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Abstract: The recovery phase following an earthquake event is essential for urban areas with a
significant number of damaged buildings. A lot of changes can take place in such a landscape within
the buildings’ footprints, such as total or partial collapses, debris removal and reconstruction. Remote
sensing data and methodologies can considerably contribute to site monitoring. The main objective
of this paper is the change detection of the building stock in the settlement of Vrissa on Lesvos
Island during the recovery phase after the catastrophic earthquake of 12 June 2017, through the
analysis and processing of UAV (unmanned aerial vehicle) images and the application of Artificial
Neural Networks (ANNs). More specifically, change detection of the settlement’s building stock by
applying an ANN on Gray-Level Co-occurrence Matrix (GLCM) texture features of orthophotomaps
acquired by UAVs was performed. For the training of the ANN, a number of GLCM texture features
were defined as the independent variable, while the existence or not of structural changes in the
buildings were defined as the dependent variable, assigning, respectively, the values 1 or 0 (binary
classification). The ANN was trained based on the Levenberg–Marquardt algorithm, and its ability to
detect changes was evaluated on the basis of the buildings’ condition, as derived from the binary
classification. In conclusion, the GLCM texture feature changes in conjunction with the ANN can
provide satisfactory results in predicting the structural changes of buildings with an accuracy of
almost 92%.

Keywords: change detection; texture analysis; artificial intelligence; earthquake; UAV

1. Introduction

Within a disaster management scheme, the recovery phase aims to restore the land-
scape to the pre-destruction level and reduce vulnerability in the future. Following a
catastrophic earthquake event, the progression of the recovery phase depends on the deci-
sion makers’ characterization of the disaster-hit areas, which is generally divided into three
types: collective resettlement area, original site recovery area and non-disaster area [1].
The usefulness of geospatial data acquired based on remote sensing technology has been
extensively demonstrated in recent years. By incorporating both spaceborne and airborne
techniques, remote sensing has nowadays been evolved into an extremely useful tool in
gathering, processing and analyzing geospatial data with the aim of extracting valuable
information for proper decision making in various scientific fields [2–4]. Change detection
is included among the fields where remote sensing is frequently applied. Due to the unique
characteristics of remote sensing data, such as their high temporal frequency, digital format
and the availability of several sensors with a variety of spatial and spectral resolutions, they
can be efficiently used in order to detect changes in numerous applications, such as land
use management and planning, urban expansion and planning, and disaster monitoring
and management [5–9].

With the continuous progress of remote sensing technology, change detection can be
performed through various platforms, such as satellites, manned aircrafts and Unmanned
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Aerial Vehicles (UAVs). In particular, the use of UAVs is constantly increasing due to their
flexibility, low cost and real-time monitoring, as well as their capability to observe objects
from multiple angles [10]. Based on UAV data, change detection algorithms can be applied
either in 3D derived data, i.e., point clouds [11,12], or in 2D orthoimages [13]. Furthermore,
various methods and techniques based on the analysis of remote sensing images have been
developed in order to detect changes. Nowadays, machine learning plays an important
role in improving the efficiency of change detection and monitoring because of its high
abilities in automatic feature learning and visual pattern recognition [14,15]. Machine
learning techniques, Support Vector Machines (SVMs), and Artificial Neural Networks
(ANNs), etc., are highly used in change detection, especially in cases where conventional
change detection methods such as post-classification comparison are often problematic,
i.e., in urban change detection [16,17]. The use of ANNs has received increasing attention,
while they have been used for different change detection applications such as vegetation
change [18,19], land cover change [20] and urban change [17,21,22]. These studies suggest
that the ANN method can improve the accuracy of change detection compared to other
techniques.

