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Abstract: Timely and accurate prediction of crop yield prior to harvest is vital for precise agricultural
management. Unmanned aerial vehicles (UAVs) provide a fast and convenient approach to crop
yield prediction, but most existing crop yield models have rarely been tested across different years,
cultivars and sensors. This has limited the ability of these yield models to be transferred to other
years or regions or to be potentially used with data from other sensors. In this study, UAV-based
multispectral imagery was used to predict rice grain yield at the booting and filling stages from four
field experiments, involving three years, two rice cultivars, and two UAV sensors. Reflectance and
texture features were extracted from the UAV imagery, and vegetation indices (VIs) and normalized
difference texture indices (NDTIs) were computed. The models were independently validated to
test the stability and transferability across years, rice cultivars, and sensors. The results showed that
the red edge normalized difference texture index (RENDTI) was superior to other texture indices
and vegetation indices for model regression with grain yield in most cases. However, the green
normalized difference texture index (GNDTI) achieved the highest prediction accuracy in model
validation across rice cultivars and sensors. The yield prediction model of Japonica rice achieved
stronger transferability to Indica rice with root mean square error (RMSE), bias, and relative RMSE
(RRMSE) of 1.16 t/ha, 0.08, and 11.04%, respectively. Model transferability was improved significantly
between different sensors after band correction with a decrease of 15.05–59.99% in RRMSE. Random
forest (RF) was found to be a good solution to improve the model transferability across different
years and cultivars and obtained the highest prediction accuracy with RMSE, bias, and RRMSE of
0.94 t/ha, −0.21, and 9.37%, respectively. This study provides a valuable reference for crop yield
prediction when existing models are transferred across different years, cultivars and sensors.

Keywords: grain yield; UAV imagery; texture; spectral; model transferability

1. Introduction

In the 21st century, one of the greatest challenges is to improve crop production to meet
the increasing demand for cereals with the rising population. Rice (Oryza sativa L.) is one of
the most important cereal crops, feeding the largest population in the world [1]. Accurate
and timely prediction of rice grain yield is crucial for global food security and in-season
crop management. Traditionally, crop yield prediction depends on field investigations,
which are costly and labor-consuming with poor timeliness.

Remote sensing techniques have been widely applied in precision agriculture, es-
pecially for biomass [2,3], LAI [4,5], N/chlorophyll content estimation [6,7], and disease
detection [8,9]. Furthermore, crop yield prediction with remote sensing techniques also
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attracted much attention in recent decades. The majority of studies about crop yield predic-
tion were based on ground-based and satellite remote sensing platforms. Due to the large
coverage, satellite images were widely adopted in crop yield prediction [10,11], but the
limited spatial and temporal resolution limits the capability of satellite images in southern
China with fracted farmland. Otherwise, portable ground-based sensors (e.g., GreenSeeker,
Crop Circle, ASD hyperspectral sensors) were convenient and easy to operate for crop yield
prediction in a small region [12,13]. In terms of efficiency and prediction accuracy, both
satellite images and ground-based remote sensing sensors might not be optimal for crop
yield prediction in smallholder fields.

The emergence of unmanned aerial vehicles (UAVs) has provided the convenience to
increase monitoring frequency and spatio-temporal resolution at low costs. To date, UAV
has been widely used to estimate various structural, biophysical, and biochemical parame-
ters in precision agriculture [14], such as plant height [15,16], LAI [17,18], biomass [19,20],
N/chlorophyll content [21–23] and yield [24–26]. Numerous studies have adopted various
UAV imagery to predict crop yield with different methodologies (Table 1), with the most
commonly used being multispectral imagery. As sensor technology has rapidly developed,
numerous multispectral cameras have appeared in the market that can be loaded on a UAV
(Table 1). Parrot sequoia, one of the most widely used sensors, is equipped with four core
spectral bands (550, 660, 735, and 790 nm), and can be loaded on multi-rotor and fixed-wing
UAVs [27–30]. Another popular multispectral camera is RedEdge developed by MicaSense,
which has six spectral bands (475, 560, 668, 717, and 842 nm) [28,31,32]. Other multispectral
cameras have also been used in crop yield prediction, such as the Mini-MCA 6/12 and
MQ022MG-CM. Deng et al. [33] compared two different UAV-based multispectral cameras
(Mini-MCA6 and Sequoia) in data acquisition, processing, and application. They found that
the narrowband Mini-MCA6 camera could produce more accurate reflectance values than
the broadband Sequoia camera, but the accuracy of the VIs was not completely dependent
on the accuracy of the reflectance. Ramos et al. [28] adopted two multispectral sensors
(Sequoia and RedEdge) to predict maize yield with random forest, but the difference
between these two sensors on yield prediction remained unclear. Due to the rapid develop-
ment of sensor technology, UAV sensors update year by year. The main problem is that it is
difficult to transfer a prediction model developed for one sensor to a dataset collected by
another sensor since different sensors had different spectral bands, bandwidth, field of view,
and processing procedures. Thus, in this study, we employed the hyperspectral reflectance
from the rice canopy to simulate the sensor bands, and the relationships between the same
bands of different sensors were used for band correction. To the best of our knowledge,
this is the first time that model transfer with a model-updating strategy was proposed to
validate the robustness of the prediction model of grain yield in different UAV sensors.

Table 1. Summary of crop yield prediction studies with UAV imagery in the last five years.

