evaluation performance of the
two networks is similar. This result is not surprising given that the ability to generalize
originates from similar situations that are learned or seen, from which knowledge is
extended. The two datasets, PETS09 and DroneFJU, differ from the Caltech dataset used for
the evaluation of the shooting angle and the shooting methods, which results in different
image characteristics in the dataset. Therefore, neither MS-CNN nor MDJL can be used in
PETS09, and DroneFJU learned how to correctly evaluate the Caltech dataset to obtain the
presented results.

According to the results of this experiment, it is evident that the proposed method
can effectively improve the impact of training networks using a multidomain dataset.
Furthermore, using data augmentation to balance the number of samples in each domain
in a multidomain dataset can increase the effectiveness of MDJL. Finally, MDJL appears to
have better generalizability than MS-CNN does.

Drones 2022, 6, 430 18 of 29

4.2. Analysis of Multidomain Joint Learning Method

In this experiment, the NIS calculated using MDJL is represented as a chart to analyze
the relationship between the subnetworks after segmentation. First, we investigated
whether there was a relationship between the response degree (NIS) of each neuron to
different domains in the network. Three sets of comparisons were conducted, each of which
selected two domains, A and B. We then sorted the NIS of domain A from small to large,
arranged domain B in the same order, and represented the results as a line chart. As shown
in Figure 15, domain A is the blue curve, and domain B is the red curve. The three results
in the figure show that the NIS among the various domains does not exhibit a correlation,
which means that the neurons in the network that strongly respond to each domain are not
the same.

Drones 2022, 6, x FOR PEER REVIEW 18 of 29

whether there was a relationship between the response degree (NIS) of each neuron to
different domains in the network. Three sets of comparisons were conducted, each of
which selected two domains, A and B. We then sorted the NIS of domain A from small to
large, arranged domain B in the same order, and represented the results as a line chart. As
shown in Figure 15, domain A is the blue curve, and domain B is the red curve. The three
results in the figure show that the NIS among the various domains does not exhibit a
correlation, which means that the neurons in the network that strongly respond to each
domain are not the same.

(a) Without data augmentation (b) With data augmentation

Figure 14. Degree of subnetwork overlaps of each domain.

PETS09 vs. Caltech DroneFJU vs. PETS09 Caltech vs. DroneFJU

Figure 15. NIS correlation between different domains.

Next, we analyze the degree of overlap in the subnetworks divided according to the
deterministic rule (NIS > 0), according to the NIS of each domain, and the results are
represented as a Venn diagram. Figure 14 shows the distribution of neurons according to
the models trained using the datasets with and without data augmentation.

First, in Figure 14a, a dataset without data augmentation is used to train the model,
and the distribution of neurons is allocated to more or fewer neurons according to the
training sample size of each domain.

Thus, a large domain (e.g., Caltech) is assigned to more neurons, and small domains
(e.g., PETS09) are assigned to fewer neurons. This phenomenon is consistent with the
observations summarized in Table 3. Therefore, large domains dominate the network. In
Figure 14b, the neurons are distributed according to the complexity of the domain because
of data augmentation. PETS09 was used because the pedestrians in the video were
sometimes dense and sometimes loose. The shooting angle is a downward projection; it
can easily cause pedestrian deformation, and the situation is complex. Therefore, when

Figure 15. NIS correlation between different domains.

Next, we analyze the degree of overlap in the subnetworks divided according to the
deterministic rule (NIS > 0), according to the NIS of each domain, and the results are
represented as a Venn diagram. Figure 14 shows the distribution of neurons according to
the models trained using the datasets with and without data augmentation.

First, in Figure 14a, a dataset without data augmentation is used to train the model,
and the distribution of neurons is allocated to more or fewer neurons according to the
training sample size of each domain.

Thus, a large domain (e.g., Caltech) is assigned to more neurons, and small domains
(e.g., PETS09) are assigned to fewer neurons. This phenomenon is consistent with the
observations summarized in Table 3. Therefore, large domains dominate the network.
In Figure 14b, the neurons are distributed according to the complexity of the domain
because of data augmentation. PETS09 was used because the pedestrians in the video were
sometimes dense and sometimes loose. The shooting angle is a downward projection; it
can easily cause pedestrian deformation, and the situation is complex. Therefore, when the
network allocates neurons, it provides more neurons to the PETS09 domain. In contrast,
although the scene at Caltech is relatively open because the camera’s shooting angle is
forward facing and the situation when pedestrians appear is relatively simple, the network
allocates fewer neurons to this domain.

In addition, from Figure 15, it is evident that although there is no correlation between
the NIS of each domain, there are still neurons in Figure 14 included in the multidomain
subnets. We believe that these neurons are responsible for common information processing
across domains. Moreover, the nonoverlapping parts are responsible for the unique infor-
mation processing of the domain, thereby achieving the concept of divide and conquer.
From the aforementioned two results, it is evident that MDJL can effectively divide the
network into several subnetworks according to the degree of the neuron response to differ-
ent domains. It includes dedicated neurons for each domain and neurons shared among
the domains.

Drones 2022, 6, 430 19 of 29

4.3. Domain-Oriented Fine-Tuning Experiments and Analysis

In this experiment, we used the previously trained model MDJL-cp*d* to perform fur-
ther fine-tuning and obtain the model’s evaluation results for each dataset, as summarized
in Table 4. The gray background is the performance evaluated by the model trained using
the single-domain dataset in the corresponding dataset. Therefore, for the evaluation, only
Caltech assessed MS-CNN-c, PETS09 only assessed MS-CNN-p, and MS-CNN-d only used
DroneFJU. We named this model MDJL-ft-cp*d*.

Table 4. Average miss rate evaluated in each dataset after fine-tuning.

Model
Average Miss Rate

Caltech PETS09 DroneFJU

MS-CNN-c/-p/-d 0.110483 0.544825 0.053416
MDJL-cp*d* 0.113062 0.487953 0.051723

MDJL-ft-cp*d* 0.107807 0.482616 0.046973

According to Table 4, it is evident that the average miss rate of the model after fine-
tuning for the evaluation using the Caltech dataset is 10.7807%, which is better than that of
MS-CNN’s 11.0483%. This is a slight improvement on PETS09 and DroneFJU. These results
show that domain-oriented fine-tuning can effectively strengthen the domain-exclusive
neurons and improve the network model. Therefore, we discuss in the next section how to
adjust the parameters of domain-oriented fine-tuning.