Another approach for remote sensing change detection is the extraction of a large
number of image features, with the goal of improving the discriminative capability of
image change information; texture is included among these features [23,24]. Texture is
one of the key structural characteristics of an image, used to identify objects or regions
of interest in an image, and it is also in line with human visual characteristics [25,26].
Texture extraction is critical as it serves as an input for further advanced processing and
has a significant impact on the quality of extraction [27]; therefore, numerous studies on
texture extraction from remote sensing data have been conducted (e.g., [27–30]). Moreover,
texture-related research is still a hotspot for researchers in computer vision and image
processing, while it is continuously evolving [31]. There are various methods of texture
analysis that involve both the color and the arrangement of pixels in an image, i.e., GLCM
(Gray-Level Co-occurrence Matrix), fractal model, Fourier and wavelet transformations.
Furthermore, different classification schemes of these methods have been developed, in-
cluding, i.e., statistical, model-based and geometrical/structural methods. Among all the
texture analysis methods, the GLCM method has proved to be one of the most useful and
powerful texture analysis techniques, since it is straightforwardly simple, easily executable
and provides good results [27,32–34]. Furthermore, the GLCM has shown its efficiency
within previous comparison studies [35,36]. GLCM features (e.g., contrast, correlation,
energy, entropy, homogeneity) are calculated based on the occurrence of a pair of gray-
level pixels in an image in predefined directions [10,34,37], which are used for different
remote sensing applications such as land use classification [38], built-up area extraction [39],
damaged building detection [29,40,41] and high-resolution satellite image analysis [30].
Another type of texture feature extraction method that has been developed in the last
decade is the learning-based approach well-known as Convolutional Neural Networks
(CNNs). CNNs are quite powerful in classification and segmentation problems, applied
also in remote sensing, and they have shown their superiority to various studies. Between
other applications in remote sensing, CNNs have been applied in urban areas for building
footprint extraction and change detection [42–46].

In the case of disaster monitoring and management, remote sensing has proven to be
an essential and efficient tool for damage assessment and the detection of building changes
after a catastrophic event such as an earthquake [34]. Not only are the observations of
the damage level and the spatial distribution after a destructive earthquake of paramount
importance in order to plan the first rescue activities and understand the effect of seismic
activity on buildings, but the monitoring of the affected area over time is also considered
essential in order to study the urban development, such as buildings’ collapse and/or
construction, after such a catastrophic event [14,23,47,48]. In this context, in [49], the authors
monitored building damage after the Haiti earthquake through satellite stereo imagery
and DSMs, while using texture features to optimize accuracy. In [23], the recovery of the
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Italian city of L’Aquila following the 2009 earthquake was monitored by using spectral,
textural and geometric features in order to determine changes in buildings, thus allowing a
reduction in the extensive fieldwork required. The Haiti 2010 earthquake was also studied
in [50], where authors mapped the damaged buildings by developing an ANN model for
classifying the affected area into two classes of changed and unchanged areas, using the
extracted textural features calculated using the GLCM from pre- and post-event images as
an input vector. The ability of the proposed method to detect building changes was proved
by the reported overall accuracy of 93%. In the same context, the authors in [40] used high-
resolution satellite images obtained before and after the 2010 Haiti earthquake to extract
textural features applying the GLCM method. The results showed that dissimilarity was
identified as a better classifier in detecting the collapsed buildings and that about 70% of
them were correctly identified. In other research, the authors detected collapsed buildings
using three different textural features derived from the GLCM and applying an SVM
classifier [51]. The SVM and a synergy of high-resolution optical and Synthetic Aperture
Radar (SAR) images were also used for the detection of the collapsed buildings after the
2011 Japan earthquake [52]. Finally, in [41], the authors detected collapsed buildings after
the 2017 Iran–Iraq earthquake using ten spectral indices in combination with seven different
textural features derived from the GLCM and applying an SVM classifier. Finally, CNNs
were also applied to building change detection following a catastrophic event such as
an earthquake. This task is usually difficult due to complex data with a heterogeneous
appearance and with large variations within classes. When the intra-class variation is
low (i.e., [45]), the change to be detected is limited to building/no building; therefore, the
building extraction and change detection can be more easily approached. However, the
building damages from an earthquake event include multiple sub-classes, i.e., collapsing
and partial collapsing. For example, in [53], the detection was based on a pre and a post
image; the overall accuracy was limited to 76.85% and the F1 score to 0.761. Projecting this
method to a more complex problem, i.e., multitemporal change detection within a recovery
phase where collapses, partial collapses, debris removal and new construction can take
place, training a CNN would be quite challenging.