Reference Crop UAV Sensor Method Accuracy Validation

[32] Wheat RedEdge-MX,
Zenmuse XT2 Ensemble learning R2 = 0.692,

RMSE = 0.916 t ha−1,
Cross-validation

[34] Rice Rikola Multiple linear regression RMSE = 0.521 Mg ha−1,
MAPE = 6.63%

Independent validation

[35] Rice Mini-MCA12 Neural network regression
R2 = 0.57,
RMSE = 47.895 g m−2,
RRMSE = 5.3%

Cross-validation

[13] Rice MQ022MG-CM,
Sony NEX-7 Random forest R2 = 0.83,

RRMSE = 2.75%
Cross-validation

[27] Corn Parrot Sequoia Exponential regression R2 = 0.63 ×

[28] Maize Parrot Sequoia,
RedEdge-M Random forest r = 0.78,

MAE = 853.11 kg ha−1 Cross-validation

[24] Wheat, Barley Parrot Sequoia 3D- Convolutional neural
network

MAE = 218.9 kg ha−1,
MAPE = 5.51%

Cross-validation
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Table 1. Cont.

Reference Crop UAV Sensor Method Accuracy Validation

[36] Corn Parrot Sequoia,
DJI RGB Neural network model

r = 0.96,
MAE = 0.209 kg ha−1,
RMSE = 0.449 kg ha−1

Independent validation

[37] Wheat Airphen Random forest R2 = 0.78,
RRMSE = 10.3%

Independent validation

[29] Soybean
Mapir Survey-2,
Parrot Sequoia,
FLIR R 640

Deep neural network
R2 = 0.72,
RMSE = 478.9 kg ha−1,
RRMSE = 15.9%

Independent validation

[38] Winter wheat UHD 185 Partial least-squares
regression

R2 = 0.77,
RMSE = 648.90 kg ha−1,
NRMSE = 10.63%

Independent validation

[39] Rice Rikola Multiple linear regression RMSE = 215.08 kg ha−1,
RRMSE = 3%

Cross-validation

[40] Soybean UHD 185 Linear regression R2 = 0.67,
RMSE = 0.142 t ha−1 Cross-validation

[30] Wheat, Barley Parrot Sequoia Convolutional neural
network

MAE = 484.3 kg ha−1,
MAPE = 8.8%

Cross-validation

[41] Rice Mini-MCA6 Linear regression R2 = 0.593,
RMSE = 0.268 kg

Cross-validation

[42] Wheat Resonon Pika-L Partial least-squares
regression

R2 = 0.88,
RMSE = 4.18 dt ha−1 Cross-validation

[43] Wheat Sony ILCE-6000 Stepwise regression r = 0.69,
RSMEP = 0.06 t ha−1 Cross-validation

[26] Rice Mini-MCA6,
Cannon 5D Multiple linear regression R2 = 0.76 ×

MAE = Mean Absolute Error, MAPE = Mean Absolute Percentage Error. × denotes no validation in the study.

For crop yield prediction, most studies used spectral vegetation indices (VIs) or color
indices derived from UAV imagery [26,43]. The problem is that the majority of VIs are
easily saturated at high biomass levels, resulting in low accuracy of crop yield prediction
at late vegetative stages (e.g., booting stage). In addition, the heading and filling stages
were also taken as the optimal period for crop yield estimation [25,32,34], because these
two stages were important for crop yield formation. However, the emergence of panicles
at the heading and filling stages impeded the sensibility of VIs on yield prediction [26,41].
It is a great challenge to reduce the adverse influence of panicles; thus, we employed
texture information to improve the prediction accuracy of crop yield. Unlike spectral
reflectance, texture in the context of image analysis is the spatial variability of image tones
and describes the relationship between two elements of surface cover [44]. Therefore,
texture contains structural information, as the variation in texture is related to changes
in the spatial distribution of vegetation [45]. Zheng et al. [20] proposed two texture
indices to estimate rice aboveground biomass and demonstrated they outperformed other
VIs throughout the whole growing season [8]. Due to the close relationship between
aboveground biomass and yield, texture analysis might have great potential in crop yield
prediction. Furthermore, the canopy structure varied significantly from the vegetative stage
to the reproductive stage due to the emergence of panicles, which might be well captured
by image texture. Therefore, it is worth exploring the capability of image texture in crop
yield prediction.

Although various models have been developed for the estimation of crop yield using
UAV-based image data such as multivariate linear regression and statistical models [26],
they are not as robust as data-driven empirical models, varying with years, cultivars, or
climatic zones. Therefore, researchers have been occupied with the problem of how to
improve model transferability between different years, crop cultivars, and climatic zones.
Duan et al. [35] found that single-stage VIs weakly correlated with the grain yield of
different rice cultivars, which indicated that cultivar had an influence on the relationship
between VIs and grain yield. In addition, when the yield prediction model was applied in
different climatic zones, the difference in rice growth duration needed to be considered.
Consequently, verification and calibration of yield prediction models between different
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years are not only useful for understanding the productive potential among different
years but also helpful in developing long-term yield forecasting strategies. Compared to
other prediction models, machine-learning methods provide nonlinear and hierarchical
relationships between multiple variables, which might be a good solution to deal with a
dataset involving different years, cultivars, and climatic zones. Random forest (RF) is one
of the most popular machine-learning methods, having the advantages of insensitivity
to noise characteristics and resistance to overfitting [46]. Therefore, the purposes of this
study are: (1) to explore the potential of texture information of UAV multispectral images
in rice yield prediction; (2) to investigate the feasibility of band correction with canopy
hyperspectral reflectance to improve the transferability of prediction models from different
sensors; and (3) to validate the robustness of RF in yield prediction with a dataset from
different years and cultivars.

