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Abstract: RPAS (Remotely piloted aircraft systems, i.e., drones) present an efficient method for
mapping schooling coastal forage fish species that have limited distribution and abundance data.
However, RPAS imagery acquisition in marine environments is highly dependent on suitable en-
vironmental conditions. Additionally, the size, color and depth of forage fish schools will impact
their detectability in RPAS imagery. In this study, we identified optimal and suboptimal coastal
environmental conditions through a controlled experiment using a model fish school containing
four forage fish-like fishing lures. The school was placed at 0.5 m, 1.0 m, 1.5 m, and 2.0 m depths in
a wide range of coastal conditions and then we captured RPAS video imagery. The results from a
cluster analysis, principal components, and correlation analysis of RPAS data found that the optimal
conditions consisted of moderate sun altitudes (20–40◦), glassy seas, low winds (<5 km/h), clear
skies (<10% cloud cover), and low turbidity. The environmental conditions identified in this study
will provide researchers using RPAS with the best criteria for detecting coastal forage fish schools.

Keywords: RPAS; forage fish; marine aerial survey; environmental conditions; UAS; UAV

1. Introduction

Remotely piloted aerial vehicles (RPAS) are a valuable tool for conservation since they
became commercially available around 2010 [1,2]. RPAS offer a non-invasive, flexible, cost-
effective method to quickly survey large areas (~8 min for 1 km2 coverage) and collect high
resolution, spatially explicit imagery that can be used to map or monitor the distribution of
marine organisms such as turtles and marine mammals [1–4]. Smaller, more cryptic, and
under sampled forage fish species that school near the sea surface could also greatly benefit
from RPAS surveys [1,5].

Forage fish play a critical role in marine ecosystems by providing a trophic link be-
tween plankton and piscivorous fish, mammals, and marine birds [6]. They are crucial to
maintaining healthy ecosystems, contribute directly and indirectly to the economic value
of global fisheries, and support the conservation and recovery of many coastal marine
species at risk [7,8]. Currently in British Columbia, Canada, Pacific Herring (Clupea pallasii),
Pacific Sand Lance (Ammodytes personatus; “Sand Lance”) and, to a lesser extent, Northern
Anchovy (Engraulis mordax) are thought to be the most ecologically important coastal forage
fish [9–11]. These species are prey to many ecologically and economically valuable preda-
tors such as the Chinook salmon (Oncorhynchus tshawytscha) and the threatened marbled
murrelet (Brachyramphus marmoratus) [11–15]. Despite their importance, information about
the abundance and distribution of many of BC’s forage fish is limited [11,16,17].

A variety of methods can be used to quantify the abundance and distribution forage
fish, but many cannot access shallow areas, are size selective or destructive, and are subject
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to fish avoidance [1,18]. By comparison, RPAS offer a non-destructive, cost and time
effective method to survey tens of square kilometers of shallow nearshore habitats that are
important to small surface schooling forage fish species such as Sand Lance and Pacific
Herring [19,20].

RPAS surveys capture visible spectra (blue, green, red) imagery of the ocean, targeting
subsurface features, and are typically limited by environmental conditions (e.g., wind,
waves, sun angle, cloud cover, turbidity) and target characteristics (e.g., target depth, color,
size)]. Environmental conditions such as wind, waves, sun altitude, clouds, and turbidity
can affect the appearance of the sea surface in the imagery and the light penetration into the
water column [4,21,22]. Furthermore, RPAS imagery is only able to capture under-water
targets in the visible wavelengths due to water light attenuation properties in other parts of
the spectra [23–25]. In order to reduce availability errors, surveys must generally be con-
ducted under calm, clear conditions, and occur when targets are in the visible portion of the
water column to ensure that targets within the sampled area are available to be seen [23,25].
Finally, larger targets with contrasting colors to the background are more readily detected in
RPAS imagery [23,24,26]. Given these considerations, target-specific standardized protocols
are required for repeatable and comparable surveys [5,19,21,23,26,27]. Some research has
described general protocols for mapping submerged targets [21] and others have looked at
protocols for specific taxa or benthic habitat types [5,22,28]. However, no RPAS protocols
have been developed specifically for forage fish surveys including evaluating for the most
optimal environmental conditions [1,5].

The main objective of this study was to develop a data acquisition protocol defining
optimal environmental conditions for detecting forage fish in coastal waters using RPAS
imagery. Environmental conditions for detecting forage fish were evaluated through infield
experiments using forage fish-like fishing lures and considering the influence of sun altitude,
turbidity (secchi depth as a proxy), cloud cover, wind speed, and wave height. Generally,
our findings showed that calm conditions with clear skies, moderate sun angles, and low
turbidity to be optimal, similar to others working with different taxa, including eelgrass,
sharks, and marine mammals [4,5,21–23,28–33]. Defining these optimal conditions will help
make RPAS surveys the basis of a practical, efficient, non-destructive, fishery independent
technique for quantifying forage fish distribution and abundance [5]. Furthermore, this
research can inform RPAS survey design of other surface-schooling forage fish in other
locations globally that have similar morphologies to the lures used in this experiment.

2. Materials and Methods
2.1. Study Area

The study area comprised of two coastal regions of varying oceanographic and en-
vironmental conditions on southern Vancouver Island, British Columbia (Figure 1). The
majority of the environmental samples (samples defined in Section 2.2) were recorded at
Nettle Island within the Broken Group Islands (BGI) in Barkley Sound which is part of the
Pacific Rim National Park Reserve (PRNPR) on the southwest coast of Vancouver Island.
The BGI supports high fish diversity including Shiner Perch (Cymatogaster aggregata), Pacific
Sand Lance, and Pacific Herring among other species [34–36]. The BGI opens to the Pacific
Ocean on the windward side of Vancouver Island which drives the wet and cool climate,
causing overcast and fog conditions in the spring and summer [37]. Data acquisition in
the BGI occurred during mornings in May and early June to target the calmest conditions
and to avoid phytoplankton blooms and foggy conditions that occur in July and August
(Personal communication, Jennifer Yakimishyn, June 2020). The RPAS surveys in the BGI
captured most environmental conditions of interest, except the combination of clear skies
and high wind.
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Island in the Strait of Georgia (Figure 1). Baynes Sound has a large range of nearshore 
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Herring, Sand Lance and Northern Anchovy, among others [38–40]. Baynes Sound lies on 
the leeward side of Vancouver Island in a rain shadow and has warmer and drier condi-
tions than the BGI [37]. Three samples were recorded at Deep Bay in Baynes Sound to 
capture conditions that had not been encountered in the BGI. A single field day (19 August 
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Figure 1. The study area map showing the location of the experiment locations at Nettle Island in the
BGI (map panel A) on the west coast of Vancouver Island and at Deep Bay in Baynes Sound (map
panel B) on the east coast of VI, in the Strait of Georgia.