There are three adjustable parameters for domain-oriented fine-tuning. The first is
the T parameter in Equation (3), which we call the sigmoid scaler. The second is the R
parameter in Equation (8), which we refer to as the reserve constant. The third is the number
of iterations during fine-tuning training. We separately explore how the adjustment of
these three parameters affects the performance of the network. The parameters that did
not change in the following experiments were preset values: T = 1.0, R = 0, and iteration
number = 20,000.

First, we discuss the T parameter in Equation (3), which is responsible primarily for
adjusting the influence of the eNIS on the reserve rate of domain-exclusive neurons during
fine-tuning. When T→ 0 , stochastic DGD is converted to deterministic DGD because it
can convert the result of Equation (3) to only 1 (eNIS ≥ 0) or 0 (eNIS < 0). In contrast, if
T→ ∞ , regardless of the value of eNIS, the result of Equation (3) is always 0.5, causing
stochastic DGD to degenerate back to regular dropout. For convenience, we used the 1/T
value as the adjustment target in the following experiments.

We adjusted 1/T from 0.1 to 1.0 and trained 10 models using 0.1 as the interval in the
experiment. Each trained model was evaluated using the Caltech test set, PETS09, and the
DroneFJU datasets, and the average of the results was calculated. The experimental results
are shown in Figure 16a.

Figure 16a indicates that there is no consistent trend in the performance of different
1/T parameters for each dataset. However, if we observe the overall average performance
in Figure 16a, we find that the relationship between the parameter T and the miss rate
is slightly low, in the range of 0.2–0.5. Thus, the lowest point was at 1/T = 0.5. Accord-
ing to Section 4.2, the maximum NIS value is approximately 2. Therefore, by applying
Equation (3), the highest reserve rate of domain-exclusive neurons in fine-tuning is 73.11%.

The second parameter to be discussed is the R parameter in Equation (8), namely the
reserve constant. This parameter is responsible for adjusting the reserve rate of neurons
that do not belong to domain-exclusive neurons in domain-oriented fine-tuning and is a
number less than 0. We adjusted the parameter R from 0 to −10, with −1 as the interval,
and changed it 11 times. Each trained model was evaluated by using the Caltech test set,
PETS09, and the DroneFJU datasets, and the average was calculated. The experimental
results are shown in Figure 16b.

Drones 2022, 6, 430 20 of 29
Drones 2022, 6, x FOR PEER REVIEW 20 of 29

(a) (b)

(c)

Figure 16. Miss rate curve obtained by (a) using different 1/T fine-tuning parameters and (b) using
different fine-tuning R parameters; (c) the number of iterations of fine-tuning.

Figure 16a indicates that there is no consistent trend in the performance of different 1 𝑇⁄ parameters for each dataset. However, if we observe the overall average performance
in Figure 16a, we find that the relationship between the parameter T and the miss rate is
slightly low, in the range of 0.2–0.5. Thus, the lowest point was at 1 𝑇⁄ = 0.5. According
to Section 4.2, the maximum NIS value is approximately 2. Therefore, by applying
Equation (3), the highest reserve rate of domain-exclusive neurons in fine-tuning is
73.11%.

The second parameter to be discussed is the R parameter in Equation (8), namely the
reserve constant. This parameter is responsible for adjusting the reserve rate of neurons
that do not belong to domain-exclusive neurons in domain-oriented fine-tuning and is a
number less than 0. We adjusted the parameter R from 0 to −10, with −1 as the interval,
and changed it 11 times. Each trained model was evaluated by using the Caltech test set,
PETS09, and the DroneFJU datasets, and the average was calculated. The experimental
results are shown in Figure 16b.

In Figure 16b, we found that the average miss rate obtained using the evaluation had
the lowest point: 0. When R = 0, the reserve rate of the non-domain-exclusive neurons
was 50%. Thus, this value was too close to the reserve rate of the domain-exclusive
neurons obtained in the T-parameter experiment (73.11%). It performed best on the
PETS09 dataset and poorly on the other datasets. Therefore, it seems that R = −1 is the
optimum value, with a reserve rate of 26.89%. This shows that the R parameters should
not be too small and that non-domain-exclusive neurons should still have some fine-
tuning space.

According to the aforementioned two experiments, the selection of the T and R
parameters should be dominated by T and supplemented by R. The choice of T should
refer to the maximum value of the NIS of each domain, such that the reserve rate is
maintained at approximately 75%, which is 1 𝑇⁄ = 0.5 in this experiment. However, the
choice of R should set the reserve rate of non-domain-exclusive neurons at approximately
25%, which is R = −1 in this experiment.

Figure 16. Miss rate curve obtained by (a) using different 1/T fine-tuning parameters and (b) using
different fine-tuning R parameters; (c) the number of iterations of fine-tuning.

In Figure 16b, we found that the average miss rate obtained using the evaluation had
the lowest point: 0. When R = 0, the reserve rate of the non-domain-exclusive neurons was
50%. Thus, this value was too close to the reserve rate of the domain-exclusive neurons
obtained in the T-parameter experiment (73.11%). It performed best on the PETS09 dataset
and poorly on the other datasets. Therefore, it seems that R = −1 is the optimum value,
with a reserve rate of 26.89%. This shows that the R parameters should not be too small
and that non-domain-exclusive neurons should still have some fine-tuning space.

According to the aforementioned two experiments, the selection of the T and R param-
eters should be dominated by T and supplemented by R. The choice of T should refer to
the maximum value of the NIS of each domain, such that the reserve rate is maintained
at approximately 75%, which is 1/T = 0.5 in this experiment. However, the choice of R
should set the reserve rate of non-domain-exclusive neurons at approximately 25%, which
is R = −1 in this experiment.

Finally, we discuss the iteration times of fine-tune training. Although fine-tuning
has been widely used in many studies, there is no practical method for estimating the
number of iterations that should be introduced in the fine-tuning stage. Therefore, in
this experiment, we observed the performance of the model that was trained via domain-
oriented fine-tuning for different iterations of each dataset on the basis of the investigation.
In this experiment, 1000 iterations were used as units to increase the number of iterations
to 45,000. A total of 45 models were trained. The base learning rate was 0.00002; for every
10,000 iterations, the learning rate was reduced by a factor of 0.1. Each trained model was
evaluated using the Caltech test set, PETS09, and the DroneFJU datasets, and the average
was calculated. The experimental results are shown in Figure 16c.