This paper is organized as follows: The materials and methods section describes the
multispectral imagery collection and processing, grain yield collection, and model calibra-
tion and validation. The results section shows our findings, including the performance
of different VIs and NDTIs on yield prediction across different years, rice cultivars, and
sensors. In the discussion section, we discuss the advantage of texture indices on yield
prediction, solutions to improve the model transferability across different years, rice culti-
vars, and sensors, and the implication and limitations of this study. Finally, the conclusion
describes the main findings and achievements of this study.

2. Materials and Methods
2.1. Experimental Design

Four experiments were conducted in the Rugao (120◦45′ E, 32◦16′ N) and Xinghua
(119◦53′ E, 33◦05′ N) districts of Jiangsu province, China from 2015–2018 (Table 2). The
annual average temperature, number of precipitation days, and precipitation for Rugao and
Xinghua were 15.6 ◦C and 15 ◦C, 115.1 and 124.3, and 1002.4 and 1040.4 mm, respectively.
All four experiments involved different rice (Oryza sativa L.) cultivars, nitrogen application
rates, and planting densities. In-season weed and pest controls were practiced according to
regional recommendations.

Table 2. Synthesis of experimental design and data acquisition calendar.

Exp Year Site Rice Cultivar N Rate
(kg/ha)

Density
(cm)

UAV Flight
Date

Sampling
Date Sample Size

1 2015 Rugao Wuyunjing24 (Japonica)
Yliangyou1 (Indica)

0, 100,
200, 300

30 × 15 14 August (Booting) 15 August 36
50 × 15 9 September (Filling) 10 September 36

2 2016 Rugao Wuyunjing24 (Japonica)
Yliangyou1 (Indica) 0, 150, 300 30 × 15 14 August (Booting) 14 August 36

50 × 15 8 September (Filling) 8 September 36

3 2018 Rugao Wuyunjing27 (Japonica)
Liangyou728 (Indica) 100, 300 30 × 15

14 August (Booting) 14 August 48
4 September (Filling) 4 September 48

4 2018 Xinghua Nangeng9108 (Japonica)
Yongyou2640 (Indica)

0, 135,
270, 405 30 × 15

19 August (Booting) 19 August 48
11 September (Filling) 11 September 48

2.2. Yield Data Collection

Before harvesting, one 1 m × 1 m subplot was randomly selected in the non-sampling
area of each experimental plot. After harvesting, the rice grains were dehydrated under
sunlight and the final yield was determined (t/ha).

2.3. UAV, Sensor, and Image Acquisition

In Rugao, an eight-rotor UAV (Mikrokopter Inc., Moormerland, Germany) was used.
This UAV has a maximum payload capacity of 2.5 kg and a flight duration of 8–25 min, de-
pending on the battery and actual payload. A six-band multispectral camera (Mini-MCA6,
Tetracam, Chatsworth, CA, USA) was employed to acquire rice canopy images during
the UAV flights. This camera includes six individual image sensors with filters of center
wavelengths and full-width at half-maximum bandwidths of 490 ± 10 nm, 550 ± 10 nm,
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680 ± 10 nm, 720 ± 10 nm, 800 ± 10 nm, and 900 ± 20 nm. The speed of the UAV was set
at 1.0 m/s, and the camera view angle was set as vertically downward. Image acquisition
occurred every 3 s for the flight duration at 100 m above ground level, resulting in each
image having a ground spatial resolution of 5.4 cm per pixel. The UAV was flown over the
paddy field at the booting and filling stages during the three growing seasons (Table 2).
After each flight, only one image (covering all the plots) was selected for subsequent analy-
sis due to the small study area. Since each flight took about 10 min, the influence of the
solar zenith angle was not considered. Before the flight campaign, 25 ground control points
(GCPs) were evenly distributed in the study area, and the geographic coordinates were
obtained with an X900 GNSS receiver (Huace Inc., Beijing, China). The GCPs were used for
band registration and to geo-reference the UAV images from different growth stages.

In Xinghua, a six-rotor UAV system (DJI M600PRO, Shenzhen, China) equipped with
an Airphen multispectral camera (HI-PHEN, Avignon, France) was used to collect images
over the paddy field. The Airphen multispectral camera is equipped with six channels
of filter center at 450 nm, 530 nm, 570 nm, 675 nm, 730 nm, and 850 nm with a spectral
resolution of 10 nm. The focal length of the camera lens is 8 mm, and the view angle of
the camera was set as vertically downward. The images were obtained at a frequency of
1 Hz with 1280 × 960 pixels saved in TIFF format. The flight plan was kept constant across
the whole season and designed using the DJI GS PRO software package. The across-track
and along-track overlapping rates were both 90%. The flight speed and flight altitude were
3 m/s and 100 m (pixel size = 4.7 cm), respectively.