The aim of the present study is to present a methodology and the results for multitem-
poral building change detection after a disaster such as an earthquake. In relation to other
studies, the applied methodology aims to monitor the changes that occurred in multiple
time steps within the buildings’ footprints during the recovery after a catastrophic earth-
quake for an entire settlement on the building level. More specifically, the proposed method
detects changes in the building sites such as significant changes to damaged buildings, i.e.,
partial collapses due to weather conditions and aftershocks, the removal of debris and the
construction of new buildings, thus monitoring the development and rehabilitation of the
settlement after the disaster. The identification of these changes was based on the GLCM
features and ANN modelling. Even if various studies have been conducted on this topic,
the multitemporal monitoring of a post-earthquake site based on GLCM features and an
ANN, to the best of our knowledge, has not yet been fully examined. Therefore, taking
a step further from previous studies, herein, the multitemporal monitoring of an entire
settlement on the building level using remote sensing data was performed in order to fully
identify the building changes in the whole study area, as well as to spatially localize them
during the various time steps.

2. Materials and Methods
2.1. Study Area

Lesvos Island, located in the North Aegean region, is one of the most seismically active
areas in Greece (Figure 1). Lesvos is thoroughly studied by geologists and geoscientists due
to the existence of a rich tectonic and geomorphological background of the broader area in
which the island is situated. More specifically, Lesvos is located on the Aegean microplate,
which, according to [54], is subject to two different stress regimes. On the one hand, the
island is subject to a NE–SW stress from the Anatolian fault, while, on the other hand, is
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subject to a N–S stress due to the retreat of the subducting Mediterranean plate from the
Aegean plate.
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the settlement.

The seismic activity on the island has caused both material and environmental damage,
as well as human losses, due to which Lesvos is placed as the second greatest seismic hazard
zone in Greece [54]. On 12 June 2017 (12:28 GMT), the settlement of Vrissa, situated in
the southern part of Lesvos, underwent a catastrophic earthquake of a magnitude of 6.3,
which caused one death and, at the same time, destroyed about half of the village [55]. The
earthquake epicenter was 35 km away from the island’s capital, Mytilene. Even though the
epicenter of the earthquake was not located close to Vrissa, the settlement suffered serious
damages from the earthquake event, especially the western part of it. This can be mainly
attributed to three factors: the direction of the earthquake, the type of soil and the types of
buildings in the settlement.

2.2. Data Collection

In general, two main types of GIS data were used in the present study: (a) 12 orthopho-
tomaps with the same resolution of 0.2 m acquired by a UAV within a 52-month period; and
(b) the buildings’ footprints, which were used for the computation of the GLCM texture
features and the compilation of the final database.

2.3. General Methodological Framework
2.3.1. Photo Interpretation and Building Classification

The main objective of the photo interpretation of the 12 UAV orthophotomaps was to
examine the buildings’ status in the Vrissa settlement so that the buildings were classified
into change/no change (1 or 0) for all time intervals, depending on whether changes were
observed or not; the classification results were then used as the desired output for the
ANN model. During this task, the visual comparison of the orthophotomaps taken in
sequential time steps was performed, thus resulting in observations of the buildings’ state
for 11 time intervals. The aim of the whole process was to find if the buildings in the study



Drones 2022, 6, 414 5 of 20

area underwent any changes during each time interval. At this point, it should be noted
that, as changes were identified, only changes in the building itself and not changes in other
types of factors, such as the exterior surroundings of the buildings, were identified. These
changes include: (i) partial or total collapse; (ii) debris removal; and (iii) new construction.
The photo interpretation process was performed for a total of 1060 buildings located in the
study area and for each time interval, thus resulting in 11,660 recorded values, which are
set either to 1 or 0, depending on whether changes were observed or not.

2.3.2. GLCM Texture Features

The GLCM method is a widely applied method for measuring and converting gray
values to texture information, which provides an essential understanding of texture analysis
and feature extraction [31,56–59]. The pioneer of this widely used method is Haralick [25],
who created the texture analysis algorithm by assigning the textural relationship between
the pixels of an image. This method extracts the structural information about the texture
pattern to be analyzed at different scales and orientations, making the method more efficient
and easier to implement. Based on the literature review, as regards the GLCM texture
analysis, it was found that 5 out of 14 indicators, namely, contrast, correlation, energy,
entropy and homogeneity, are most commonly used in similar studies; these indicators are
defined as follows:

Contrast is a measure of the number of local texture variations in an image. Therefore,
if there is a high number of variations, the contrast is high, while, in cases of minimal
variations, the contrast is low. It is given by the following equation:

Constrast = ∑
i,j
|i− j|2 p(i, j) (1)

Correlation is a measure of the linear dependence of gray levels between individual
pixels in an image. The higher the correlation is, the more uniform the image is, while
correspondingly low correlation values indicate non-uniformity [25,60]. It can be computed
by the equation:

