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Abstract: An efficient control of large-scale unmanned aerial vehicle (UAV) swarm to establish a
complex formation is one of the most challenging tasks. This paper investigates a novel multi-layer
topology network and consensus control approach for a large-scale UAV swarm moving under a
stable configuration. The proposed topology can make the swarm remain robust in spite of the
large number of UAVs. Then a potential function-based controller is developed to control the UAVs
in realizing autonomous configuration swarming under the consideration of mutual collision, and
the stability of the controller from the individual UAV to the entire swarm system is analyzed by a
Lyapunov approach. Afterwards, a yaw angle adjustment approach for the UAVs to reach consensus
is developed for the multi-layer swarm, then the direction state of each UAV converges with a fast
rate. Finally, simulations are performed on the large-scale UAV swarm system to demonstrate the
effectiveness of the proposed scheme.

Keywords: multi-layer graph; potential function; consensus control; UAV swarm

1. Introduction

Over the past few decades, the investigation of large-scale swarm has received exten-
sive attention in different fields, such as biology, physics, medicine, sociology,
engineering, et al. [1–3]. Swarm refers to a super large-scale isomorphic individual, based
on group dynamics and information perception, supported by efficient and safe collabora-
tive interaction between individuals, with the emergence of swarm intelligence as the core,
and based on a comprehensive integration of open architecture. It is a complex system with
the advantages of invulnerability, adaptive dynamic configuration, functional distribution,
and intelligent features. The Boid model is the first model established by Reynold to
simulate group behavior [4], and three heuristic rules are introduced in this model, namely
separation, cohesion and alignment. On the basis of these three rules, many scholars
have conducted in-depth investigation on the swarming movement [5,6]. For example,
Olfati-Saber R [7] proposes a theoretical framework of distributed swarm algorithms, and
swarm in free space and multiple obstacles avoidance are also considered. Inspired by the
above work, Su H et al. [8] revisits the problem of multiagent system in the absence of the
above two assumptions.

Combining robot technology with swarm algorithms is one of the hotspots [9,10]. In
particular, Enrica Soria et al. [11] published in the journal Nature combines the local princi-
ples of potential field methods into an objective function and optimizes those principles
with knowledge of the agent’s dynamics and environment, resulting in improving drone
swarm speed, order and safety. In [12], a multi-layer grouping coordination methodology
is proposed to achieve different shape configuration for a large-scale agents. In [13], a
new topology approach based on multilevel construction is adopted to present swarm
robots of different shapes in the desired region. A novel multi-layer graph is presented
by [14] for multi-agent systems to enable scalability of the interaction networks, and the
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model predictive control method is applied for tracking trajectories; In [15], a multi-layer
formation control scheme and a layered distributed finite-time estimator is designed for
agents, which impels them to reach the desired positions and velocities according to the the
information of agents in their prior layers. In practice, many issues need to be considered
in order to implement formation control approaches successfully, such as the avoidance of
the obstacles and collisions.

The artificial potential field (APF) models provides an effective solution for practical
applications, which attracts the agent to the target and repulses it for avoidance, and
can be executed quickly and provides a viable solution [16]. In [17], a rotating potential
field is introduced, which makes the UAVs can escape from the oscillations and ensures
that the follower-leader maintains the desired angles and distances. Based on the APF
approach in [18], a novel automatic vehicles motion planning and tracking framework
is presented, and the effectiveness is validated in real experiment. In [19], an adaptive
synchronized tracking control based on the neural network is applied to boat by combining
with APF and robust H∞ methods, and the artificial potential method is used to guarantee
the boat maintaining desired distance with obstacles. In [20], different forms of potential
field functions are used for repulsion, velocity alignment and interaction with walls and
obstacles, and the proposed model is validated on a self-organized swarm of 30 drones.

Consensus control of multiagent systems is also a hotspot now, which means all the
agents in the system converge to the same state by the specific control law. In [21], a dis-
tributed active anti-disturbance cooperative control method with a finite-time disturbance
observer is proposed to achieve the consensus in finite time for the agents. In [22], the
consensus control problem is investigated under an event-triggered mean-square consensus
control law for a class of discrete time-varying stochastic multi-agent system. There are
three approaches proposed by [23] for consensus control of the multi-agent systems on
directed graphs, and some correlative examples are presented to validate the effectiveness.
In [24], the synergistic trajectory tracking problem of UAVs formation is investigated, both
the position tracking to the desired position and the attitude tracking to the command
attitude signal are achieved with the stability analysis and simulations validation.