During the study, the ground-hyperspectral reflectance of the growing rice was mea-
sured by an ASD FieldSpec Pro spectrometer (Analytical Spectral Devices, Boulder, CO,
USA). The measurements were conducted immediately after the flight, and a standard
white calibration was performed before data acquisition for each plot. The bare fiber was
approximately 1 m vertically above the rice canopy during the test. Each plot was tested
with three points, three reflectance spectra were acquired at each point, and the average
value was taken as the spectral reflectance of the plot. Since the two UAV sensors had
different spectral bands, the correlation was between the same bands from the two sen-
sors (Figure 1). All the corresponding bands from the two sensors were highly correlated
(R2 ≥ 0.98), except for the red-edge band. The correlation between different bands was
used for band correction of these two cameras.
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Figure 1. Relationship between spectral bands from different sensors at the booting (a) and filling
(b) stages.

2.4. Calculation of VIs and Texture Indices

After the flights, the imagery from the MCA camera was proceed as described in [47],
including noise reduction, lens vignetting correction, removal of lens distortion, band regis-
tration, and radiometric correction. All the procedures were conducted in the IDL/ENVI
environment (Exelis Visual Information Solutions, Boulder, CO, USA). For the imagery
from the Airphen camera, the workflow of imagery processing followed [48], including
image, geometric correction, and radiometric calibration. The image mosaicking was con-
ducted with Agisoft Photoscan Professional software (1.4.5 version, Agisoft LLC, Saint
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Petersburg, Russia). The reflectance of each plot was extracted through a region of interest
(ROI) tool over the non-sampling area of the plot. The mean reflectance derived from the
ROI represents the reflectance of the corresponding plot.

A suite of VIs was calculated from the multispectral images to examine their cor-
relations with rice grain yield (Table 3). In addition, the normalized difference texture
index (NDTI) proposed by [8] was calculated by texture metrics from different spectral
bands. Zheng et al., (2019) reported that the red-edge normalized difference texture index
(RENDTI) and green normalized difference texture index (GNDTI) had strong capabilities
for estimating rice aboveground biomass [8]. Due to the close correlation between biomass
and grain yield, both RENDTI and GNDTI were employed to predict rice grain yield.

Table 3. Vegetation indices and texture indices used in this study.

Vegetation Index Formulation Reference

Visible atmospherically resistant index (VARI) VARI = (R550 − R680)/(R550 + R680 − R490) [49]
Normalized difference vegetation index (NDVI) NDVI = (R800 − R680)/(R800 + R680) [50]

Optimized soil-adjusted vegetation index (OSAVI) OSAVI = (1 + 0.16)(R800 − R670)/(R800 + R670 + 0.16) [51]
Normalized difference red edge index (NDRE) NDRE = (R800 − R720)/(R800 + R720) [52]

Red edge normalized difference texture index (RENDTI) RENDTI = (MEA800 −MEA720)/(MEA800 + MEA720) [20]
Green normalized difference texture index (GNDTI) GNDTI = (MEA800 −MEA550)/(MEA800 + MEA550) [20]

2.5. Meteorological Data Collection and Analysis

Meteorological data were acquired from the China Meteorological Administration
(http://data.cma.cn/ accessed on 1 Octomber 2021) including daily average temperature
(Temdaily) (◦C), daily maximum temperature (◦C), daily minimum temperature (◦C), daily
precipitation (mm), and hours of sunshine (hours). The temperature data were divided
into Temdaily and accumulative growing degree day (AGDD), which represents the sum
of growing degree days (GDD = Temdaily − 12.5 ◦C) from transplanting to the day of
destructive sampling.

Figure 2 shows the meteorological factors during the rice growing seasons in different
years. The lowest monthly average temperature is Exp. 1, and the highest is Exp. 4,
especially for the critical growth stages in July and August. The most precipitation was
in Exp. 2, and the least in Exp. 3 in July, September, and October. Furthermore, there was
more sunshine in Exp. 3 than in other years, especially in July and August.

2.6. Model Calibration and Validation

A total of 168 samples from the four experiments involved two climatic zones, three
years, two rice cultivars, two growth stages, and two UAV sensors. The processing of data
was conducted in Matlab R2021a software (The MathWorks, Inc., Natick, MA, USA). Simple
linear regression was employed to fit the relationships between rice grain yield and the
remote sensing variables (VIs and texture indices) derived from UAV multispectral images.
The samples from the four experiments were separated into different categories for model
calibration and validation in consideration of years, rice cultivars, and sensors. In addition,
the RF regression algorithm was employed to predict yield with the whole dataset, which
was randomly partitioned into training (75%) and validation (25%) sets. The predictive
capability of those models was assessed by the Root Mean Square Error (RMSE), bias, and
Relative Root Mean Square Error (RRMSE).

http://data.cma.cn/
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3. Results
3.1. Variations of Rice Grain Yield and Meteorological Factors

Table 4 shows the descriptive statistics of grain yield in this study. The highest yield
was obtained by Indica rice in Exp. 1 with a value of 14.33 t/ha, and the lowest yield was
obtained by Japonica rice in Exp. 2 with a value of 4.6 t/ha. In all four experiments, the
grain yield of Indica rice was higher than that of Japonica rice, and the yield variation of
Japonica rice was higher than that of Indica rice with a higher C.V. The yield of Japonica rice
in Exp. 2 had the maximum fluctuation of 4.6–12.4 t/ha with a C.V of 27.88%. However,
the yield of Indica rice in Exp. 3 had the minimum fluctuation of 9.19–11.5 t/ha with a C.V
of 6.31%.

Table 4. Descriptive statistics of grain yield in this study.