According to the experimental results shown in Figure 16c, we found that the miss
rate of the model was minimal when the number of iterations was 15,000. If the training

Drones 2022, 6, 430 21 of 29

was continued, the miss rate started to increase. The miss rate remained constant after
approximately 30,000 iterations. This phenomenon may be because of the reduction of the
learning to 2× 10−8, which may be too low, rendering the network unable to effectively
continue learning. The optimal fine-tuned iteration time was set as 15,000.

On the basis of the aforementioned three experiments, we selected the best parameters
to train the new model and evaluated its performance on the test set for the three pedestrian
detection datasets. The chosen parameters were 1/T = 0.5 and R = −2, and the iteration
number was 15,000. R was −2 because a value of 0.5 was chosen for 1/T to maintain a
reserve rate of 26.89%; R/T = −1 must be satisfied. Using the above formula, we obtain
a new R = −2. The model was named for the best fine-tuning parameter as MDJL-ft-
bv-cp*d*, and the results are listed in Table 5. Thus, the evaluation results in the gray
background are the same as those in Table 4. The evaluation results were obtained by
training the model using the single-domain dataset in the corresponding dataset.

Table 5. Average miss rate measured in each dataset using the model with the best fine-tuning
parameter.

Model
Average Miss Rate

Caltech PETS09 DroneFJU

MS-CNN-c/-p/-d 0.110483 0.544825 0.053416
MDJL-cp*d* 0.113062 0.487953 0.051723

MDJL-ft-cp*d* 0.107807 0.482616 0.046973
MDJL-ft-bv-cp*d* 0.103707 0.470637 0.045741

Table 5 summarizes that the model trained with the best parameters improved by
approximately 1% in each domain, which demonstrates the importance of choosing the
correct parameters for fine-tuning.

4.4. Comparison with State-of-the-Art Methods

The experiment was conducted in two parts. The first part compares the performances
of the models trained using single-domain and multidomain datasets to highlight the
associated advantages. The second part compares the proposed method with several
state-of-the-art methods.

Table 6 indicates that in the past, when training a machine-learning method or deep
learning network, we often chose a training dataset that was commonly used in the research
community, such as the Caltech or INRIA datasets, to train the model. Given that the
video data contained in these datasets generally have the same characteristics, such as the
shooting environment, shooting angle, and equipment used, this type of dataset is called a
single-domain dataset.

Table 6. Average miss rate compared with that of the state-of-the-art methods.

Model Classification Training Dataset Average Miss Rate

VJ [12] AdaBoost INRIA 0.947337
HOG [13] Linear SVM INRIA 0.733415
CCF + CF [19] AdaBoost Caltech 0.173247
Checkerboards+ [20] AdaBoost Caltech 0.170986
DeepParts [23] DeepNet Caltech 0.11889
MS-CNN-cp*d* [25] DeepNet cp*d* 0.115921
UDN+ [24] DeepNet Caltech 0.115217
MS-CNN [25] DeepNet Caltech 0.110483
MDJL-cp*d* DeepNet cp*d* 0.113062
MDJL-ft-cp*d* DeepNet cp*d* 0.107807
MDJL-ft-bv-cp*d* DeepNet cp*d* 0.103707

Drones 2022, 6, 430 22 of 29

Figure 17 shows the results for the cross-domain evaluation between several pedestrian
detection models that were trained using a single-domain dataset and pedestrian detection
models trained using a multidomain dataset. The dotted lines in the figure represent the
results for a part of the single-domain dataset. We used HOG trained using the INRIA
dataset as the traditional baseline method. In addition, we used the Caltech dataset, PETS09,
and the DroneFJU datasets trained using MS-CNN as the baseline of the deep learning
network. The solid lines in the figure represent the results for a part of the multidomain
dataset. The MS-CNN and MDJL models were used, which were trained on the cp*d*
dataset. For the evaluation, we used the Caltech, PETS09, and DroneFJU test sets.

Drones 2022, 6, x FOR PEER REVIEW 22 of 29

Table 6. Average miss rate compared with that of the state-of-the-art methods.

Model Classification Training Dataset Average Miss
Rate

VJ [12] AdaBoost INRIA 0.947337
HOG [13] Linear SVM INRIA 0.733415
CCF + CF [19] AdaBoost Caltech 0.173247
Checkerboards+ [20] AdaBoost Caltech 0.170986
DeepParts [23] DeepNet Caltech 0.11889
MS-CNN-cp*d* [25] DeepNet cp*d* 0.115921
UDN+ [24] DeepNet Caltech 0.115217
MS-CNN [25] DeepNet Caltech 0.110483
MDJL-cp*d* DeepNet cp*d* 0.113062
MDJL-ft-cp*d* DeepNet cp*d* 0.107807
MDJL-ft-bv-cp*d* DeepNet cp*d* 0.103707

Figure 17 shows the results for the cross-domain evaluation between several
pedestrian detection models that were trained using a single-domain dataset and
pedestrian detection models trained using a multidomain dataset. The dotted lines in the
figure represent the results for a part of the single-domain dataset. We used HOG trained
using the INRIA dataset as the traditional baseline method. In addition, we used the
Caltech dataset, PETS09, and the DroneFJU datasets trained using MS-CNN as the
baseline of the deep learning network. The solid lines in the figure represent the results
for a part of the multidomain dataset. The MS-CNN and MDJL models were used, which
were trained on the cp*d* dataset. For the evaluation, we used the Caltech, PETS09, and
DroneFJU test sets.

Single-domain Multidomain

Caltech

PETS09

Drones 2022, 6, x FOR PEER REVIEW 23 of 29

DroneFJU

Figure 17. Single-domain dataset vs. multidomain dataset.

The results show that HOG was not observed in any dataset used in the evaluation
in the training stage, so the effects on each dataset are not ideal. If we observe other
models, we find that for the model trained using the single-domain dataset (dashed line),
only the model trained with the training set of the same dataset performed better, and the
rest were not ideal. For example, the average miss rate of MS-CNN for the Caltech dataset
was 11%, but the average miss rates of MS-CNN-d and MS-CNN-p were as high as 79%
and 92%, respectively. This result shows that it is difficult to achieve cross-domain
generalization using single-domain dataset training. Therefore, we believe it is essential
to use multidomain dataset training.