The main challenges that impede the solving of the configuration and consensus
problem for the swarm are the large-sclae of the community and the chronological order
of configuration and consensus. Therefore, we have carried out the following research to
solve these problems. In order to improve the scalability of the network topology under
the large size of the swarm situation, based on the concept of [14], a multi-layer network
graph model is proposed for the large-scale UAV swarm, which allows the configuration to
be more adjustable and robust. After the configuration of the swarm is completed, to make
each UAV in the swarm reach an agreement, a multi-layer recursive consensus control
concept is designed for the UAV swarm, so that the yaw angles of UAVs in each layer tend
to be consistent.

The remainder of the paper is organized as follows. Section 2 describes some pre-
liminaries and formulates the problem to be investigated in this paper. In Section 3,
the multi-layer UAVs swarm configuration control strategy and the consensus concept are
proposed. The effectiveness of the proposed methodologies is illustrated by numerical
analysis in Section 4. Finally, the results of our work are briefly summarized in Section 5.

2. Preliminaries and Problem Statements
2.1. Graph Theory

In this subsection, some introductions of the graph theory are listed. Firstly, we define
undirected graph G = (ν, ε) as the interaction topology which consists of ν = (1, 2, . . . , n) a
list of vertices , whose elements represent individual UAV in the swarm,
and ε ⊆ ((i, j) : i, j ∈ ν, i 6= j; ) a list of edges, containing unordered pairs of vertices. An
edge (i, j) ∈ ε of the undirected graph G means that the UAV i and UAV j can exchange in-
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formation. For the undirected graph G, the adjacency matrix is given by A =
[
aij
]
∈ RN×N

with aij = 0⇔ (i, j) ∈ ε , aij = aji. The neighboring set of agent is denoted in [25]:

Ni = {j ∈ ν : aij 6= 0} = {j ∈ ν : (i, j) ∈ ε} (1)

2.2. Problem Descriptions

The consistency problem aims at designing appropriate protocols such that the group
of UAVs can reach consensus, exploiting only local information exchange among neighbors
and unreliable information exchange and dynamically changing interaction topologies. In
this paper, our target is to regulate the entire swarm (from each agent to multilayer) move
at a same velocity (the same magnitude and direction)and maintain constant distances
between the same agent layers. Based on the vicsek model, our hypothesis implies that
each agent in the same layer adjusts its velocity by adding to it a weighted average of
the differences of its velocity with the others. Then the potential function is necessary to
proposed for maintaining a constant distance of each UAV and each layer such that their
potentials become minima. In the next section, we will describe the control strategy for our
multi-layer grouping swarm specifically.

For brevity, two assumptions is given as follows

Assumption 1. We assume the Large-scale UAVs swarm consisting n UAVs with the same
dynamic characteristics flying in a same altitude space. Therefore, the working environment of each
UAV can be consider a two-dimensional space.

Assumption 2. In the case of controlling large-scale swarm, we assume each UAV as a point mass,
which means the influence of the size and shape of each UAV can be ignored.

3. Multi-Layer Consensus Control Architecture
3.1. Multi-Layer Graph Model

The proposed multi-layer UAVs swarm model is a multipartite network, which is
composed of a series of similar layer structures. In each layer, a certain number of subgroups
form a higher layer network by the corresponding control law. Note that each layer is
strictly follows the same network characteristics, such as position distribution, potential
function, velocity consistency, and so on. Based on the above rules, a hierarchical network
structure is constructed.

When the multi-layer structure is considered, the first layer characterized by the position-
based interaction forms a primary formation configuration. We assume that the whole swarm
includes n UAVs, l layers, and there can only be No neighbors from the independent UAVs
to each subgroups. We assume that n is divisible by No + 1. Therefore, the undirect graph
of the first layer can be defined as G1 = (ν1, ε1), where ν1 = (1, 2, . . . , n/(No + 1)) and
ε1 ⊆ ((i, j) : i, j ∈ ν1, i 6= j; ); The second layer undirected graph consists of the first layer,
which is defined as G2 = (ν2, ε2), where ν2 =

(
1, 2, . . . , n/(No + 1)2

)
and second list of

edges ε2 ⊆ ((i, j) : i, j ∈ ν2, i 6= j; ); Based on the above rules, we denote Gm = (νm, εm),
m = 1, 2, . . . l as the interaction network topology to characterize the underlying infor-
mation flow among the UAVs in the mth layer, where νm =

(
1, 2, . . . , n/(No + 1)m) and

εm ⊆ ((i, j) : i, j ∈ νm, i 6= j; ). Then the neighboring set from the first layer to the mth layer
can be denoted as N1

i , N2
i , ..., Nm

i .