The second study site, Baynes Sound, was located on the eastern coast of Vancouver
Island in the Strait of Georgia (Figure 1). Baynes Sound has a large range of nearshore
habitats that support a high biomass of numerous forage fish species, including Pacific
Herring, Sand Lance and Northern Anchovy, among others [38–40]. Baynes Sound lies on
the leeward side of Vancouver Island in a rain shadow and has warmer and drier conditions
than the BGI [37]. Three samples were recorded at Deep Bay in Baynes Sound to capture
conditions that had not been encountered in the BGI. A single field day (19 August 2021)
was sufficient to complete the data acquisition in Baynes Sound.

2.2. Data Collection

The data collection included capturing RPAS imagery at a set altitude of 15 m of an
experimental model fish school located at four fixed depths below the sea surface and
recording the environmental variables that occurred during each experimental imagery
sample. As such, each sample included imagery of the model fish school at four different
depths and a recorded value of each environmental variable (including wind speed, wave
height, sun altitude, cloud cover, and secchi depth) that occurred during the imagery
acquisition. The model forage fish school was comprised of four types of fishing lures
(10 of each type) that mimicked forage fish colors and sizes (Figure 2). The lures mimicked
previously observed local forage fish (seen in test RPAS forage fish surveys completed in
2020) and contained the foundational counter-shading color scheme of most near-surface
schooling pelagic fish [41,42]. The two main categories of forge fish detections seen in the
test forage fish RPAS surveys: (1) dark fish visible over light bottoms and (2) “fish flashes”
seen as a brief flash of bright light in videos as fish turned on their side reflecting light
into the sensor. Dark fish over light bottom detections were likely Shiner Perch, while fish
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flash detections were mostly Herring and Sand Lance. The dark fish over light bottoms
are represented by a dark lure (lure A, Figure 2) while the fish flashes are represented by
silver lures (lures B, C, D, Figure 2). Two quadrats of 0.75 m2 each had 20 randomly placed
lures. Quadrat 1 had ten 10 mm long black lures (lure A in Figure 2) and ten 11 mm long
metal lures (lure B in Figure 2) representing the dark Shiner Perch and Sand Lance fish
flashes, respectively. Quadrat 2 had the same silver lure type in 9 cm and 5 cm long (lures
C and D in Figure 2; ten of both lure types), representing fish flashes from juvenile and
adult Herring, respectively.
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Figure 2. The model fish school with two quadrats and ten of four different fish lures that represent
dark, counter shaded fish (lure A), Sand Lance fish flashes (lure B), and adult and juvenile herring
fish flashes (lures C and D). The upright posts and cross bar allow researchers to lower the quadrats
up to 2 m depth. The quadrat frames were painted black with silver squares at the vertices for easy
visual locating of the model fish school in the RPAS imagery. Note the small lead weights attached to
the bottom of lures A, C, and D to keep them oriented in an upright position in all imagery samples
(not needed for lure B).

The model fish school was placed at 0.5 m, 1.0 m, 1.5 m, and 2.0 m depths, which
represents the approximate depths of forage fish schools observed from small boats in
the test RPAS surveys. With the model fish school positioned at the specified depths,
triplicate RPAS imagery (5 s of 4 k video for each model fish school depth) were acquired
at 15 m elevation above the sea surface. The videos recorded at each depth were taken
approximately 30 s apart as each depth was recorded first (first triplicate) before recording
the second and then the third triplicate. The environmental conditions were monitored
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to ensure no change between triplicate samples. Logistics allowed a total of 127 triplicate
samples, 124 of which were recorded a Parks Canada dock at Nettle Island in the BGI with
a Mavic 2 Professional (M2P) RPAS and three samples were recorded at a marina dock in
Deep Bay with a Phantom 4 (P4). This sample size included samples of all the conditions
thought to be important based on test forage fish RPAS surveys and recommendations in
the literature. All samples were comparable as both RPAS have similar sensors (Table 1)
and they were recorded at nadir angles at a flight altitude of 15 m above the sea surface.
In addition, the sea floor (10–20 m depth) was not visible at either dock, which kept a
standardized background of a deep water column for all samples.

Table 1. The specifics on the RPAS models used.

M2P P4

Study area used BGI SOG
Ground sampling distance
at 15 m height 0.5 cm (video) 0.67 cm (video)

Sensor size 1”, 20 million effective pixels 1/2.3”, 12.4 million
effective pixels

Field of view 77◦ 94◦

Lens length 38 mm 20 mm
Image size 5472 × 3648 pixels 4000 × 3000 pixels
Video size collected 4 k (3840 × 2160 pixels) 4 k (3840 × 2160 pixels)
Maximum flight time 31 min 28 min

GPS accuracy Vertical ±0.5 m ±0.5 m
Horizontal ±1.5 m ±1.5 m

Environmental variables that may affect the detectability of underwater forage fish
from RPAS imagery were first identified from the literature [4,5,21–23,32], and recorded for
each sample. The variables included in our analysis were: wind speed, cloud cover, sun
altitude, and secchi depth (Table 2). Through the literature review, different classes of each
environmental variable were identified (Table 3). No definitive thresholds were identified
for secchi depth for two reasons: the literature recommended avoiding highly turbid waters
rather than suggesting specific thresholds, and the secchi depth that is required to see a
subsurface target depends on other factors (e.g., target depth, color, and size, and other
environmental conditions [22,23,25,29,32,33,43]. The statistical analysis used the recorded
values (i.e., no transformations were applied) for all the variables except secchi depth,
which was corrected for the observed sun angle using equations from [44] to minimize the
combined effects of turbidity and sun altitude variability.

Table 2. The environmental variables considered in the analysis and recorded for each sample.

Environmental Variable Collection Method

Wind speed (km/h) In field, with hand held anemometer.

Sea state (cm) In field, visual estimation of wave height and texture (glassy,
ripples, waves) according to Beaufort classification.

Cloud cover (%) In field, visual estimate of percent cloud cover.

Sun altitude (◦) After field work, sun angle calculator calculated from location
and time of survey [45].

Secchi depth (m) In field, maximum depth a standard 20 cm secchi disk is
visible, a proxy for water turbidity.



Drones 2022, 6, 426 6 of 21

Table 3. The classes of each environmental variable and suitability for collecting marine aerial
imagery summarized from a literature review.