Figure 17 shows that the model (solid line) trained with the multidomain dataset has
comparable performance to the model (dotted line) trained using the corresponding
single-domain dataset, regardless of the dataset. For example, in the evaluation results for
the DroneFJU, the average miss rates of the three models, MS-CNN-cp*d*, MDJL-cp*d*,
and MS-CNN-d, were similar. If we examine the evaluation results of PETS09, the average
miss rates of MS-CNN-cp*d* and MDJL-cp*d* using the multidomain dataset are 4% and
5% lower than that of MS-CNN-p, respectively. These results show not only that using
multidomain dataset training allows the model to have cross-domain generalization
capabilities but also that domains can occasionally have complementary effects.

Next, we compared the proposed method with current state-of-the-art approaches.
Results were obtained for MS-CNN, MS-CNN-cp*d*, and MDJL-cp*d*. The data for the
other algorithms were obtained by using the data on the Caltech pedestrian detection
benchmark website. The classification methods used for each method and the dataset used
for training are listed in Table 6.

Receiver-operating characteristic (ROC) analysis is a valuable tool for evaluating the
performance of diagnostic tests and the accuracy of a statistical model’s outcomes. We
compared MDJL with state-of-the-art methods and drew the ROC curve shown in Figure
18. From Figure 18 and Table 6, it is evident that although MDJL used a multidomain
dataset to train the network, it can still maintain the performance of the state-of-the-art
pedestrian detection benchmark and can beat MS-CNN after fine-tuning.

Figure 17. Single-domain dataset vs. multidomain dataset.

The results show that HOG was not observed in any dataset used in the evaluation
in the training stage, so the effects on each dataset are not ideal. If we observe other
models, we find that for the model trained using the single-domain dataset (dashed line),
only the model trained with the training set of the same dataset performed better, and
the rest were not ideal. For example, the average miss rate of MS-CNN for the Caltech
dataset was 11%, but the average miss rates of MS-CNN-d and MS-CNN-p were as high

Drones 2022, 6, 430 23 of 29

as 79% and 92%, respectively. This result shows that it is difficult to achieve cross-domain
generalization using single-domain dataset training. Therefore, we believe it is essential to
use multidomain dataset training.

Figure 17 shows that the model (solid line) trained with the multidomain dataset
has comparable performance to the model (dotted line) trained using the corresponding
single-domain dataset, regardless of the dataset. For example, in the evaluation results
for the DroneFJU, the average miss rates of the three models, MS-CNN-cp*d*, MDJL-
cp*d*, and MS-CNN-d, were similar. If we examine the evaluation results of PETS09, the
average miss rates of MS-CNN-cp*d* and MDJL-cp*d* using the multidomain dataset are
4% and 5% lower than that of MS-CNN-p, respectively. These results show not only that
using multidomain dataset training allows the model to have cross-domain generalization
capabilities but also that domains can occasionally have complementary effects.

Next, we compared the proposed method with current state-of-the-art approaches.
Results were obtained for MS-CNN, MS-CNN-cp*d*, and MDJL-cp*d*. The data for the
other algorithms were obtained by using the data on the Caltech pedestrian detection
benchmark website. The classification methods used for each method and the dataset used
for training are listed in Table 6.

Receiver-operating characteristic (ROC) analysis is a valuable tool for evaluating the
performance of diagnostic tests and the accuracy of a statistical model’s outcomes. We
compared MDJL with state-of-the-art methods and drew the ROC curve shown in Figure 18.
From Figure 18 and Table 6, it is evident that although MDJL used a multidomain dataset
to train the network, it can still maintain the performance of the state-of-the-art pedestrian
detection benchmark and can beat MS-CNN after fine-tuning.

Drones 2022, 6, x FOR PEER REVIEW 24 of 29

Figure 18. ROC line chart compared with state-of-the-art methods.

4.5. Pedestrian Tracking
In this experiment, we considered pedestrians as the primary tracking objects. In the

experiment, we used the four videos from the MOT Challenge 2015 as the training and
test data. The training part of the MDP tracker used S2L1 in PETS09 and TUD-Stadtmitte
[38] (Table 7), whereas the experimental evaluation used S2L2 in PETS09 and TUD-
Crossing as test videos.

Table 7. Experimental dataset.

 FPS Resolution Frame Tracks
PETS09-S2L1 7 768 × 576 795 19
PETS09-S2L2 7 768 × 576 436 42

TUD-Crossing 25 640 × 480 201 13
TUD-Stadtmitte 25 640 × 480 179 10

In this experiment, two videos were selected in PETS09, namely S2L1 and S2L2, for
training and testing, respectively. Both videos were acquired in an open outdoor
environment, and the shooting angle was from the perspective of a fixed surveillance
camera with a downward projection. In the PETS09 video set, several crowded groups of
pedestrians walk freely, and there are numerous occlusions between the pedestrians,
which leads to difficulty in detection or tracking. Figure 19a is a screenshot of a region of
the pedestrian scene in the video set.

(a) (b)

Figure 19. (a) PETS09 dataset and (b) outdoor street scene.

The TUD-Stadtmitte and TUD-Crossing are outdoor street scenes, as shown in Figure
19b. The difference compared with PETS09 is that the shooting angle is fixed, and image

Figure 18. ROC line chart compared with state-of-the-art methods.

4.5. Pedestrian Tracking

In this experiment, we considered pedestrians as the primary tracking objects. In the
experiment, we used the four videos from the MOT Challenge 2015 as the training and test
data. The training part of the MDP tracker used S2L1 in PETS09 and TUD-Stadtmitte [38]
(Table 7), whereas the experimental evaluation used S2L2 in PETS09 and TUD-Crossing as
test videos.

Table 7. Experimental dataset.

FPS Resolution Frame Tracks

PETS09-S2L1 7 768 × 576 795 19
PETS09-S2L2 7 768 × 576 436 42

TUD-Crossing 25 640 × 480 201 13
TUD-Stadtmitte 25 640 × 480 179 10

Drones 2022, 6, 430 24 of 29

In this experiment, two videos were selected in PETS09, namely S2L1 and S2L2,
for training and testing, respectively. Both videos were acquired in an open outdoor
environment, and the shooting angle was from the perspective of a fixed surveillance
camera with a downward projection. In the PETS09 video set, several crowded groups
of pedestrians walk freely, and there are numerous occlusions between the pedestrians,
which leads to difficulty in detection or tracking. Figure 19a is a screenshot of a region of
the pedestrian scene in the video set.

Drones 2022, 6, x FOR PEER REVIEW 24 of 29

Figure 18. ROC line chart compared with state-of-the-art methods.