3.2. Swarm Configuration

Based on the above conclusions, in order to realize the multi-layer grouping configura-
tion of the whole swarm, firstly we define the dynamic of each UAV as follows:{

ẋi = vi
v̇i = ui

i = 1, 2, ..., n (2)
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From single agent to multi-agent system, the dynamic protocol of the UAV swarm in
each layer is described as follows:

f irst layer
{

ẋ1
i = v1

i
v̇1

i = u1
i = f 1

sum − k1 ẋ1
i

i ∈ ν1

second layer
{

ẋ2
i = v2

i
v̇2

i = u2
i = f 2

sum − k1 ẋ2
i

i ∈ ν2

...

mth layer
{

ẋm
i = vm

i
v̇m

i = um
i = f m

sum − k1 ẋm
i

i ∈ νm

(3)

where x1
i , v1

i ∈ Rn are respectively the position and velocity of each UAV in the subgroup
of first layer, u1

i ∈ Rn is the control input acting on it, f 1
sum is the resultant force contains

obstacle avoidance force and collision avoidance force between UAVs. For the second layer,
x2

i , v2
i ∈ Rk2 and u2

i ∈ Rk2 are respectively the position, velocity and the control input of the
UAV in the subgroup of second layer, where k2 = n/(No + 1) is the element number of the
ν2; and f 2

sum is the resultant force contains not only mutual forces from each UAV but also
has potential field force from other subgroups in the second layer. Silimarly, xm

i , vm
i ∈ Rkm

and um
i ∈ Rkm are respectively the position, velocity and the control input of the UAV in

the subgroup of mth layer, where km = n/(No + 1)(m−1) is the element number of the νm;
and the resultant force f m

sum contains the mutual forces from each UAV in the whole global
and the potential field forces from the second layer to the mth layer. Furthermore, k1 is a
positive constant for damping action.

By analyzing the dynamic model of the UAV (2), we design the corresponding control
law to make UAVs reach their desired configuration. Two forces will be engendered based
on the designed potential functions to drive all the UAVs move into the desired position
and avoid mutual collisions.

The mathematical expression of potential function is as follows

Vij(dij) =

{
− ξ

dij
r0

ln(
dij
r0
) +

dij
r0

xi ∈ N1
i

0 otherwise
(4)

where ξ is the positive control coefficient, dij =
∥∥xi − xj

∥∥ is the distance between agent i
and agent j, r0 is the desired radius between each UAV.

Differentiating (3) with respect to dij yields a potential force as

fij = −∇Vij(dij) =

{
ξ ln(

dij
r0
) xi ∈ N1

i
0 otherwise

(5)

In another case, when UAV i and UAV j are not well-defined neighbors, both can be
regarded as obstacles to each other. Therefore, another potential function to avoid obstacles
is necessary to proposed as follows

Vo(dio) =

{
η(r0 − dio)

xi−xj
dio

dio < r0

0 dio ≥ r0
(6)

where η is the positive control gain, xo is the position of the obstacle o. dio = ‖xi − xo‖ is
the distance between UAV i and the obstacles.

Then we define the set of the obstacles as

Oi = {j /∈ Ni|dio < r0 } (7)
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The corresponding force obtained from Vo is

fio = −∇Vo(dio) =

{
η

dio
2 r0(xi − xo) dio < r0

0 dio ≥ r0
(8)

Based on the above two forces, the resultant force f 1
sum for the first layer is expressed

as follows

f 1
sum= ∑

j∈N1
i

fij + ∑
o∈Oi

fio (9)

the control input can be described as follows

u1
i = ∑

j∈N1
i

fij + ∑
o∈Oi

fio − k1 ẋ1
i

= − ∑
j∈N1

i

∇Vij(dij)− ∑
o∈Oi

∇Vo(dio)− k1 ẋ1
i

(10)

For the second layer, in addition to the mutual force between the individual UAV, the
swarm are also affected by the potential field force between the subgroups. We define the
potential function of the second layer as follows