Variable Thresholds Classification Rationale References

Sun altitude

<25◦ Moderate
Low angles reduce solar irradiance and illumination [22].
found high to moderate mapping confidence of subsurface
habitat features from sun angles from 6.5–40◦. [21,22,32]

25–40◦ Optimal Moderate angles have enough solar irradiance for correct
illumination while mitigating sun glint.

>40◦ Suboptimal High angles increase sun glint for nadir surveys.

Cloud cover

≤10% Optimal
Best conditions with an optimal sun angle in order to have
lots of light to illuminate subsurface features. Consistent
reflectance and radiometry across survey. [22,28,32]

>10, <90% Suboptimal Worst conditions due to irregular patterns of bright cloud
reflectance.

≥90% Moderate
Consistent reflectance and radiometry. Specular reflectance
of the clouds occurs on the surface of the water and obscures
benthic features.

Wind speed

≤5 km/h Optimal No wind ripples were observed. [22]

>5 km/h,
≤8 km/h Moderate

High confidence was achieved in winds up to 8 km/h. Wind
speeds 5–8 km/h may cause wind ripples depending on the
angle of the sun.

[22,33]

>8 km/h Suboptimal Wind ripples were observed at wind speeds greater than 8
km/h. [22]

Sea surface

Beaufort class 0
(glassy) Optimal

Sea surface is mirror-like but not necessarily flat [46]. This
Beaufort category corresponds to optimal wind speed (≤1
km/h).

[22]

Beaufort class 1
and 2
(ripples-waves)

Moderate

Class 1 is characterized by ripples without foam crests with
winds from 1–5 km/h, while class 2 is characterized by small
wavelets with crests that do not break and winds from 6–11
km/h [46]. As such, these classes correspond to optima,
moderate and suboptimal classes of wind. Ref. [23] found
decreasing sighting rates of marine organisms in worsening
sea surface conditions. Most aerial marine surveys occur
during Beaufort classes < 3.

[19,21,23]

≥Beaufort class 3
(waves) Suboptimal

Includes classes characterized with large wavelets with
breaking peaks (Class 3) and rougher with winds of 12 km/h
or greater [46].

[19,21,23]

2.3. Imagery Analysis

The visual analysis of RPAS imagery consisted of an experienced viewer counting
all visible lures identified in the video at each depth. In order to standardize the process,
all sample videos were watched on a 4 k screen in a dark room by a solitary, experienced
viewer, following methods by [19]. The video was paused, slowed, and zoomed into if
there was any uncertainty in lure detection to decrease perception errors [23,25]. Perception
errors occur when targets are misclassified or missed entirely by the viewer, even though
they are available to be seen [23,25,26].

2.4. Statistical Analysis

The dataset produced from the imagery analysis includes counts of each fish lure at
each depth and associated environmental variables (Table 1) that occurred during data
acquisition. The number of identified lures in each video (lure count) were divided by
the total number of lures that were present in the video (n = 10 for each lure type) to
produce a percentage metric called “lure visibility”. The three replicates recorded for



Drones 2022, 6, 426 7 of 21

each sample were averaged, and the standard deviation used as metrics of precisions of
lure identification.

After data organization, a statistical analysis was performed to compare the lure
visibility to the environmental conditions in order to identify the optimal conditions for
highly accurate forage fish detections. The statistical analysis consisted of two steps. Firstly,
the environmental data were used in a cluster analysis, independent of the lure visibility
data, to group environmental conditions. The lure visibility was compared between the
different clusters to define environmental thresholds for optimal or suboptimal conditions.
The clustering analysis method employed a k-means cluster algorithm [47] to group the
data by considering wind speed, wave height, cloud cover, sun altitude, and secchi depth.
The number of clusters (k) was chosen manually based on the elbow method, which allows
the user to see and select the number of clusters that reduces the within sum of squares
while balancing the need for minimal clusters for reduced complexity [47].

Secondly, a principal components analysis (PCA) and Spearman’s correlation analysis
were conducted to determine which specific environmental variables had the most impact
on lure visibility at each depth. There were four PCA’s completed for these data, one
for each depth. In order to use the PCA, the data first needed to be scaled to ensure
there were no zeros in the dataset [47]. Additionally, lure visibility was compared to each
environmental predictor variable using Spearman’s ρs to determine the strength, direction,
and significance of relationships. Spearman’s rank correlation was chosen as it can measure
the strength and direction of all types of monotonic relationships and is appropriate to
use when data are non-normal with outliers [48]. All data analyses were preformed in
R software version 1.3.1073 [49], including the stats package for the cluster analysis [50]
the ade4 package for the PCA analysis [51], and the corrplot package for the correlation
analysis [52].

3. Results
3.1. Sampled Environmental Conditions

A total of 127 experimental samples were recorded during summer 2021 covering
different environmental conditions. Since the environmental conditions were sampled
opportunistically, they were not equally sampled across their ranges and their distributions
contained outliers (Table 4). Broadly, sun altitude was relatively evenly sampled with
a range from 8◦ to 55◦, while cloud cover, due to its non predictable nature, had more
samples in overcast (≥90–100%, n = 72) than clear conditions (≤10%, n = 37) or mixed
conditions (>10, <90%, n = 18). Similarly, the wind and wave conditions had unevenly
sampled categories, with low winds (<5 km/h, n = 116) and glassy seas (0 cm, n = 81)
dominating relative to wind speeds above 5 km/h (n = 11) and samples with ripples or
waves (n = 46). Finally, secchi depths were no shallower than 4.4 m, and had low variability
(standard deviation of 0.6 m).

Table 4. The descriptions of sample distribution for each environmental variable including descriptive
statistics and the number of samples in each category defined by the literature (Table 3). The one
exception was the equal interval classification for secchi depth as there were no thresholds seen in the
literature regarding secchi depth. The descriptive statistics chosen included mean, standard deviation
(SD), and range.

Variable Descriptive Statistics Classes in
Literature

Number of Samples
in Each Class

Sun altitude
Mean 30.38◦ <25◦ 50
SD 13.52◦ 25–40◦ 40
Range 8.20◦, 54.53◦ >40◦ 37

Cloud cover
Mean 65% ≤10% 37
SD 43% >10, <90% 18
Range 0%, 100% ≥90% 72
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Table 4. Cont.