Exp Cultivar Min Max Mean SD C.V

1 Japonica 4.96 13.59 9.196 2.406 26.16%
Indica 6.34 14.33 10.97 2.297 20.94%

2 Japonica 4.6 12.4 8.611 2.401 27.88%
Indica 7.4 12.6 10.44 1.773 16.98%

3 Japonica 4.98 10.66 7.753 1.832 23.63%
Indica 9.19 11.5 10.13 0.639 6.31%

4 Japonica 7.31 13.02 10.24 1.687 16.47%
Indica 7.06 12.51 10.69 1.553 14.53%
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3.2. Relationships of VIs and Texture Indices with Rice Grain Yield

Figure 3 shows the relationships between VIs, texture indices, and rice grain yield. The
color index (VARI) was weakly related to grain yield in most cases. At the booting stage,
RENDTI was superior to other VIs in rice yield prediction with R2 of 0.68–0.83 for different
years and different sensors. GNDTI outperformed other VIs for different rice cultivars.
At the filling stage, NDRE was found to be the optimal index for rice yield prediction
for different years. For different rice cultivars and sensors, RENDTI showed the highest
correlation (R2 = 0.57–0.71) with rice yield.
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In consideration of years, rice cultivars, and sensors, VIs and texture indices obtained
a higher correlation with rice yield in 2016RG, and the highest correlation (R2 = 0.83) was
obtained by RENDTI at the booting stage. An obvious saturation phenomenon was found
at the filling stage for NDVI (Figure 4). The yield of Japonica rice showed a higher correlation
with VIs and texture indices than Indica rice in most cases (Figure 5), and GNDVI obtained
the highest correlation (R2 = 0.73) with the yield at the booting stage. For different sensors,
VIs and texture indices from the Airphen exhibited a stronger correlation with yield than
from the MCA in most cases, and the highest correlation (R2 = 0.76) was obtained by
RENDTI at the booting stage. In addition, the index values of the MCA were higher than
those of the Airphen (Figure 6).
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3.3. Validation of Yield Prediction Models
3.3.1. Model Validation across Different Years

Table 5 shows the validation results of the prediction models across different years.
When regression models of 2016 were applied to 2015, RENDTI exhibited the highest
prediction accuracy at the booting stage with RMSE, bias, and RRMSE of 1.23 t/ha, 0.42,
and 12.25%, respectively. However, the model of 2016 overestimated the yield of 2015 at
a low level and underestimated it at a high level (Figure 7a). In addition, models at the
booting stage obtained higher prediction accuracy than that at the filling stage. However,
when the models of 2016 were applied to 2018, NDRE outperformed other indices, and
obtained the highest prediction accuracy at the filling stage with RMSE, bias, and RRMSE
of 1.19 t/ha, −0.34, and 13.32%, respectively. The model of 2016 slightly overestimated the
yield of 2018, and two clusters were observed (Figure 7b). Moreover, models at the filling
stage obtained higher prediction accuracy than that at the booting stage.

Table 5. Validation results of rice grain yield prediction across different years.

Stage Index
2016 to 2015 2016 to 2018

RMSE Bias RRMSE RMSE Bias RRMSE

Booting VARI 2.52 1.81 24.97% 1.63 0.15 18.21%
NDVI 1.81 1.28 17.96% 1.67 −0.39 18.62%
OSAVI 1.75 1.22 17.40% 2.72 −1.59 30.36%
NDRE 1.36 0.74 13.53% 2.26 −1.60 25.31%

RENDTI 1.23 0.42 12.25% 2.09 −1.78 23.38%
GNDTI 1.25 −0.27 12.35% 1.34 −0.78 14.97%

Filling VARI 4.66 −3.95 46.23% 3.52 −3.14 39.40%
NDVI 3.03 −2.38 30.03% 1.30 −0.16 14.50%
OSAVI 1.59 0.72 15.74% 1.38 −0.21 15.43%
NDRE 1.85 −1.25 18.36% 1.19 −0.34 13.32%

RENDTI 1.43 −0.25 14.16% 1.24 −0.36 13.86%
GNDTI 5.95 −5.65 59.01% 2.56 −2.04 28.62%

Note: The numbers in bold denote the highest accuracy in each column.
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Figure 7. Validation results of rice yield prediction across different years ((a): 2016 to 2015;
(b): 2015 to 2016).

3.3.2. Model Validation across Different Rice Cultivars

Table 6 shows the validation results of the prediction models across different rice
cultivars. When the models of Indica rice were applied to Japonica rice, GNDTI exhibited the
highest prediction accuracy at the booting stage with RMSE, bias, and RRMSE of 1.39 t/ha,
−0.60, and 16.46%, respectively. However, models in Indica overestimated yield in Japonica
at a low level and underestimated at a high level (Figure 8a). In addition, models at the
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booting stage obtained higher prediction accuracy than that at the filling stage. When
the models of Japonica rice were applied to Indica rice, similar results were found, but the
validation performance was superior to the former. GNDTI obtained the highest prediction
accuracy at the booting stage with RMSE, bias, and RRMSE of 1.16 t/ha, 0.08, and 11.04%,
respectively. The estimated yield is distributed evenly around the 1:1 line (Figure 8b).

Table 6. Validation results of rice grain yield prediction across different rice cultivars.