Correlation = ∑
i,j

(i− µi)(j− µj)p(i, j)
σiσj

(2)

Energy is the sum of the squares of all elements of the GLCM. It measures the uni-
formity of texture in an image and is considered the appropriate measure for detecting its
anomaly. The energy is given by the equation:

Energy = ∑
i,j

p(i, j)2 (3)

Entropy is a measure of randomness in the distribution of pixels in an image. Specifi-
cally, the denser the texture of an image, the more dispersed the grayscale distribution and
the higher the entropy value. Conversely, small entropy values reveal smoother areas in an
image. Entropy is directly dependent on the range of the data used for the analysis [61]. It
can be computed by applying the equation:

Entropy = −∑
i,j

p(i, j) log2 p(i, j) (4)

Homogeneity calculates the uniformity of pixels in the image and shows a comparative
arrangement of their equal values. In addition, this index is similar to energy and is given
by the equation:

Homogeneity = ∑
i,j

p(i, j)
1 + |i− j| (5)
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where i and j, respectively, are the row and column numbers of the image, and p is the
number of gray-level co-occurrence matrices in the GLCMPl.

In order to create the input variables for the ANN model, three main steps were
carried out. In a first stage, conversion of the 12 orthophotomaps from the RGB (Red,
Green, Blue) color model to grayscale was performed in order to reduce the complexity of
the representation of the texture features. By converting the orthophotomaps to grayscale,
i.e., by calculating the weighted sum of the three bands, a pixel with only one band is
obtained, thus reducing its information. The next step was the calculation of the GLCM
texture features for each building footprint of the 12 time steps in the Matlab environment.
For achieving this, both the orthophotomaps (raster files) and the shapefiles of the building
footprints were used. At first, five GLCM features, i.e., contrast, correlation, energy, entropy
and homogeneity, were selected to be calculated based on the literature review, since they
are the most commonly used in change detection studies [62,63]. To reduce the ANN
model’s complexity, three of the GLCM features were finally selected as inputs for the
model. For this task, correlation analysis of all calculated GLCM features was conducted
and the correlation coefficients, expressed by the Pearson correlation coefficient (r), were
computed. The correlation coefficients were used to investigate the relationship between
the five examined GLCM features and assist in selecting the most non-correlated of them.
The rationale behind this choice lies in the fact that, in the case of selecting features that are
more correlated to each other, the training of the ANN generally becomes more complicated,
leading to unreliable results.

2.3.3. Artificial Neural Networks (ANNs)

As ANNs learn from experience, they can perform complicated operations and recog-
nize complex patterns, even if these patterns are noisy and ambiguous. An ANN model
consists of a set of nonlinear and densely interconnected elements or neurons, which are
inspired by biological neural systems. The fundamental idea of an ANN is to connect a
set of inputs to a set of outputs. Hence, the main architecture of an ANN model usually
contains three distinct layers: (1) the input layer; (2) the hidden layer(s); and (3) the output
layer, where the results of the ANN are generated. Moreover, the performance of ANNs
generally relies on several factors, such as the number of hidden layers, the number of
hidden nodes, the learning algorithm and the activation function of each node. In this
study, a multi-layer perceptron (MLP) Feed-Forward Neural Network (FFNN) was chosen
to generate the classification model. The FFNN in general is the fastest neural network
and broadly consists of a set of layers representing the input layer, one or more hidden
processing neuron layers and an output layer of processing neurons [64–66].

As already stated, the ANN model developed in the present study aims to estimate the
status of buildings, i.e., whether any changes are detected or not, based on the changes in
their textural characteristics determined by applying the GLCM functions. More specifically,
the main purpose was to train ANNs to detect any potential building changes (dependent
variable) between two sequential time steps using the texture characteristics of the buildings
(independent variables) computed for these time steps as an input.