Variable Descriptive Statistics Classes in
Literature

Number of Samples
in Each Class

Wind speed
Mean 1.6 km/h ≤5 km/h 116
SD 2.4 km/h >5, ≤8 km/h 8
Range 0.0, 11.1 km/h >8 km/h 3

Wave height
Mean 0.7 cm Glassy 81
SD 1.5 cm Ripples 40
Range 0, 10 cm Waves 6

Adjusted secchi
depth

Mean 5.2 m 4.4–5.4 100
SD 0.6 m 5.5–6.4 26
Range 4.4 m, 7.5 m 6.5–7.5 1

3.2. Summary Statistics on Lure Visibility

The resulting summary statistics (Table 5) show broad patterns in reduced visibility
with lure depth, lure size, and based on lure color. Lure A (dark lure) had lower average
visibility at all depths than any silver lure (lure B, C, D), and lure visibility decreased and
became more variable with increased depth. The one exception to this was lure A which
had a lower standard deviation at 2.0 m than at 1.5 m because this lure was almost never
visible at 2.0 m depth (Table 5). In addition, lure A had greater variation in visibility (larger
standard deviations) at most depths than the other lures with the exception of lure C having
a larger standard deviation at 2.0 m. This is likely due to the same reason that lure A was
almost never visible at this depth. Furthermore, for lures B, C, and D, visibility decreased
with lure size.

Table 5. Mean and one standard deviation (“SD”) of visible lure counts recorded for lures at each
depth, independent of the other environmental conditions. Lure visibility can be inferred from this
table as well as it can be calculated by dividing the mean and standard deviations by the total number
of each lure.

Lure Lure Description 0.5 m 1.0 m 1.5 m 2.0 m
Size Color Total Number of Lures Mean SD Mean SD Mean SD Mean SD

Lure A 10 mm Dark 10 9.48 1.39 5.33 3.75 2.27 3.51 0.56 2.11
Lure B 11 mm Silver 10 10 0 10 0 9.98 0.20 9.82 0.98
Lure C 9 mm Silver 10 10 0 10 0 9.92 0.48 9.43 1.74
Lure D 5 mm Silver 10 10 0 10 0 9.87 0.68 9.02 2.18
All lures 40 39.48 1.52 35.32 3.76 31.72 3.64 28.32 6.05

Additionally, the mean and standard deviations of specific lures at specific depths
show the effect of the sampled environmental conditions on lure visibility. For example,
lures B, C, and D were all visible (mean of 10) with no variability (standard deviation of
0) at 0.5 m and 1.0 m, meaning that none of the environmental conditions sampled in this
research impacted their visibility at these shallow depths. Contrasting this, lure A was
almost never visible at 2.0 m depth showing that very specific conditions may be required
to detect this lure at 2.0 m depth.

3.3. Relationship between Environmental Conditions and Lure Visibility

The resulting relationships between the environmental conditions and the lure visi-
bility are first reported through the cluster analysis results and followed by the PCA and
Spearman’s correlation analysis. The overall trends from all three analyses showed that
each lure type (dark lure vs. silver lures) was affected by different environmental variables.

The results of the k-means cluster analysis of the environmental variables produced
5 distinct clusters (Table 6). Cluster 2 (n = 11) was associated with high winds (1.5–11.1 km/h),
ripples and waves (3–10 cm), moderate to high sun angles (32–55◦), mixed and overcast
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cloud coverage (>50%), and relatively shallow secchi depths (4.4–5.3 m). Cluster 1 (n = 32)
encompassed similar conditions but with lower wind (<7.0 km/h) and ripples (<2 cm).
Environmental conditions comprising Cluster 3 (n = 32) had optimal conditions with calm
winds (0 km/h), glassy seas (0 cm), and clear skies (<5%). Cluster 4 (n = 44) had overcast
(>95%), low-moderate wind (<5.5 km/h), glassy seas (wave height 0 cm), and low-moderate
sun angles (5–40◦), with a moderate secchi depth (4.8–5.6 m) while Cluster 5 (n = 8) had
similar environmental conditions, except for a broader range of cloud cover conditions
(0–100%), calm wind (0.0 km/h), glassy seas (wave height 0 cm) and the lowest water
turbidity (6.4–7.5 m).

Table 6. The range of each environmental variable in each cluster.

Environmental Variable Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Cloud cover >50% >10% <5% >95% 0–100%
Wind speed <7.0 km/h 1.5–12.0 km/h 0.0 km/h <5.5 km/h 0.0 km/h
Wave height <2 cm 3–10 cm 0 cm 0 cm 0 cm
Sun altitude 32–55◦ 38–53◦ 10–55◦ 8–40◦ 8–37◦

Adjusted secchi 4.4–5.3 m 4.4–5.6 m 5–5.5 m 4.8–5.6 m 6.4–7.5 m

The different sets of environmental variables represented by each cluster were com-
pared to lure visibility at each depth to detect broad trends of optimal and suboptimal
conditions (Figure 3). At 0.5 m depth, the dark lure (lure A) visibility was the lowest in
Cluster 5. However, at 1.0 and 1.5 m, this lure was most visible in the only cluster with clear
sky conditions (Cluster 3), while the other clusters had similar counts. As for the silver
lures (lures B, C, and D), had reduced visibility happened at 1.5 and 2.0 m and occurred
only in the two clusters with elevated wind and wave height conditions (Cluster 1 and
2). Lastly, lure visibility decreased with depth and increased with lure size, reflecting the
results of the summary statistics.

The PCA analysis was completed separately for each specific depth, considering the
four different lures (A B, C, and D) and the environmental conditions. The results show that
the PCA and correlation analysis for 0.5 m and 1.0 m depths excluded the three silver lures
(lures B, C, D) because these lures were always 100% visible and did not contribute any
variability to the PCA (Table 5). This means none of the sampled environmental conditions
impacted the visibility of lures B, C, or D at these shallow depths. Similarly, lure A was
excluded for the 2.0 m PCA analysis. However, in this case, within the environmental
conditions that were sampled, this lure was almost never visible (Table 5).

At 0.5 m and 1.0 m, visibility of the lure A) contributed greatly to the PCA (Figure 4),
meaning that the variation in lure A visibility was well represented by the first two principal
components. At both depths, lure A’s vector arrow was opposite to cloud cover (Figure 4),
suggesting a negative relationship (i.e., as cloud cover increases, visibility of lure A will
decrease). Lure A’s vector was not close to any other variables, suggesting that lure A’s
visibility does not have a positive relationship with any environmental variables.

At 1.5 m, lure B, C, and D visibility showed the strongest contribution to the PCA
while lure A contributed less (Figure 4). Lure A showed a positive relationship to secchi
depth and a negative relationship to cloud cover. The positive relationship to secchi depth
suggests that lure A was more visible in less turbid water. Lures B, C and D. However,
show positive relationships to each other and negative relationships to wind speed, wave
height, and sun altitude.