Stage Index
Indica to Japonica Japonica to Indica

RMSE Bias RRMSE RMSE Bias RRMSE

Booting VARI 2.26 −0.93 26.75% 1.84 1.30 17.55%
NDVI 1.72 −0.15 20.35% 1.28 0.58 12.20%
OSAVI 2.10 −0.84 24.83% 1.55 0.71 14.76%
NDRE 2.02 −1.04 23.94% 1.72 −0.12 16.46%

RENDTI 1.93 −1.08 22.87% 1.64 0.14 15.61%
GNDTI 1.39 −0.60 16.46% 1.16 0.08 11.04%

Filling VARI 2.65 −1.73 31.39% 2.21 1.58 21.10%
NDVI 2.26 −1.52 26.74% 1.99 1.41 18.97%
OSAVI 1.59 0.32 18.83% 1.18 −0.29 11.22%
NDRE 1.85 −1.36 21.97% 1.70 1.37 16.23%

RENDTI 1.87 −1.44 22.21% 1.74 1.47 16.56%
GNDTI 1.81 0.76 21.49% 2.24 1.81 21.43%

Note: The numbers in bold denote the highest accuracy in each column.
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Figure 8. Validation results of rice yield prediction across different rice cultivars ((a): Indica to Japonica;
(b): Japonica to Indica).

3.3.3. Model Validation across Different Sensors

Table 7 shows the validation results of the prediction models across different sensors.
When MCA models were applied to Airphen, GNDTI exhibited the highest prediction
accuracy of rice grain yield at the booting stage with RMSE, bias, and RRMSE of 1.69 t/ha,
1.49, and 16.13%, respectively. However, the MCA models severely underestimated yield
in Airphen (Figure 9a). In addition, models at the booting stage obtained higher prediction
accuracy than that at the filling stage. When Airphen models were applied to MCA, similar
results were found, but the validation performance was worse than the former. GNDTI
obtained the highest prediction accuracy at the booting stage with RMSE, bias, and RRMSE
of 1.82 t/ha, −1.49, and 20.40%, respectively. However, the Airphen models severely
overestimated yield in MCA (Figure 9b). After band correction in red-edge bands, the
prediction accuracy was improved significantly (Table 8), and the highest accuracy (RMSE
= 1.29 t/ha, bias = 0.88, RRMSE = 12.37%) was obtained by RENDTI at the filling stage
when the model was transferred from MCA to Airphen.
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Table 7. Validation of rice grain yield prediction across sensors.

Stage Index
MCA to Airphen Airphen to MCA

RMSE Bias RRMSE RMSE Bias RRMSE

Booting VARI 2.56 2.18 24.44% 2.67 −2.12 29.82%
NDVI 2.10 1.86 20.10% 2.33 −1.90 26.07%
OSAVI 2.90 2.64 27.74% 3.88 −3.50 43.33%
NDRE 3.87 3.74 36.97% 5.66 −5.44 63.32%

RENDTI 2.60 2.44 24.83% 3.06 −2.82 34.26%
GNDTI 1.69 1.49 16.13% 1.82 −1.49 20.40%

Filling VARI 5.90 5.69 56.37% 4.92 −4.67 55.05%
NDVI 3.08 2.89 29.41% 3.01 −2.72 33.62%
OSAVI 5.11 4.98 48.83% 5.17 −5.02 57.83%
NDRE 4.28 4.18 40.91% 4.18 −4.02 46.70%

RENDTI 3.03 2.89 28.94% 3.11 −2.88 34.77%
GNDTI 3.50 3.34 33.41% 3.43 −3.12 38.30%

Note: The numbers in bold denote the highest accuracy in each column.
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(b): Airphen to MCA).

Table 8. Validation of rice grain yield prediction across sensors after band correction.

Stage Index
MCA Models Applied to Airphen Airphen Models Applied to MCA

RMSE Bias RRMSE RMSE Bias RRMSE

Booting NDRE 3.28 3.14 31.38% 2.26 −1.89 25.30%
RENDTI 1.70 1.47 16.23% 1.80 1.38 20.12%

Filling NDRE 2.60 2.40 24.82% 2.17 −1.80 24.29%
RENDTI 1.29 0.88 12.37% 1.36 −0.56 15.21%

3.3.4. Yield Prediction with Random Forest

Figure 10 shows the performance of RF models in rice yield prediction. The model
at the booting stage was superior to that at the filling stage with RMSE, bias, and RRMSE
of 0.94 t/ha, −0.21, and 9.37%, respectively. Obviously, the RF models outperformed the
linear models with VIs and NDTIs. From the relative importance analysis, GNDTI was
selected as the most important variable of the model at the booting stage, and RENDTI
ranked first among all variables of the model at the filling stage.



Drones 2022, 6, 423 13 of 19
Drones 2022, 6, 423 14 of 20 
 

 

Figure 10. The performance of random forest in grain yield prediction at the booting (a) and filling 

(c) stages, and the relative importance of input variables (b,d). AccPRE, AccSSH, and AGDD denote 

accumulative precipitation, accumulative hours of sunshine, and accumulative growing degree day. 