Various structures of the ANN were developed, trained and tested based on the
generic scheme of one input layer, one hidden layer and one output layer (Figure 2). The
GLCM texture features were defined as the independent variables (input layer), while the
existence of building changes or not was defined as the dependent variable by setting the
variable value to 1 or 0, respectively. With regard to the input layer, the values of three
GLCM features of two different time steps, i.e., six input nodes, were considered. On the
other hand, the output layer contains one neuron, since buildings are classified into 1 or 0,
depending on whether changes were detected or not.
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Based on the binary building classification described in Section 2.3.1, a total of
11,660 records were documented (1060 buildings in 11 time intervals). As expected, most of
the recorded values are equal to zero (0) due to the fact that most of the buildings in the
study area did not undergo any changes during the entire study period. In fact, only 678
out of 11,660 records were set equal to one (1), indicating building changes between two
time steps. By taking into consideration the number of records equal to one (1) and in order
to create a balanced training dataset for the ANN model, the same number of records equal
to zero (0) were randomly selected, i.e., 678. As a result, a total number of 1356 records are
included in the training dataset.

Another important step in the ANN model development process is the selection of the
activation (or transfer) function used for controlling the output of the ANN across different
domains, since activation functions can significantly affect the complexity and performance
of the ANN. In the present study, hyperbolic tangent sigmoid (Tansig) was selected for
the hidden layer, and log-sigmoid (Logsig) for the output layer. In general, the sigmoid
function, which is one of the most commonly used activation functions in ANN models,
transforms the input of any value into a value in the range between 0 and 1.

After defining the ANN architecture, the training of the ANN model was based on
the Levenberg–Marquardt (LM) algorithm [67]. The role of the training algorithm is to
repetitively correct the weights and biases of neural network throughout the training
process and thus to maximize its performance. During the ANN training, a wide number
of nodes in the hidden layer were tested while each structure was trained with 10 random
weight initializations. At the end, the model with the best performance was saved for
the final implementation. Finally, to control the training process and test the performance
of ANN models, the cross-validation technique was applied. According to this method,
the available data, i.e., 1356 patterns, were divided in three separate datasets: training,
validation and test sets with a ratio of 70%, 15% and 15%, respectively. The training dataset
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was used to train the model, the validation dataset to control the training process, i.e., stop
the training before overfitting, and the test dataset for the final performance evaluation of
the trained model. Each of these sets contains totally different patterns and, therefore, the
ANN model sees completely different data in order to perform each of the three processes,
i.e., training, validation and testing. The evaluation of the applied method was based on
the following metrics that are widely used for binary classification problems [68]:

Overall Accuracy (OA) =
TP + TN

TP + FP + TN + FN
(6)

User′s accuracy (UA) =
TP

TP + FN
(7)

Producer′s accuracy (PA) =
TP

TP + FP
(8)

F1− score =
2× TP

2× TP + FP + FN
(9)

where TP: true positive, TN: true negative, FP: false positive, and FN: false negative.
Figure 3 presents the overall workflow of the current research.
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3. Results and Discussion
3.1. Photo Interpretation and Building Classification

Figure 4 shows some indicative examples of buildings with and without structural
changes, as they have been categorized during visual interpretation. Changes were consid-
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ered not only in buildings that have collapsed, but also in those where significant changes
(cracks, partial collapses) and other visible damage were observed. Moreover, the removal
of debris from a building site was marked as a building change; otherwise, there was a
high risk of increasing the commission error due to the large difference in orthophotomaps
between two time steps (Figure 4a). On the other hand, in the case that buildings had
undergone no changes or debris was not removed from a site, no building changes were
considered (Figure 4b).
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After the image interpretation of the status of the buildings’ footprints into 0 or 1, a
map showing the spatial distribution of all buildings in the settlement of Vrissa that had
undergone at least one change within their footprints over the entire study period (13 June
2017–23 October 2021) was created (Figure 5). As can be observed, most building changes
are located in the north and western part of the settlement. Since this part of the settlement
was the most affected by the earthquake, it is reasonable that most changes over time are
observed there. These changes may refer to either the collapse of crumbling buildings that
did not collapse during the seismic activity or the construction/repair of buildings. At this
point, what is worth mentioning is that buildings with changes do not occupy only 33%
(370 buildings) of the total building stock, as shown in the pie chart in Figure 5, but even
more; this is because some of the buildings were being continuously reconstructed, thus
reaching a total number of 650 buildings with changes. However, in the case of Figure 5,
considering each building as one change, the final percentage of buildings with changes is
equal to 33% of the total building stock.
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3.2. GLCM Texture Features
3.2.1. Correlation Analysis