4.5. Pedestrian Tracking
In this experiment, we considered pedestrians as the primary tracking objects. In the

experiment, we used the four videos from the MOT Challenge 2015 as the training and
test data. The training part of the MDP tracker used S2L1 in PETS09 and TUD-Stadtmitte
[38] (Table 7), whereas the experimental evaluation used S2L2 in PETS09 and TUD-
Crossing as test videos.

Table 7. Experimental dataset.

 FPS Resolution Frame Tracks
PETS09-S2L1 7 768 × 576 795 19
PETS09-S2L2 7 768 × 576 436 42

TUD-Crossing 25 640 × 480 201 13
TUD-Stadtmitte 25 640 × 480 179 10

In this experiment, two videos were selected in PETS09, namely S2L1 and S2L2, for
training and testing, respectively. Both videos were acquired in an open outdoor
environment, and the shooting angle was from the perspective of a fixed surveillance
camera with a downward projection. In the PETS09 video set, several crowded groups of
pedestrians walk freely, and there are numerous occlusions between the pedestrians,
which leads to difficulty in detection or tracking. Figure 19a is a screenshot of a region of
the pedestrian scene in the video set.

(a) (b)

Figure 19. (a) PETS09 dataset and (b) outdoor street scene.

The TUD-Stadtmitte and TUD-Crossing are outdoor street scenes, as shown in Figure
19b. The difference compared with PETS09 is that the shooting angle is fixed, and image

Figure 19. (a) PETS09 dataset and (b) outdoor street scene.

The TUD-Stadtmitte and TUD-Crossing are outdoor street scenes, as shown in Figure 19b.
The difference compared with PETS09 is that the shooting angle is fixed, and image
acquisition is performed from a forward projection. Many pedestrians are observed walking
along the street in the video. However, because of the forward projection, the occlusion
between pedestrians is more significant compared with the surveillance view with a
downward projection, which makes it more difficult to track the trajectory and associate
the bounding box.

In the performance evaluation, multiple evaluation criteria [39] were used for the MOT
benchmark [40], including multiobject tracking accuracy (MOTA), multiobject tracking
precision (MOTP), ID switch, false positive (FP), false negative (FN), mostly tracked (MT),
and mostly lost (ML).

FP denotes the total number of marking errors in the bounding box, and FN is the
total number of unmarked ground truths. The ID switch is an important criterion for
evaluating multiobject tracking, because the primary goal of this process is to obtain the
object ID and monitor the trajectory. The definition of MOTA is given in Equation (11).
MOTA is used primarily to evaluate the tracking accuracy of the object’s trajectory. The
referenced error-rate scores include the FN, FP, and ID switches, which are useful indicators.
Compared with MOTA, MOTP does not consider the erroneous result of the ID switch but
evaluates the tracker’s accuracy in estimating the position and size of the object. The MOTP
is calculated using Equation (12). First, the total error between the actual and estimated
positions of all targets in the frames was counted and averaged. ct is the number of objects
in the ground truth of the t-th frame, and di

t is the overlapping rate of the bounding box of
the i-th target in the t frames. Next, MT and ML were used to evaluate the integrity of the
trajectory; however, the ID switch was not considered. If the trajectory time of an object
was successfully tracked for more than 80%, then the trajectory was classified as MT; if it
was only successfully tracked for less than 20%, then the trajectory was classified as ML.

OTA = 1− ∑
N f rame
t=1 (FNt + FPt + IDSWt)

∑
N f rame
t=1 GTt

(11)

MOTP =
∑i,t di

t

∑t ct
(12)

In this experiment, we determined the system’s best parameters by observing the
influence of each parameter on the final tracking result. We adjusted the parameters to
filter the pedestrian detection results: confidence threshold, nonmaximum suppression

Drones 2022, 6, 430 25 of 29

(NMS) threshold, and the bounding box threshold (parameter for pedestrian tracking). We
used PEST09-S2L2 and TUD-Crossing as test videos and averaged the results.

The first parameter of pedestrian detection is the confidence threshold, which is used
primarily to filter the bounding box obtained via pedestrian detection. This parameter
affects the number of FP and FN. When the threshold is high, the detection results have a
low FP, but it is relatively easy to obtain a higher FN. The effect of this threshold adjustment
on the tracking results is shown in Figure 20a. The results show that this parameter has
little impact on MOTP. However, when the threshold is too high or too small, MOTA and
MT begin to decline, whereas ML increases. It is speculated that when FN is higher than
a threshold value, the tracker is unable to associate with the target, and the trajectory is
broken. Thus, the MT decreases, and the ML increases. The level of MOTA depends on
the number of FN and FP. It was determined that the optimal parameter was 0.6, which
resulted in the highest MOTA.

Drones 2022, 6, x FOR PEER REVIEW 26 of 29

(a) Confidence threshold (b) NMS threshold

(c) Bounding box threshold

Figure 20. Influence of the adjustment of pedestrian detection parameters.

The second parameter for pedestrian detection was the NMS threshold. This
parameter affects the accuracy and the quantity of the bounding box positions. The effect
of this threshold adjustment on the tracking results is shown in Figure 20b. The results
show that when the threshold is high, MOTP decreases slightly, and MT increases
simultaneously. It is speculated that when the threshold is high, some bounding boxes
have too many redundant detection results because of the inability to merge, which
increases the number of FPs and decreases the value of MOTP. Conversely, when the
threshold is lower, most bounding boxes obtain the best detection position. However, if
multiple objects are too close, the bounding boxes of various objects may merge, thereby
increasing the number of FN. Therefore, the MOTP will be higher, but the MT will be
lower. Therefore, the optimum parameter was determined to be 0.6, which maintained
the highest MOTA and MOTP.

Finally, we adjusted the pedestrian tracking parameter bounding box threshold.
When the overlap rate between the pedestrian position predicted by the tracker and the
bounding box was higher than this threshold, the algorithm associated the bounding box
with the tracker and then continuously performed tracking. This parameter directly
affects the tracking accuracy. The effect of this threshold adjustment on the tracking
results is shown in Figure 20c. The results show that MT increases to a specific level when
the threshold increases and then subsequently decreases. It is speculated that the tracker
is more prone to associate errors when the threshold is low. Therefore, both MT and
MOTA were relatively low. The tracker can associate the correct bounding box more
accurately when the threshold increases. However, when the threshold is high, the tracker
has a low error tolerance because of the threshold; therefore, both MT and MOTA
decrease. Thus, the optimal parameter was chosen to be 0.8, which maintained the highest
MOTA.