V2
ij (d

2
ij) =

 −ξ
d2

ij

r2
0

ln(
d2

ij

r2
0
) +

d2
ij

r2
0

x2
i ∈ N2

i

0 otherwise
(11)

where d2
ij =

∥∥∥x2
i − x2

j

∥∥∥, r2
0 is the desired distance of the second layer. Then the correspond-

ing potentional force is expressed as follows

f 2
ij = −∇V2

ij (d
2
ij) (12)

At the same time, each UAV in the swarm has gathered within a fixed area, then the
force to avoid obstacles disappears. Therefore, resultant force f 2

sum are combined as follows

f 2
sum= ∑

j∈N1
i

fij + ∑
j∈N2

i

f 2
ij (13)

The control law u2
i of the second layer can be describe as follows

u2
i = ∑

j∈N1
i

fij + ∑
j∈N2

i

f 2
ij − k1 ẋ2

i

= − ∑
j∈N1

i

∇Vij(dij)− ∑
j∈N1

i

∇V2
ij (d

2
ij)− k1 ẋ2

i
(14)

For the mth layer, we assume it as the last layer of the whole swarm, then each UAV in
mth layer is subject to global forces. The potential function is described as follows

Vm
ij (d

m
ij ) =

{
−ξ

dm
ij

rm
0

ln(
dm

ij
rm

0
) +

dm
ij

rm
0

xm
i ∈ Nm

i

0 otherwise
(15)

where dm
ij =

∥∥∥xm
i − xm

j

∥∥∥, rm
0 is the desired distance of the second layer. Then the correspond-

ing potentional force is expressed as follows

f m
ij = −∇Vm

ij (d
m
ij ) (16)
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Different from (13), the resultant force f m
sum combines all the forces from the first layer to

the mth layer in the global, and the form is as follows

f m
sum= ∑

j∈N1
i

fij + ∑
j∈N2

i

f 2
ij + . . . + ∑

j∈Nm−1
i

f m−1
ij + ∑

j∈Nm
i

f m
ij (17)

The global control law um
i is list as follows

um
i = ∑

j∈N1
i

fij + ∑
j∈N2

i

f 2
ij + . . . + ∑

j∈Nm−1
i

f m−1
ij + ∑

j∈Nm
i

f m
ij − k1 ẋm

i

= − ∑
j∈N1

i

∇Vij(dij)− ∑
j∈N2

i

∇V2
ij (d

2
ij)− . . .− ∑

j∈Nm−1
i

∇Vm−1
ij (dm−1

ij )

− ∑
j∈Nm

i

∇Vm
ij (d

m
ij )− k1 ẋm

i

(18)

The control law of the entire UAV swarm are completed. Furthermore, the stability of
the configuration needs to be analyzed.

Theorem 1. Consider a subgroup of n UAVs with dynamics (2), under the control law (10), each
UAV can stay at a desired position and the forces and velocity converge to zero finally.

Proof of Theorem 1. Define a Lyapunov function candidate as

V1 = ∑
j∈N1

i

Vij(dij) + ∑
o∈Oi

Vo(dio) +
1
2

ẋ1
i

T
ẋ1

i (19)

From the above conclusion we can get V1 is non-negative. Differentiating (19) with respect
to time and combining with (2), (3) and (10), we have

V̇1 = ẋ1
i

T
( ∑

j∈N1
i

∇Vij(dij) + ∑
o∈Oi

∇Vo(dio) + ẍ1
i )

= ẋ1
i

T
(− f 1

sum + u1
i )

= −k1 ẋ1
i

T ẋ1
i

≤ 0

(20)

Thus the energy of each UAV i (i = 1, 2, ..., n) monotonically decreasing. From the
analysis we can conclude that the velocity of UAVs eventually converge as the same.

Theorem 2. For the entire swarm with n agents, under the global control law (18), all the UAVs
can arrive at the desired positions, the potential forces from the first layer to the mth layer and
velocity converge to zero finally.

Proof of Theorem 2. Define the global Lyapunov function candidate as

Vm =
n
∑

i=1
( ∑

j∈N1
i

Vij(dij) + ∑
j∈N2

i

V2
ij (d

2
ij)+ . . . + ∑

j∈Nm−1
i

Vm−1
ij (dm−1

ij )

+ ∑
j∈Nm

i

Vm
ij (d

m
ij ) +

1
2 ẋm

i
T ẋm

i )
(21)

From the (5), (11) and (15) we can get Vm is non-negative.
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Differentiating (21) with respect to time and combining with (3) and (18), we have