As already mentioned in Section 2.3.2, the five calculated GLCM texture features, i.e.,
contrast, correlation, energy, entropy and homogeneity, may contain statistically correlated
information, thus making it difficult to estimate the buildings’ conditions through machine
learning, that is, to develop a reliable ANN model. Hence, for the purpose of reducing
the data, it was considered necessary to use three out of five GLCM features. For this
task, a correlation analysis of the five calculated parameters was conducted and the three
less correlated parameters were selected as the input for the ANN model. Figure 6 shows
the results of the correlation analysis in terms of the correlation matrix, including the
scatterplots for all pairs of variables, along with the value of the Pearson correlation
coefficients (r) for each pair. After calculating the sum of the correlation coefficient values
in each row (or column) for all five variables and considering that the correlation of every
variable with itself is 1, it was found that correlation, energy and entropy show the lowest
sum values, i.e., 3.30, 3.19, and 3.17, respectively, and, therefore, they were selected as the
input for the ANN model. On the contrary, homogeneity shows the highest sum (3.76) and,
hence, the highest correlation among the other variables.



Drones 2022, 6, 414 11 of 20Drones 2022, 3, FOR PEER REVIEW 11 
 

 

 
Figure 6. The correlation matrix summarizing the correlations between all examined GLCM texture 
features (contrast, correlation, energy, entropy, homogeneity). 

3.2.2. Visual Interpretation of Selected GLCM Features 
A visual inspection of the three selected GLCM features, i.e., correlation, energy and 

entropy, was performed to examine how these features differentiate between two time 
steps in the case of building changes. For better visualization results and in order to draw 
clearer conclusions, examples with a high difference in the calculated values of the three 
GLCM features were taken into consideration. At first, Figure 7 depicts the visual differ-
entiation of correlation between two images in the case of a collapsed building. As is ob-
vious, before a building collapse (Figure 7a) the neighboring pixels of the corresponding 
image are more correlated with each other, thus creating a uniform image; on the contrary, 
after a building collapse (Figure 7b), the pixel distribution contains various gradations of 
the grayscale, meaning that the pixels are less related to their neighbors. 

Figure 6. The correlation matrix summarizing the correlations between all examined GLCM texture
features (contrast, correlation, energy, entropy, homogeneity).

3.2.2. Visual Interpretation of Selected GLCM Features

A visual inspection of the three selected GLCM features, i.e., correlation, energy and
entropy, was performed to examine how these features differentiate between two time steps
in the case of building changes. For better visualization results and in order to draw clearer
conclusions, examples with a high difference in the calculated values of the three GLCM
features were taken into consideration. At first, Figure 7 depicts the visual differentiation
of correlation between two images in the case of a collapsed building. As is obvious, before
a building collapse (Figure 7a) the neighboring pixels of the corresponding image are more
correlated with each other, thus creating a uniform image; on the contrary, after a building
collapse (Figure 7b), the pixel distribution contains various gradations of the grayscale,
meaning that the pixels are less related to their neighbors.

Next, Figure 8 illustrates the visual differentiation of energy between two images,
again in the case of a collapsed building. It can be clearly seen that, in the image before the
building collapse (Figure 8a), the energy is higher, since no texture disorder is detected in
comparison with the corresponding image after the collapse (Figure 8b). In other words,
there are more repetitions of pairs of pixels in the first image, thus resulting in a higher
value of energy.

Finally, as far as the entropy is concerned, it is higher in the second image where
the debris was removed from the site due to the fact that the randomness of the pixel
distribution is higher, which increases the texture density (Figure 9).
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3.3. Development of ANN Models
3.3.1. ANN Model Training and Testing

Different structures of ANNs were tested according to the trial-and-error procedure
described above. The optimal number of neurons in the hidden layer was found equal to
eight, thus resulting in an ANN architecture composed of six input neurons, eight hidden
neurons and one output neuron (6:8:1). Figure 10 shows the learning performance of the
ANN model based on the MSE values. It should be noted that, hereinafter, the results of
all three independent datasets are presented; however, the accuracy metrics of the testing
dataset (the unseen during the training procedure) are the metrics for the final evaluation of
the presented approach. Learning curves are a widely used diagnostic tool for evaluating
model learning performance over experience, i.e., as the model is exposed to more and
more training data, as well as for identifying problems, such as model underfitting or
overfitting. According to this figure, the developed ANN model shows an MSE value equal
to 0.078 at the convergence point, which is lower than Zahraee and Rastiveis [50], even
though it reached the best validation performance after almost the same number of training
epochs, i.e., at epoch 18, as in the aforementioned study.