After adjusting the optimal parameters, the system was referred to as MDP_MDJL.
Next, we compared our system with the current state-of-the-art methods in several
experiments. The test videos used were PETS09-S2L2 and TUD-Crossing. Our method
was compared with the six most advanced tracking techniques using the MOT

0

20

40

60

80

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MT ML MOTA MOTP

0

20

40

60

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MT ML MOTA MOTP

0

20

40

60

80

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MT ML MOTA MOTP

Figure 20. Influence of the adjustment of pedestrian detection parameters.

The second parameter for pedestrian detection was the NMS threshold. This parameter
affects the accuracy and the quantity of the bounding box positions. The effect of this
threshold adjustment on the tracking results is shown in Figure 20b. The results show that
when the threshold is high, MOTP decreases slightly, and MT increases simultaneously.
It is speculated that when the threshold is high, some bounding boxes have too many
redundant detection results because of the inability to merge, which increases the number
of FPs and decreases the value of MOTP. Conversely, when the threshold is lower, most
bounding boxes obtain the best detection position. However, if multiple objects are too
close, the bounding boxes of various objects may merge, thereby increasing the number of
FN. Therefore, the MOTP will be higher, but the MT will be lower. Therefore, the optimum
parameter was determined to be 0.6, which maintained the highest MOTA and MOTP.

Finally, we adjusted the pedestrian tracking parameter bounding box threshold. When
the overlap rate between the pedestrian position predicted by the tracker and the bounding
box was higher than this threshold, the algorithm associated the bounding box with
the tracker and then continuously performed tracking. This parameter directly affects
the tracking accuracy. The effect of this threshold adjustment on the tracking results is

Drones 2022, 6, 430 26 of 29

shown in Figure 20c. The results show that MT increases to a specific level when the
threshold increases and then subsequently decreases. It is speculated that the tracker is
more prone to associate errors when the threshold is low. Therefore, both MT and MOTA
were relatively low. The tracker can associate the correct bounding box more accurately
when the threshold increases. However, when the threshold is high, the tracker has a low
error tolerance because of the threshold; therefore, both MT and MOTA decrease. Thus, the
optimal parameter was chosen to be 0.8, which maintained the highest MOTA.

After adjusting the optimal parameters, the system was referred to as MDP_MDJL.
Next, we compared our system with the current state-of-the-art methods in several ex-
periments. The test videos used were PETS09-S2L2 and TUD-Crossing. Our method was
compared with the six most advanced tracking techniques using the MOT benchmark,
including two offline tracking methods, TSML_CDE [41] and DMT [42], and four online
tracking methods, CDA_DDAL [43], AMIR [44], APRCNN [45], and MDP [33].

The results for PETS09-S2L2 are shown in Figure 21, which indicates that the proposed
approach has the best MOTA and MOTP compared with the other methods. Compared
with MDP, MOTA and MOTP increased by 18.8% and 5.3%, respectively. The result for
the TUD-Crossing is shown in Figure 22; our approach has the best MOTA compared with
the other methods. Compared with MDP, MOTA and MOTP increased by 9.7% and 4.7%,
respectively.

Drones 2022, 6, x FOR PEER REVIEW 27 of 29

benchmark, including two offline tracking methods, TSML_CDE [41] and DMT [42], and
four online tracking methods, CDA_DDAL [43], AMIR [44], APRCNN [45], and MDP [33].

The results for PETS09-S2L2 are shown in Figure 21, which indicates that the
proposed approach has the best MOTA and MOTP compared with the other methods.
Compared with MDP, MOTA and MOTP increased by 18.8% and 5.3%, respectively. The
result for the TUD-Crossing is shown in Figure 22; our approach has the best MOTA
compared with the other methods. Compared with MDP, MOTA and MOTP increased by
9.7% and 4.7%, respectively.

(a) MOTA (b) MOTP

Figure 21. PETS09-S2L2 analysis chart.

(a) MOTA (b) MOTP

Figure 22. TUD-Crossing analysis chart.

Overall, the proposed method performed best on the MOTA indicator in the two
experimental video scenarios. This was primarily because of the high accuracy of MDJL
in the case of multiple domains. In addition, optimizing the parameters allowed the
detector to obtain the most accurate position, thus yielding the best performance.

5. Conclusions
This paper discussed the common problem of appropriate datasets often being

unavailable in the implementation of machine learning to pedestrian detection and
tracking. To address this issue, we proposed the MDJL method. This approach can
effectively address the phenomenon in which the network performance in each domain is
not ideal when multiple datasets are used for training. Moreover, it can improve the
network’s performance in similar domains. In addition, the MJDL model was more
generalizable. When the number of samples in each dataset differed significantly, to
prevent a large dataset from dominating the network and affecting the performance of the
other domains, we used data augmentation to balance the difference in the number of

0
12
24
36
48
60
72

MOTA

66

68

70

72

74

76

MOTP

0

20

40

60

80

100

MOTA

63

66

69

72

75

78

MOTP

Figure 21. PETS09-S2L2 analysis chart.

Drones 2022, 6, x FOR PEER REVIEW 27 of 29

benchmark, including two offline tracking methods, TSML_CDE [41] and DMT [42], and
four online tracking methods, CDA_DDAL [43], AMIR [44], APRCNN [45], and MDP [33].

The results for PETS09-S2L2 are shown in Figure 21, which indicates that the
proposed approach has the best MOTA and MOTP compared with the other methods.
Compared with MDP, MOTA and MOTP increased by 18.8% and 5.3%, respectively. The
result for the TUD-Crossing is shown in Figure 22; our approach has the best MOTA
compared with the other methods. Compared with MDP, MOTA and MOTP increased by
9.7% and 4.7%, respectively.

(a) MOTA (b) MOTP

Figure 21. PETS09-S2L2 analysis chart.

(a) MOTA (b) MOTP

Figure 22. TUD-Crossing analysis chart.

Overall, the proposed method performed best on the MOTA indicator in the two
experimental video scenarios. This was primarily because of the high accuracy of MDJL
in the case of multiple domains. In addition, optimizing the parameters allowed the
detector to obtain the most accurate position, thus yielding the best performance.

5. Conclusions
This paper discussed the common problem of appropriate datasets often being

unavailable in the implementation of machine learning to pedestrian detection and
tracking. To address this issue, we proposed the MDJL method. This approach can
effectively address the phenomenon in which the network performance in each domain is
not ideal when multiple datasets are used for training. Moreover, it can improve the
network’s performance in similar domains. In addition, the MJDL model was more
generalizable. When the number of samples in each dataset differed significantly, to
prevent a large dataset from dominating the network and affecting the performance of the
other domains, we used data augmentation to balance the difference in the number of

0
12
24
36
48
60
72

MOTA

66

68

70

72

74

76

MOTP

0

20

40

60

80

100

MOTA

63

66

69

72

75

78

MOTP

Figure 22. TUD-Crossing analysis chart.