This pattern was similar at 2 m depth with lure B, C, and D having the highest contri-
bution value to the PCA, positive relationships to each other, and negative relationships to
wind speed and wave height.
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Figure 3. The lure visibility in each cluster at each depth summarized for all experimental samples. 
The top and bottom of the boxes represent the first and third quartiles, while the black bar in the 
middle of the box represents the median. The whiskers at either end of the box show where 95% of 
the data fall. The black dots represent outliers that fall outside of the 95% confidence interval. Note 
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visibility. 
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Figure 3. The lure visibility in each cluster at each depth summarized for all experimental samples.
The top and bottom of the boxes represent the first and third quartiles, while the black bar in the
middle of the box represents the median. The whiskers at either end of the box show where 95%
of the data fall. The black dots represent outliers that fall outside of the 95% confidence interval.
Note that when there is only a black bar and no box or whiskers, it shows that there is either 100% or
0% visibility.
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Figure 4. The contribution of each variable to the first two principal components for each depth’s 
PCA is displayed by the length and color of the arrows. The variables shown here are cloud cover 
(CC), wave height (WH), wind speed (WS), sun altitude (AVG SA), secchi depth (Secchi), and lure 
visibility for each lure (Lure A, Lure B, Lure C, Lure D). The variables are represented by arrows 
whose color and length corresponds to how much variability they account for (i.e., how much they 
contribute) to each PCA. Variables that are opposite to each other are negatively correlated and 
those that are close together are positively correlated. The two dimensions displayed are the first 
and second principal components of each PCA. The values associated with each dimension are the 
eigenvalue associated with the principal component. 

Spearman’s correlation analysis showed similar relationships to the PCA (Table 7). 
The lures that were excluded from the PCA at 0.5 m, 1.0 m, and 2.0 m PCA were also 
excluded from this correlation analysis for the shared reason of having no variability in 
their visibility. Firstly, lure A showed somewhat similar patterns to those expected based 
on the results of the PCA (Figure 4). At 0.5 m, lure A showed a weak negative correlation 
with cloud cover. At 1.0 m, lure A showed a strong relationship with cloud cover and a 
weak positive relationship secchi depth. At 1.5 m, lure A continued to display a strong 
relationship with cloud cover, but additionally showed a weak negative correlation with 
wave height and wind speed (Table 7). Lures B, C, and D displayed correlations to all of 
the environmental variables (Table 7). At 1.5 m, all three lures showed weak negative re-
lationships with wave height, wind speed, and sun altitude except for lure D which 
showed a moderate relationship with wind speed and a weak positive correlation with 
secchi depth. At 2 m, all the silver lures displayed moderate negative relationships with 
wind speed and sun altitude. Additionally, lure C and D displayed strong negative rela-
tionships with wave height while lure B showed a moderate negative relationship. Lure 

Figure 4. The contribution of each variable to the first two principal components for each depth’s
PCA is displayed by the length and color of the arrows. The variables shown here are cloud cover
(CC), wave height (WH), wind speed (WS), sun altitude (AVG SA), secchi depth (Secchi), and lure
visibility for each lure (Lure A, Lure B, Lure C, Lure D). The variables are represented by arrows
whose color and length corresponds to how much variability they account for (i.e., how much they
contribute) to each PCA. Variables that are opposite to each other are negatively correlated and
those that are close together are positively correlated. The two dimensions displayed are the first
and second principal components of each PCA. The values associated with each dimension are the
eigenvalue associated with the principal component.

Spearman’s correlation analysis showed similar relationships to the PCA (Table 7). The
lures that were excluded from the PCA at 0.5 m, 1.0 m, and 2.0 m PCA were also excluded
from this correlation analysis for the shared reason of having no variability in their visibility.
Firstly, lure A showed somewhat similar patterns to those expected based on the results
of the PCA (Figure 4). At 0.5 m, lure A showed a weak negative correlation with cloud
cover. At 1.0 m, lure A showed a strong relationship with cloud cover and a weak positive
relationship secchi depth. At 1.5 m, lure A continued to display a strong relationship with
cloud cover, but additionally showed a weak negative correlation with wave height and
wind speed (Table 7). Lures B, C, and D displayed correlations to all of the environmental
variables (Table 7). At 1.5 m, all three lures showed weak negative relationships with
wave height, wind speed, and sun altitude except for lure D which showed a moderate
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relationship with wind speed and a weak positive correlation with secchi depth. At 2 m,
all the silver lures displayed moderate negative relationships with wind speed and sun
altitude. Additionally, lure C and D displayed strong negative relationships with wave
height while lure B showed a moderate negative relationship. Lure C and D also showed
a weak positive relationship with secchi depth and lure D displayed a weak negative
relationship with cloud cover (Table 7).

Table 7. Significant Spearman’s correlations (ρs) between the variables included in each PCA
(p < 0.05). The red cells indicate positive relationships, blue cells indicate negative relationships, and
empty cells display non-significant relationships. The silver lures were not included at 0.5 m and
1.0 m because always visible and similarly the dark lure was excluded for 2 m because it was almost
never visible.

Depth Lure Name Lure Color Secchi Depth Cloud Cover Wave Height Wind Speed Sun Altitude
0.5 m A Dark −0.18
1.0 m A Dark 0.26 −0.65
1.5 m A Dark −0.54 −0.20 −0.18

B Silver −0.25 −0.24 −0.19
C Silver −0.30 −0.26 −0.19
D Silver 0.19 −0.29 −0.32 −0.25

2.0 m B Silver −0.37 −0.34 −0.21
C Silver 0.19 −0.55 −0.48 −0.38
D Silver 0.28 −0.18 −0.52 −0.44 −0.39

3.4. Optimal and Suboptimal Conditions

All of the environmental variables were shown to impact the visibility of a lure type,
depending on lure color, size and depth. The silver lures (lures B, C, and D) visibility was
most impacted by wind speed and wave height, followed by sun altitude while the dark
lures (lure A) visibility was most impacted by cloud cover (Table 8). Specifically considering
each environmental variable, optimal and suboptimal ranges or thresholds were identified
based on the results of the statistical analysis combined with consultation of the literature on
marine aerial imagery surveying (Table 3). In order to make the recommendations practical
for increased accuracy in RPAS forage fish surveys, conservative thresholds were chosen
as the forage fish seen in RPAS surveys will likely be less visible to the imagery analysist
than the stationary lures in the model fish school. Table 8 summarizes the thresholds for
the environmental conditions that should be considered to minimize detections errors in
forage fish surveys for fish species that share similar color scheme represented here.