Table 1 presents the evaluation results of the ANN model for all datasets (training,
validation and testing). It is evident that, according to the overall accuracy (OA) of the
training, validation and testing datasets, the ANN approach on GLCM texture features
performed quite well, providing good results. More specifically, the OA for training,
validation and testing datasets is 90.4%, 88.7% and 92.6%, respectively, the latter of which is
slightly higher than Liu and Lathrop [17], who developed an ANN model to detect newly
urbanized areas in New Jersey, USA, and significantly higher than Mansouri et al. [69],
who used an ANN classifier on GLCM features to identify building damage after an
earthquake event.

Table 1. Accuracy metrics for all datasets.

Dataset User’s Accuracy Producer’s Accuracy Overall Accuracy F1-Score

Training 0.896 0.907 0.904 0.902
Validation 0.886 0.895 0.887 0.890

Test 0.906 0.950 0.926 0.927
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Furthermore, with regard to the errors of the ANN model and, in particular, those of
the testing data set, the results reveal that 15 instances of building changes were wrongly
classified. All these errors were detected, while some of them are visualized and discussed
in the next section.

Next, the ROC curves for the three datasets are presented (Figure 11).
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Figure 11. Receiver Operating Characteristic (ROC) curves of (a) training, (b) validation and (c) test-
ing datasets.

The ROC curve is an effective platform for visualizing and evaluating classifiers,
including binary classifier systems such as the one developed in the present study. This
is usually achieved by plotting the true positive rate (TPR), also known as the sensitivity
rate, against the false positive rate (FPR), also known as the specificity rate [70,71]. As
an important tool for evaluating the performance of a machine learning model, a perfect
classifier has a TPR equal to 1 and an FPR equal to 0. In general, the performance of the
ROC curve is indicated by the Area Under the ROC curve (AUC), which provides a scalar
measurement of the classification performance and varies between 0 and 1. The higher
the value of the AUC, the better the performance of the model. From the acquired curves
shown in Figure 11, it is concluded that the training performed quite well, since for all data
sets, i.e., training, validation and testing, the curves are far from the diagonal line, with an
AUC equal to 0.968, 0.961 and 0.969 for the three datasets, respectively.
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Finally, the adequate overall performance of the ANN model is also reflected in the
error histograms for the training, validation and testing steps shown in Figure 12. The error
histogram visualizes the errors between the target values and predicted/output values
after training a neural network, while the more distributed to zero the error values are,
the better the model performance is [72]. From this figure, it is clear that the model errors
have spread around the zero error value, revealing that the ANN model has a high degree
of reliability.
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3.3.2. Model Error Visualization

After the ANN model training, the omission and commission errors, i.e., buildings
that were wrongly identified within the testing dataset, were visualized and discussed.
Out of the 203 patterns used in the testing step (15% of the total dataset), the developed
ANN models resulted in 15 errors. The detection and analysis of the omission errors
revealed that the model had more difficulty in recognizing changes in the building structure
related to building collapses (total or partial), rather than other types of changes, such as
debris removal from a site. Figure 13 depicts two examples of omission errors, which are
associated with the weakness of the model in detecting changes in building structure. In
these examples, the way in which the six GLCM features relate to each other may be very
close to the corresponding one that leads the neural network to classify the building as not
having undergone any change; hence, the ANN cannot recognize the change, thus leading
to an omission error.

On the other hand, the detection and interpretation of the commission errors revealed
that the model affected either by image resolution or by image shading resulted in detecting
changes in cases where they were not actually observed (Figure 14).
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4. Conclusions

The present study attempted to develop a methodology that is based on the GLCM
texture features extracted from UAV orthophotomaps and an ANN classifier in order to
detect building changes during the recovery phase following an earthquake event. As
indicated by the high overall accuracy and the relatively fast execution time, the ANN-
based scheme of building change classification works quite properly in estimating the
status of buildings in the study area. The error analysis showed that the ANN model was
mainly affected by either image resolution or image shading. In general, as the present
study concluded, the joint utilization of remote sensing image texture analysis through the
GLCM method and neural network algorithm is of great efficiency for detecting changes
after a natural disaster such as an earthquake. In future research, it would be of great
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interest to evaluate how the modern and more powerful CNNs can individually recognize
the various types of building changes, i.e., building collapse (partial or total), new building
construction and debris removal, to achieve an even more detailed monitoring of the area
under study.
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