Overall, the proposed method performed best on the MOTA indicator in the two
experimental video scenarios. This was primarily because of the high accuracy of MDJL in
the case of multiple domains. In addition, optimizing the parameters allowed the detector
to obtain the most accurate position, thus yielding the best performance.

Drones 2022, 6, 430 27 of 29

5. Conclusions

This paper discussed the common problem of appropriate datasets often being un-
available in the implementation of machine learning to pedestrian detection and tracking.
To address this issue, we proposed the MDJL method. This approach can effectively address
the phenomenon in which the network performance in each domain is not ideal when
multiple datasets are used for training. Moreover, it can improve the network’s perfor-
mance in similar domains. In addition, the MJDL model was more generalizable. When
the number of samples in each dataset differed significantly, to prevent a large dataset from
dominating the network and affecting the performance of the other domains, we used data
augmentation to balance the difference in the number of samples between the domains. In
addition, we also combined the MDJL and MDP trackers to create a multiobject tracking
system that is suitable for flying drones. We used the characteristics of the MDJL model to
enable the tracking system to effectively cope with a photography platform with a high
degree of spatial freedom, such as an aerial camera. The experimental results also showed
that MDJL can cope with different scenarios and significantly improve the systems’ tracking
performance.

When samples are expanded using data augmentation, it may be useful to consider
referring to the characteristics of the original dataset; it may yield different training results.
In addition, the drone’s camera mobility and high shooting angle are not available in fixed-
position surveillance and driving recorders. An inappropriate viewing angle leads to more
misjudgments. Improvement in the pedestrian tracking recognition rate for horizontal
viewing angles should be investigated in the future.

Author Contributions: Conceptualization, Y.-K.W. and J.G.; methodology, Y.-K.W. and J.G.; soft-
ware, T.-M.P. and J.G.; validation, T.-M.P. and J.G.; formal analysis, Y.-K.W. and J.G.; data curation,
J.G.; writing—original draft preparation, J.G.; writing—review and editing, T.-M.P. and Y.-K.W.;
supervision, Y.-K.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Boudjit, K.; Ramzan, N. Human detection based on deep learning YOLO-v2 for real-time UAV applications. J. Exp. Theor. Artif.

Intell. 2022, 34, 527–544. [CrossRef]
2. Krishna, S.L.; Chaitanya, G.S.R.; Reddy, A.S.H.; Naidu, A.M.; Poorna, S.S.; Anuraj, K. Autonomous Human Detection System

Mounted on a Drone. In Proceedings of the 2019 International Conference on Wireless Communications Signal Processing and
Networking (WiSPNET), Chennai, India, 21–23 March 2019; pp. 335–338.

3. Hossain, S.; Lee, D.J. Deep learning-based real-time multiple-object detection and tracking from aerial imagery via a flying robot
with GPU-based embedded devices. Sensors 2019, 19, 3371. [CrossRef] [PubMed]

4. Islam, M.M.; Newaz, A.A.; Gokaraju, B.; Karimoddini, A. Pedestrian detection for autonomous cars: Occlusion handling by
classifying body parts. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC),
Toronto, ON, Canada, 11–14 October 2020; pp. 1433–1438.

5. Ahmed, S.; Huda, M.N.; Rajbhandari, S.; Saha, C.; Elshaw, M.; Kanarachos, S. Pedestrian and cyclist detection and intent
estimation for autonomous vehicles: A survey. Appl. Sci. 2019, 9, 2335. [CrossRef]

6. Yan, Z.; Li, P.; Wang, B.; Ren, D.; Zuo, W. Towards Learning Multi-domain Crowd Counting. IEEE Trans. Circuits Syst. Video
Technol. 2021. [CrossRef]

7. Xiao, T.; Li, H.; Ouyang, W.; Wang, X. Learning Deep Feature Representations with Domain Guided Dropout for Person Re-
identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30
June 2016.

8. Priyanka, S.A.; Wang, Y.-K. Fully Symmetric Convolutional Network for Effective Image Denoising. Appl. Sci. 2019, 9, 778.
[CrossRef]

9. Fan, C.T.; Wang, Y.-K.; Huang, C.R. Heterogeneous Information Fusion and Visualization for a Large-Scale Intelligent Video
Surveillance System. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 593–604. [CrossRef]

10. Pan, T.-M.; Fan, K.-C.; Wang, Y.-K. Object-based Approach for Adaptive Source Coding of Surveillance Video. Appl. Sci. 2019,
9, 2003. [CrossRef]

11. Wang, Y.-K.; Cheng, K.-Y. A Two-stage Bayesian Network Method for 3D Human Pose Estimation from Monocular Image
Sequences. EURASIP J. Adv. Signal Process. 2010, 2010, 761460. [CrossRef]

http://doi.org/10.1080/0952813X.2021.1907793
http://doi.org/10.3390/s19153371
http://www.ncbi.nlm.nih.gov/pubmed/31370336
http://doi.org/10.3390/app9112335
http://doi.org/10.1109/TCSVT.2021.3137593
http://doi.org/10.3390/app9040778
http://doi.org/10.1109/TSMC.2016.2531671
http://doi.org/10.3390/app9102003
http://doi.org/10.1155/2010/761460

Drones 2022, 6, 430 28 of 29

12. Viola, P.; Jones, M. Robust Real-Time Face Detection. Int. J. Comput. Vis. 2004, 57, 137–154. [CrossRef]
13. Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005.
14. Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D.; Ramanan, D. Object Detection with Discriminatively Trained Part-Based Models.

IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1627–1645. [CrossRef]
15. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
16. Benenson, R.; Mathias, M.; Timofte, R.; van Gool, L. Pedestrian detection at 100 frames per second. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012.
17. Yang, B.; Yan, J.; Lei, Z.; Li, S.Z. Convolutional Channel Features. In Proceedings of the International Conference on Computer

Vision, Santiago, Chile, 7–13 December 2015.
18. Zhang, S.; Benenson, R.; Schiele, B. Filtered channel features for pedestrian detection. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015.
19. Chen, L.; Lin, S.; Lu, X.; Cao, D.; Wu, H.; Guo, C.; Liu, C.; Wang, F.Y. Deep neural network based vehicle and pedestrian detection

for autonomous driving: A survey. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3234–3246. [CrossRef]
20. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,

2278–2324. [CrossRef]
21. Sharma, V.; Mir, R.N. A comprehensive and systematic look up into deep learning based object detection techniques: A review.