4. Discussion 

4.1. Advantages of Texture Information on Predicting Rice Grain Yield 

Most previous studies used spectral information such as VIs for crop yield prediction 

[25,26,29,35]. In this study, various VIs were employed to predict rice grain yield, and 

NDRE was the optimal VI for rice grain yield prediction, which was constant with the 

findings of [26,39]. This is because the red-edge bands are sensitive to changes in pigment 

content, while the near-infrared bands are sensitive to canopy structure variations, and 

can indicate the health status of leaves [53]. However, compared to the optimal VI, GNDTI 

exhibited a higher accuracy for rice grain yield prediction, which indicated the advantage 

of texture information in grain yield prediction. Compared with NDRE, GNDTI showed 

a broader variation at the filling stage, which might solve the saturation problem of spec-

tral indices at high biomass levels, and keep the sensitivity to the yield variations in the 

reproductive growth stages. In addition, texture features could be used to provide struc-

tural information when the strength of the relationship between spectral information and 

yield diminished [20,45]. Similarly, both Yue et al. [54] and Zheng et al. [20] found textural 

measures were superior to the spectral indices for crop biomass estimation. Furthermore, 

NDTIs could describe a higher variability of grain yield at the filling stage, because texture 

indices could enhance the canopy signals and minimize the adverse interference from soil 

background, sun angle, sensor view angle, and canopy geometry [45,55]. GNDTI and 

RENDTI ranked first in the RF model through relative importance analysis at the booting 

and filling stages, respectively. That further indicated that texture indices have great po-

tential in crop yield prediction. In addition, Wang et al. [34] found the combination of 

spectral and textural information could improve the prediction accuracy of grain yield in 

rice. Therefore, the fusion of spectral indices and texture indices will be explored to im-

prove the accuracy of crop yield prediction in the future.  

Figure 10. The performance of random forest in grain yield prediction at the booting (a) and filling
(c) stages, and the relative importance of input variables (b,d). AccPRE, AccSSH, and AGDD denote
accumulative precipitation, accumulative hours of sunshine, and accumulative growing degree day.

4. Discussion
4.1. Advantages of Texture Information on Predicting Rice Grain Yield

Most previous studies used spectral information such as VIs for crop yield predic-
tion [25,26,29,35]. In this study, various VIs were employed to predict rice grain yield, and
NDRE was the optimal VI for rice grain yield prediction, which was constant with the
findings of [26,39]. This is because the red-edge bands are sensitive to changes in pigment
content, while the near-infrared bands are sensitive to canopy structure variations, and
can indicate the health status of leaves [53]. However, compared to the optimal VI, GNDTI
exhibited a higher accuracy for rice grain yield prediction, which indicated the advantage
of texture information in grain yield prediction. Compared with NDRE, GNDTI showed a
broader variation at the filling stage, which might solve the saturation problem of spectral
indices at high biomass levels, and keep the sensitivity to the yield variations in the repro-
ductive growth stages. In addition, texture features could be used to provide structural
information when the strength of the relationship between spectral information and yield
diminished [20,45]. Similarly, both Yue et al. [54] and Zheng et al. [20] found textural
measures were superior to the spectral indices for crop biomass estimation. Furthermore,
NDTIs could describe a higher variability of grain yield at the filling stage, because texture
indices could enhance the canopy signals and minimize the adverse interference from
soil background, sun angle, sensor view angle, and canopy geometry [45,55]. GNDTI
and RENDTI ranked first in the RF model through relative importance analysis at the
booting and filling stages, respectively. That further indicated that texture indices have
great potential in crop yield prediction. In addition, Wang et al. [34] found the combination
of spectral and textural information could improve the prediction accuracy of grain yield
in rice. Therefore, the fusion of spectral indices and texture indices will be explored to
improve the accuracy of crop yield prediction in the future.
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4.2. Influence of Rice Cultivar and Year on Yield Prediction

Most previous studies predicted crop yield using datasets from multiple years and
cultivars, and most used cross-validation to test the models [24,28,32,40]; thus, the influence
of year and cultivar on prediction models remained unclear. Duan et al. [35] reported that
spectral indices showed a weak correlation with grain yield in different rice cultivars.
Similarly, we found cultivar had an influence on the relationship between VIs and grain
yield, and the prediction accuracy of Japonica rice was higher than that of Indica rice in most
cases (Table 4). This can be explained by the following three reasons. First, Indica rice had
higher yield potential and stronger tillering ability than Japonica rice, which led to higher
canopy coverage with Indica rice than Japonica rice (Figure 11), and made the spectrum
of Indica rice more easily saturated [56], thus reducing the accuracy of yield prediction.
Second, the panicle type of Japonica rice was erect, while that of Indica rice was scattered.
The proportion of panicles of Indica rice in the filling stage was larger than that of Japonica
rice (Figure 11e,f), which made the canopy more complex and the spectral signal of leaves
weaker, which was not conducive to yield prediction [26]. Third, the yield variation of
Japonica rice was larger than Indica rice, which made the prediction model more applicable.
Therefore, the prediction models with simple linear regression had weak transferability
across different rice cultivars.
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Rice yield varied from year to year due to the differences in climate, nitrogen appli-
cation levels, and rice cultivars (Table 4), which was consistent with [25,26,35]. The yield
prediction models in different years showed a significant difference, and the models in
2016 achieved the highest accuracy (Figure 3a,b). That could be explained by the fact that
the meteorological data varied in different years, and had an influence on the final grain
yield [35]. The average temperature of 2015–2018 was close, but the precipitation and hours
of sunshine varied significantly. The accumulative precipitation was highest in July of 2016,
and lowest in August of 2016 among the three years. The accumulative hours of sunshine
in July and August of 2016 were the highest in the three years. Abundant precipitation and
sunshine were of benefit to the vegetative growth of rice plants, but too much precipitation
and little sunshine impeded the grain filling in the reproductive stage, resulting in low grain
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yield. Although the correlation between remote sensing indicators and yield was highest
in 2016, the transferability of models was weak between different years. Wan et al. [25]
improved the robustness of their prediction model using a model updating strategy, which
added some samplings from the testing dataset into the training dataset. However, RF
models showed stronger predictive ability in rice grain yield compared to the simple linear
regression method, especially when the meteorological data was added into the models [2].
That could be explained by the fact that the RF algorithm can efficiently handle big and
highly dimensional datasets [57]. Therefore, the transferability of yield prediction models
could be improved by the use of the RF algorithm and fusing multi-source data.