Table 8. The recommendations for conditions to target (optimal) and avoid (suboptimal) for RPAS
forage fish surveys based on the two lure types.

Condition Description Thresholds

Dark lure

Optimal Clear skies Cloud cover <10%

Suboptimal Mixed and overcast skies Cloud cover >10%

Silver lures

Optimal

Glassy seas Wave height 0 cm

Calm winds Winds < 5 km/h

Low—moderate sun altitude Sun altitude 20–40◦

Low turbidity Secchi depth > 5 m
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Table 8. Cont.

Condition Description Thresholds

Suboptimal

Ripples and waves Wave height > 1 cm

Moderate—strong winds Wind speed > 5 km/h

High sun altitude Sun altitude < 20◦, >40◦

High turbidity Secchi depth < 5 m

4. Discussion

The objective of this study was to determine environmental conditions that are optimal
and suboptimal for detecting surface schools of forage fish in RPAS imagery. The analysis
was conducted based on RPAS imagery acquired over a model fish school with dark
and silver lures of different sizes, positioned at different depths, and considering natural
environmental conditions in the spring/summer coastal waters of BC, Canada. Clear skies,
low winds, glassy seas, moderate sun angles, and low turbidity, generally allowed for the
highest visibility for all the lures (Table 8). However, specific conditions, including wind
speed, wave height, sun altitude, and turbidity impacted the visibility of the silver lures
(lures B, C, D) the most, while the dark lures visibility (lure A) was most impacted by cloud
cover (Figures 3 and 4; Tables 7 and 8). Furthermore, as expected, the dark lure was less
visible than the silver lures, smaller lures were less visible than larger lures, and visibility
decreased with lure depth. Targeting the optimal conditions in Table 8 should minimize
availability bias in RPAS forage fish surveys caused by poor conditions making forage fish
schools unavailable for detection.

This discussion first focuses on the optimal and suboptimal conditions recommended
for RPAS forage fish surveys (Table 8), followed by the effect of lure color, size, and depth
on visibility and lastly discusses of the practical application of RPAS to map forage fish.

4.1. Environmental Conditions

Among the identified conditions, wind speed and wave height (highly correlated
to each other) had the largest impact in silver lure visibility with thresholds of <5 km/h
and 0 cm (i.e., glassy), respectively, as optimal for RPAS data acquisition. At glassy seas
conditions, target distortions are minimized as there is less light refraction (Figure 5A–C,E)
compared to higher wind and wave conditions (Figure 5D,F). Additionally, the interaction
of waves with sunlight may cause sun glint (Figure 5F) and cloud glare (Figure 5C,D) [33,53].
The strong contribution to the PCA (Figure 4) and the moderate to strong negative corre-
lation with lures B, C, and D at 1.5 m and 2.0 m (Table 7) show the importance of these
two variables to the silver lure visibility. These conditions were the most important for
silver lures located at 1.5 and 2.0 m where the visibility was higher when there were low
winds and glassy seas (Table 7, 0.24 > ρs > −0.55). These lures were often visible at these
depths (Table 5) but had the lowest visibility in the only clusters that had elevated sea
surface/wind conditions (Clusters 1 and 2 in Table 6 and Figure 3), illustrating that rough
conditions are particularly important to avoid in order to ensure visualization of these
lures at these deeper depths. Lastly, Cluster 4 had winds up to 5.5 km/h but did not have
elevated wave heights or reduced lure visibility, suggesting that winds up to 5.5 km/h
may not cause surface waves that impact lure visibility (Table 6). Even though we were
only able to sample wind speeds up to 11.1 km/h and wave heights up to 10 cm (Table 4),
it is still clear that the rough sea surface conditions provided suboptimal conditions for
detecting the lures.



Drones 2022, 6, 426 14 of 21Drones 2022, 6, 426 14 of 21 
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ferent environmental conditions. These screenshots are taken from the perspective of the drone 
looking down at the model fish school. Panels (A–F) show examples of the model fish school at 
different depths (columns) in different conditions. The conditions are listed on the right side of each 
row in the order of sun altitude (°), cloud cover (%), wind speed (km/h), wave height (cm), and 
secchi depth (m) along with the cluster that each sample is in. The black and gray stars show which 
depth the dark and silver lures start to disappear at, respectively. Panel F only includes one depth 
(0.5 m) as the lures were not visible at any other depth and to show how sun glitter across the frame 
impacts looks similar to the silver lures. Note the resolution of the imagery illustrates the detail 
captured by the RPAS imagery at 15 m height. Note the different colors of the water are due to the 
different environmental conditions during imagery acquisition. 

Most RPAS studies recommend a larger range of wind speeds and wave heights usu-
ally with a maximum threshold of 8–11 km/h and 0.5 m wave height. However, these 
studies usually target marine megafauna or benthic habitat which are much larger than 
forage fish [21–23,32]. The most conservative findings from [22] justify the relatively low 
thresholds of glassy seas and 5 km/h, as the authors found that winds between 5 and 8 
km/h may produce wind ripples. Note the distortions of the silver lures in Figure 5D due 
to the wind ripples compared to the undistorted shape of the lures in panel C with calm 
winds and glassy seas (and otherwise similar conditions).  

Sun altitude was the second most important environmental variable for silver lures 
(lure B, C, D) visibility. The sun angle altitude was negatively correlated with visibility of 

Figure 5. Screenshots of video samples to show how the model fish school visually appears in
different environmental conditions. These screenshots are taken from the perspective of the drone
looking down at the model fish school. Panels (A–F) show examples of the model fish school at
different depths (columns) in different conditions. The conditions are listed on the right side of each
row in the order of sun altitude (◦), cloud cover (%), wind speed (km/h), wave height (cm), and
secchi depth (m) along with the cluster that each sample is in. The black and gray stars show which
depth the dark and silver lures start to disappear at, respectively. Panel F only includes one depth
(0.5 m) as the lures were not visible at any other depth and to show how sun glitter across the frame
impacts looks similar to the silver lures. Note the resolution of the imagery illustrates the detail
captured by the RPAS imagery at 15 m height. Note the different colors of the water are due to the
different environmental conditions during imagery acquisition.