Comput. Sci. Rev. 2020, 38, 100301. [CrossRef]
22. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE

Trans. Pattern Anal. Mach. Intell. 2016, 38, C3. [CrossRef]
23. Tian, Y.; Luo, P.; Wang, X.; Tang, X. Deep Learning Strong Parts for Pedestrian Detection. In Proceedings of the International

Conference on Computer Vision, Santiago, Chile, 7–13 December 2015.
24. Ouyang, W.; Zhou, H.; Li, H.; Li, Q.; Yan, J.; Wang, X. Jointly learning deep features, deformable parts, occlusion and classification

for pedestrian detection. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 1874–1887. [CrossRef]
25. Cai, Z.; Fan, Q.; Feris, R.; Vasconcelos, N. A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection.

In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016.
26. Wang, D.; He, Y.; Liu, Y.; Li, D.; Wu, S.; Qin, Y.; Xu, Z. 3D object detection algorithm for panoramic images with multi-scale

convolutional neural network. IEEE Access 2019, 7, 171461–171470. [CrossRef]
27. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks

from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
28. Dehghan, A.; Assari, S.M.; Shah, M. GMMCP tracker: Globally optimal Generalized Maximum Multi Clique problem for

multiple object tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015.

29. Gündüz, G.; Acarman, T. Efficient multi-object tracking by strong associations on temporal window. IEEE Trans. Intell. Veh. 2019,
4, 447–455. [CrossRef]

30. Leon, F.; Gavrilescu, M. A review of tracking and trajectory prediction methods for autonomous driving. Mathematics 2021, 9, 660.
[CrossRef]

31. Yoon, K.; Kim, D.Y.; Yoon, Y.C.; Jeon, M. Data association for multi-object tracking via deep neural networks. Sensors 2019, 19, 559.
[CrossRef] [PubMed]

32. Li, C.; Wang, Y.; Liu, X. A Multi-Pedestrian Tracking Algorithm for Dense Scenes Based on an Attention Mechanism and Dual
Data Association. Appl. Sci. 2022, 12, 9597. [CrossRef]

33. Xiang, Y.; Alahi, A.; Savarese, S. Learning to Track: Online Multi-object Tracking by Decision Making. In Proceedings of the IEEE
International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015.

34. Venkateswara, H.; Chakraborty, S.; Panchanathan, S. Deep-Learning Systems for Domain Adaptation in Computer Vision. IEEE
Signal Process. Mag. 2017, 34, 117–129. [CrossRef]

35. Ruder, S. An Overview of Multi-Task Learning in Deep Neural Networks. arXiv 2017, arXiv:1706.05098.
36. Dollár, P.; Wojek, C.; Schiele, B.; Perona, P. Pedestrian Detection: An Evaluation of the State of the Art. IEEE Trans. Pattern Anal.

Mach. Intell. 2012, 34, 743–761. [CrossRef] [PubMed]
37. Ferryman, J.; Shahrokni, A. PETS2009: Dataset and challenge. In Proceedings of the 2009 Twelfth IEEE International Workshop

on Performance Evaluation of Tracking and Surveillance, Snowbird, UT, USA, 7–9 December 2009.
38. Mykhaylo, A.; Stefan, R.; Bernt, S. People-Tracking-by-Detection and People-Detection-by-Tracking. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008.
39. Xu, Y.; Osep, A.; Ban, Y.; Horaud, R.; Leal-Taixé, L.; Alameda-Pineda, X. How to train your deep multi-object tracker. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp.
6787–6796.

40. Leal-Taixé, L.; Milan, A.; Reid, I.; Roth, S.; Schindler, K. MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking.
arXiv 2015, arXiv:1504.01942.

41. Wang, B.; Wang, G.; Chan, K.L.; Wang, L. Tracklet Association by Online Target-Specific Metric Learning and Coherent Dynamics
Estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 589–602. [CrossRef]

http://doi.org/10.1023/B:VISI.0000013087.49260.fb
http://doi.org/10.1109/TPAMI.2009.167
http://doi.org/10.1007/BF00994018
http://doi.org/10.1109/TITS.2020.2993926
http://doi.org/10.1109/5.726791
http://doi.org/10.1016/j.cosrev.2020.100301
http://doi.org/10.1109/TPAMI.2016.2577031
http://doi.org/10.1109/TPAMI.2017.2738645
http://doi.org/10.1109/ACCESS.2019.2955995
http://doi.org/10.1109/TIV.2019.2919473
http://doi.org/10.3390/math9060660
http://doi.org/10.3390/s19030559
http://www.ncbi.nlm.nih.gov/pubmed/30700017
http://doi.org/10.3390/app12199597
http://doi.org/10.1109/MSP.2017.2740460
http://doi.org/10.1109/TPAMI.2011.155
http://www.ncbi.nlm.nih.gov/pubmed/21808091
http://doi.org/10.1109/TPAMI.2016.2551245

Drones 2022, 6, 430 29 of 29

42. Kim, H.-U.; Kim, C.-S. CDT: Cooperative Detection and Tracking for Tracing Multiple Objects in Video Sequences. In Proceedings
of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016.

43. Bae, S.-H.; Yoon, K.-J. Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online
Multi-Object Tracking. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 3, 595–610. [CrossRef]

44. Sadeghian, A.; Alahi, A.; Savarese, S. Tracking the Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies.
In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017.

45. Chen, L.; Ai, H.; Shang, C.; Zhuang, Z.; Bai, B. Online Multi-Object Tracking with Convolutional Neural Networks. In Proceedings
of the IEEE International Conference on Image Processing, Beijing, China, 17–20 September 2017.

http://doi.org/10.1109/TPAMI.2017.2691769

	Introduction
	Related Works
	MDJL Method
	Multidomain Joint Learning
	Domain-Oriented Fine-Tuning
	Multidomain Joint Learning Training
	Multiobject Tracking System for Flying Drones

	Experimental Results
	Ablation Study
	Analysis of Multidomain Joint Learning Method
	Domain-Oriented Fine-Tuning Experiments and Analysis
	Comparison with State-of-the-Art Methods
	Pedestrian Tracking

	Conclusions
	References