4.3. The Variable Performance of Different Sensors on Rice Grain Yield Prediction

Previous studies have used various multispectral cameras loaded on UAVs to predict
crop yield, such as Sequoia [24,29], Rededge [31,32], Mini-MCA [26,35,41], Airphen [37], etc.
Different sensors have different wavelength bands, bandwidths, and field of view angles,
but few studies have compared the performance of different sensors in predicting crop yield.
This study found that the vegetation index or texture index from the Airphen camera had a
higher correlation with the yield (Figure 3e,f). This could be explained by the fact that the
Airphen had a narrower field of view and higher spatial resolution, thus more details could
be captured from the canopy. However, when the yield prediction models from Airphen
were transferred to MCA, the results were not satisfactory, and the highest accuracy was
only RMSE = 1.69 t/ha, bias = 1.49 and RRMSE = 16.13% (Table 4). The main reason was
that the core bands of the two sensors were inconsistent, and there were 50 nm and 10 nm
gaps in the near-infrared and red-edge bands, respectively. The near-infrared band is
sensitive to the canopy structure, while the red-edge band is sensitive to the chlorophyll
content [53]. The difference in spectral bands resulted in different sensitivity of the sensors
to the canopy structure and chlorophyll content, simultaneously leading to the difference
in the vegetation index value and the regression models. In addition, these two cameras
used different radiation correction methods. The Mini-MCA6 camera used the classical
empirical linear correction method [26], while the Airphen used a rectangular gray panel
with 8% reflectance to transform digital numbers into reflectance values [48]. However, the
model transferability between different sensors could be improved significantly through
band correction with hyperspectral reflectance data (Table 8). Therefore, band correction
is a prerequisite when prediction models are transferred between different sensors with
different central bands [33].

4.4. Implications for Further Work

Grain yield is a crucial trait for crop breeding programs [58]. However, the traditional
manual measurement of crop yield is time and labor-consuming, and it is not viable to
measure all traits in a breeding program, given the cost of labor and the time required
to perform these tasks. By contrast, UAV-based remote sensing is a fast and efficient
technology that can obtain the yield information of a large number of breeding plots
simultaneously [16,59]. Therefore, it is suitable for crop breeding and can improve the
efficiency of the breeding program [16,60]. In this study, we found GNDTI was superior to
the spectral indices in rice grain yield prediction, which provided new light on the method
for crop yield prediction. For a high-yield rice breeding program, using GNDTI from UAV-
based multispectral imagery might be an efficient way to select high-yield rice cultivars.
Moreover, the booting stage was identified as the optimal stage for yield prediction, which
indicated crop yield could be predicted at an earlier stage.

However, since crop breeding programs involve a large number of cultivars, the single-
stage VIs would have a weak correlation with grain yield [35]. When predicting grain
yield for a breeding program, the canopy structure of each cultivar should be taken into
consideration in the construction of prediction models. Moreover, crop breeding programs
are also conducted in different climatic zones across multiple years [61]. Therefore, meteo-
rological data should be employed to improve the applicability of crop yield prediction
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models. Machine learning or deep learning algorithms should be employed to deal with
datasets involving multiple years, ecological sites, crop cultivars, and sensors since they
possess the ability to handle high-dimensional datasets.

5. Conclusions

This study predicted rice grain yield with UAV-based multispectral images and as-
sessed the model transferability across different years, rice cultivars, and sensors. Spectral
and texture information was extracted from UAV images, and the yield prediction models
were independently constructed and validated with the dataset from different years, culti-
vars, and sensors. It was found that GNDTI was the best index for rice yield prediction
across different years, rice cultivars, and sensors. Across different years, the prediction
models of 2016 achieved higher prediction accuracy in 2015 with RMSE, bias, and RRMSE
of 1.23 t/ha, 0.42, and 12.25%, respectively. Across different rice cultivars, the prediction
model of Japonica rice obtained higher prediction accuracy on Indica rice with RMSE, bias,
and RRMSE of 1.16 t/ha, 0.08, and 11.04%, respectively. Furthermore, a sensor calibration
strategy successfully improved the model transferability between different sensors. The RF
model proved to be a good solution to deal with a complicated dataset involving differ-
ent years and cultivars, and the highest prediction accuracy (RMSE = 0.94, bias = −0.21,
RRMSE = 9.37%) was obtained by the RF model at the booting stage of cultivation. In
addition, RF models also proved the advantage of texture indices for grain yield prediction
through relative importance analysis. Based on these results, the proposed approach of
sensor correction is promising for model transferability between different sensors and
realizes accurate estimation of crop yield in smallholdings or breeding programs with
texture indices from the high spatial-temporal imagery. However, more data from multiple
years, ecological sites, and cultivars should be collected to validate the findings of this study,
and more attention will be paid to testing the methodology of this study on other crops.
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