Most RPAS studies recommend a larger range of wind speeds and wave heights
usually with a maximum threshold of 8–11 km/h and 0.5 m wave height. However, these
studies usually target marine megafauna or benthic habitat which are much larger than
forage fish [21–23,32]. The most conservative findings from [22] justify the relatively low
thresholds of glassy seas and 5 km/h, as the authors found that winds between 5 and
8 km/h may produce wind ripples. Note the distortions of the silver lures in Figure 5D
due to the wind ripples compared to the undistorted shape of the lures in panel C with
calm winds and glassy seas (and otherwise similar conditions).
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Sun altitude was the second most important environmental variable for silver lures
(lure B, C, D) visibility. The sun angle altitude was negatively correlated with visibility of
lures B, C, and D at 1.5 and 2.0 m depth (Table 7, −0.39 > ρs > −0.19), meaning that the
higher the sun altitude (i.e., close to nadir), the lower the ability to identify silver lures.
The optimal range for sun altitudes between 20◦ and 40◦ balances the need for adequate
solar irradiance to illuminate forage fish targets and avoid sun glint on the surface. Solar
altitude is important, as a minimum amount of solar irradiance is required to adequately
illuminate targets for visual identification [22,31,43] associated with the light attenuation
properties of the water constituents, the characteristics of the target (e.g., color, size, depth
in the water column), and the contrast between the target and the background [33]. Higher
solar altitudes will deliver more solar irradiance. However, at these angles sun glint may
happen preventing optimal visualization of subsurface features [33]. These suboptimal
sun glint conditions are a result of sun light interacting with ripples and waves to cause
an effect called “sun glitter” (Figure 5F) [5,19,33]. Sun glitter is known to cause errors in
classification of subsurface features [30] and should be avoided in RPAS forage fish surveys
as it is a source of false-positive detection errors.

Considering the sun glitter constraint, the minimum recommended sun altitude of
20◦ reflects the negative correlation between sun altitude and lures B, C, and D, the high
visibility of lures B, C, and D in clusters that had low minimum sun altitudes, and results in
the literature. Firstly, lures B, C and D visibility was negatively correlated with sun altitude
at 1.5 and 2.0 m depth (Table 7). Secondly, there was no reduced lure B, C, or D visibility
in clusters with low altitudes of 8◦ and 10◦ (Cluster 3, 4, and 5 in Table 6 and Figure 3).
Lastly, minimum solar altitudes seen in the literature are generally in a range of 25–30◦.
However, some research suggested that lower altitudes may provide adequate illumina-
tion [22,28,31,32]. Authors from [28] found that the minimum 30◦ angle recommended for
piloted aerial benthic habitat surveys from [32] offered more than sufficient light to illumi-
nate benthic eelgrass vegetation. Additionally, [22] detected eelgrass with high confidence
down to the lowest sun altitude sampled of 6.5◦. They thought that low altitude RPAS
flights may have lower minimum sun angle requirements because the sensor is closer to the
target than to the pilot in higher altitude piloted aircraft surveys [22]. The results from [33]
that found a significant decline in solar irradiance below 20–25◦ supported the minimum
20◦ threshold.

The maximum recommended solar altitude of 40◦ is based on the reduced visibility of
lures B, C, and D in the clusters with the highest sun angles (Clusters 1 and 2 in Figure 3)
and the consistent negative correlation between sun altitude and silver lure visibility at
1.5 m and 2.0 m depth (Table 7). Given the glassy sea surface that is recommended for forage
fish surveys (Table 8), the threshold of 40◦ should avoid sun glint for cameras with the
common 94◦ field of view and a nadir sensor angle [32,33]. Sun glint was never observed
on the water’s surface directly above the model fish school (i.e., blocked the model fish
school from imagery viewer) during glassy sea surface conditions. However, sun glint
was observed near at the edge of imagery frames recorded in glassy seas conditions with
sun altitudes above 43◦. While there was no sun glint directly blocked visualization of
the model fish school in any video sample (Figure 5E), glint was observed at the edges of
the imagery with glassy conditions at angles above 43◦. Upper thresholds found in the
literature were either 40◦ or 45◦ for the same rationale of avoiding sun glint [4,22,28,30–32].

Secchi depth was shown to be somewhat important to lures A, C, and D seen in the
weak positive correlations at 1.0, 1.5, and 2.0 m depths (Table 7) and the reduced visibility
of lures B, C, and D at 2.0 m in the clusters with the shallowest secchi depths (Clusters 1
and 2 in Figure 3 and Table 6). The negative relationships between secchi depth and lure
visibility (Table 7, 0.19 > ρs > 0.28) make sense as deeper secchi depths suggest less turbid
waters and increased ability to detect subsurface targets. Secchi depth likely did not show
stronger relationships with lure visibility because the shallowest secchi depth recorded was
at least 2.4 m deeper than the model fish school and the samples did not capture a wide
range of secchi depth conditions (Table 4).
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Secchi depth acts as a proxy for turbidity, which controls light attenuation in the water
column and results in less light available to illuminate deeper targets and can be a large
contributor to availability errors in aerial marine surveys [24,25,53–55]. Light is absorbed
and scattered by particulate matter in the water column, causing a gradual decrease in
available light and a gradient of diminishing visibility [33,56]. As such, it is difficult to
identify a meaningful secchi depth threshold for the practical application of RPAS to survey
forage fish as forage fish schools encountered in surveys will likely be at different depths
than tested in this experiment. However, our results suggest that a secchi depth no less
than 5 m should maximize lure visibility up to 2 m depth.

Lastly, cloud cover had the largest impact on the visibility of lure A. This importance
was shown by strong contribution of cloud cover and lure A visibility in the 1.0 m PCA
(Figure 4) and the strong negative correlation to lure A at 1.0 m and 1.5 m depths (Table 7;
−0.65 > ρs > −0.54). Additionally, the cluster analysis had the highest visibility of dark lure
counts in the only cluster with clear conditions (Cluster 3 in Figure 3 and Table 6). Clear
skies maximize solar irradiance available to illuminate subsurface targets and minimize
the negative effects that specular cloud reflectance can have on the surface [21,28,30,33,53].
This is well illustrated by the difference in lure A visibility in panels B and C in Figure 5.
Panel C has overcast conditions and lure A is difficult to see at 0.5 m, where as panel B has
similar conditions with the exception of clear skies, and lure A is difficult to detect at 1.5 m.
The results from the cluster analysis, PCA, and correlation agreed with the recommended
clear sky condition from the literature for marine aerial imagery surveys.

4.2. Lure Color, Size and Depth

The dark lure was less visible than the silver lures, and visibility decreased with size
within the three silver lures, and visibility decreased with depth (Table 5). Lure A was
less visible than lures B, C and D (Table 5) likely because lure A had lower contrast with
the standardized dark water column background. Contrast between the target and the
background in aerial imagery is an important factor impacting the detectability of tar-
gets [23,29,30,32,57,58]. Contrast in imagery is a function of the light available to illuminate
the targets at a given depth and the visual appearance of target and the background [29,33].
However, the type of background habitats encountered in RPAS forage fish surveys of
shallow nearshore habitats will provide varying degrees of contrast for each detection type.
For example, Shiner Perch (represented by the dark lure) detected in our RPAS forage fish
survey imagery was very obvious over light sand bottom types due to the high contrast
(Figure 6). In this research, these conditions are not considered given that the background
was always a deep water column.

Lure size had a negative relationship with visibility within the three silver lures (lures
B, C, and D; Table 5). This is likely an impact of the reduced ground sampling distance
(GSD) and the reduced visual ability to detect the small targets depth. The ability to detect
targets in imagery is highly dependent on the GSD (i.e., distance between two pixels’ centers
measured on the ground) [21]. Additionally, it was more difficult to visually identify the
smaller targets at deeper depths as the edges of the smallest lure were the first to blur into
the background and this was likely due to environmental factors affecting surface texture
that would alter the shape of the lures (Figure 5) and variables that would limit contrast
(turbidity, sun altitude, cloud cover). The effect of contrast and size is obvious from the
difference between the minimum secchi depth and the maximum lure depth. Lure B (largest
silver lure) disappeared at 1.5 m and 2 m in some conditions while the secchi depth was
always visible to at least 4.4 m (2.4 m deeper than the lures; Figure 5). Lastly, lure visibility
decreased with lure depth (Table 5). This is due to diminishing light levels available at
deeper depths to illuminate targets for correct identification as previously discussed.
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4.3. Practical Application and Future Directions

False negative detections caused by poor conditions are difficult to model or factor
into data, so targeting environmental conditions for RPAS forage fish surveys that will
minimize these errors is very important for accurate forage fish quantification [24,26,59,60].
The suboptimal conditions (Table 8) should be avoided, and if they cannot, they need to be
recorded during field imagery acquisition so potential sources of error in the type of forage
fish schools can be better understood [32].

Some of the environmental conditions such as sun angle and tides can be easily
predicted and therefore planned around. However, others cannot, thus requiring user
flexibility and local knowledge to optimize survey potential for forage fish. For example,
turbidity is not always predictable. However, usually it is greater after stormy events, on
rising tides, and during phytoplankton blooms, and during periods of significant freshwater
input in coastal areas [21,29,32]. Local knowledge of seasonal changes in water clarity
should be used to plan surveys [32]. Cloud cover and wind can somewhat be predicted
with short term (e.g., 3–5 days) local marine and weather predictions [32]. Field days in
Barkley Sound for example were planned to avoided July and August as these months are
known to have foggy mornings and a high probability of a phytoplankton bloom (Personal
Communication, Jennifer Yakimishyn, June 2020). Field days also targeted mornings which
are known to be less windy and ultimately less wavy in coastal areas in summer. Planning
forage fish surveys requires logistical flexibility so that conditions can be evaluated on each
planned field day and adapted or rescheduled if needed [32].

In addition to environmental conditions, planning of RPAS surveys should also con-
sider the seasonal timing of forage fish use of nearshore areas and their depth in the water
column based on specific species life histories. In this study we found that visibility is
positively related to fish size and negatively related to their depth. As such, RPAS surveys
should be used during months when forage fish are largest and most visible to the RPAS
near the sea surface. For example, RPAS surveys targeting Sand Lance should occur in late
summer and early fall when the young-of-the-year are larger than during the spring and
they spend more time foraging in large schools in the upper water column before they burry
in subtidal sand for winter [36,61]. An important consideration is evaluation of detection
of false negatives caused by poor conditions. These are difficult to model or factor into
our dataset, so targeting environmental conditions for RPAS forage fish surveys that will
minimize these errors is very important for accurate forage fish quantification [24,59,60].



Drones 2022, 6, 426 18 of 21

The differences between the lures used in this experiment and forage fish encountered
in RPAS surveys should be considered in the practical application of these results. The
factors that will add complexity to detecting forage fish in RPAS imagery will likely include
the unknown locations of forage fish schools to imagery analyst and the effect of moving
targets. Forage fish schools in RPAS imagery will likely be harder to detect than the model
fish school because the imagery analyst will not know where the forage fish schools are, in
contrast with the model fish school and fish lures used in this experiment. Additionally,
forage fish are moving targets in contrast with the stationary lures used here. Movement
will likely aid in their visual detection as movement should help differentiate forage fish
from stationary benthic background features in imagery. This rationale is based on the
recommendations for video imagery to capture movement in the literature [1,23,43] and
the 2020 test surveys where forage fish movement captured in RPAS video imagery was
necessary to detect many fish schools, particularly those identified with fish flash detections.

Lastly, applying and testing the recommendations for optimal conditions on RPAS
forage fish surveys may help develop correction factors for false negative errors in order
to make forage fish population estimates from RPAS surveys. There is a growing body of
literature that aims to understand availability and perceptions errors with a goal to make
population estimates from aerial surveys by estimating correction factors [23–26,62]. In this
study, optimal conditions are recommended to minimize the availability error for forage
fish caused by poor conditions of cloud cover, sun altitude, wind speed, wave height, and
turbidity. However, understanding additional variables that will influence availability and
perception errors and be present in RPAS forage fish surveys is needed before correction
factors can be made to make forage fish population estimates from RPAS surveys. Such
variables will likely include vertical distribution of forage fish in the water column, school
size, background type (and contrast as previously discussed), and fish behaviour [23–26,62].

5. Conclusions

Through our experiments at two coastal Vancouver Island nearshore locations, optimal
environmental conditions for detecting the fish lures in RPAS imagery were defined. As
the lures in this experiment were generalized based on forage fish color, size and counter-
shading, the results provide a guideline for optimal conditions for detecting forage fish in
RPAS surveys. Low surface winds, glassy seas, moderate sun angles, low turbidity and
clear skies allowed for the highest lure visibility and are the recommended environmental
conditions to ensure accurate forage fish surveys. However, further research is required
to field test these recommendations on specific forage fish species, and to further develop
protocols specific to RPAS surveys of forage fish. Forage fish visibility in RPAS forage
fish surveys will likely depend on additional site-specific variables such as differentiating
seabed substrate background types (e.g., eelgrass, light sand) and the contrast they provide
to forage fish water column detection and school metrics such as school density and size.
An additional consideration for further defining this protocol should note that forage fish
schools may occur and be visible at deeper depths than tested in this research, and could
be combined simultaneously with acoustic sampling methods. Overall, RPAS provides a
practical, non-invasive method to capture information on schooling forage fish species in
nearshore waters of coastal regions.
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