V̇m =
n
∑

i=1
ẋm

i
T( ∑

j∈N1
i

∇Vij(dij) + ∑
j∈N2

i

∇V2
ij (d

2
ij)

+ . . . + ∑
j∈Nm−1

i

∇Vm−1
ij (dm−1

ij ) + ∑
j∈Nm

i

∇Vm
ij (d

m
ij ) + ẍm

i )

=
n
∑

i=1
ẋm

i
T(− f m

sum + um
i )

= −k1
n
∑

i=1
ẋm

i
T ẋm

i

≤ 0

(22)

Therefore, the total potential energy can approach the minimumwe and ẋm
i → 0 as t→ ∞

for all the UAVs in the swarm, and so is ẍm
i . As a result, the multi-layer configuration of

the swarm is constructed.

3.3. Consensus Strategy

In this subsection, all the UAVs in the swarm have formed a fixed formation configu-
ration based on the potential function control law. However, the yaw angle ψ of each UAV
is still arbitrarily uncertain. In order to keep the flight states of all the UAVs in consensus, a
yaw angle adjustment method based on the concept of the Vicsek model [26] is proposed
for the multi-layer UAVs swarm.

For simplicity, we relabel each UAV in different layers. The edge of the first layer is
ε1 ⊆ ((i1, j1) : i1, j1 ∈ ν1, i1 6= j1;). For the second layer, ε2 ⊆ ((i2, j2) : i2, j2 ∈ ν2, i2 6= j2;).
For the mth layer, the edge is labeled as εm ⊆ ((im, jm) : im, jm ∈ νm, im 6= jm;). Then the
UAVs in each subgroup make corresponding updates according to the states of the previous
subgroups, and finally achieve consensus.

For the first layer, the UAVs yaw angle adjustment strategy is as follows

ψi1(t + 1) = arctan

No+1
∑

j1=1
sin ψj1(t)

No+1
∑

j1=1
cos ψj1(t)

(23)

The attitude of the UAV i1 can be updated according to the attitude of all the UAVs in the
same subgroup. Therefore, the consensus of the first layer is achieved.

For the second layer, the UAVs yaw angle are adjusted by the following approach

ψi2(t + 1) = arctan

No+1
∑

j2=1
sin ψj2 (t)

No+1
∑

j2=1
cos ψj2 (t)

= arctan

No+1
∑

j2=1
sin( 1

No+1

No+1
∑

j1=1
ψj1

(t))

No+1
∑

j2=1
cos( 1

No+1

No+1
∑

j1=1
ψj1

(t))

(24)

Therefore, ψi2 is obtained from the average of the yaw angles of the individual UAVs
in all the subgroups for the first layer.

Based on the above strategy, the UAVs yaw angle adjustment strategy for the mth
layer is as follows
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ψim(t + 1) = arctan

No+1
∑

jm=1
sin ψj2 (t)

No+1
∑

jm=1
cos ψj2 (t)

= arctan

No+1
∑

jm=1
sin( 1

No+1

No+1
∑

jm−1=1
ψjm−1

(t))

No+1
∑

jm=1
cos( 1

No+1

No+1
∑

jm−1=1
ψjm−1

(t))

(25)

In the above, we describe the consensus strategy between different layers, then all
the UAVs in the swarm achieve consensus eventually. For the specific example of the
UAVs swarm, as shown in Figure 1, assume n = 9, No = 2, there are nine UAVs labeled as
A1, . . . , A9, then the whole swarm can be combined as three first layer subgroups named as
G1

1 , G2
1 , G3

1 ,which constitute a second layer G2. Futhermore, G1
1 is composed of A1, A2, A3, G2

1
and G3

1 are consisted of A4, A5, A6, A7, A8, A9, respectively. Then we set the communication
between G1

1 and G2
1 are connected by A2 and A4, G2

1 and G3
1 are connected by A6 and A8,

G1
1 and G3

1 are connected by A3 and A7. Firstly, the UAV swarm achieves the desired
configuration through the forces between the UAV individuals and between the same
layers. Taking A2 as an example, A2 is subjected to the forces of A1 and A3, namely fA2 A1
and fA2 A3 , A2 is also subject to f 2

G1
1G

2
1

and f 2
G1

1G
3
1
, which are the components between G1

1

and G2
1 and between G1

1 and G3
1 , respectively. After the whole swarm reaches the desired

configuration, the resultant force of A2 is zero. Furthermore, let G1
1 , G2

1and G3
1 achieve

intra-group consensus through the yaw angle adjustment stragety (23), and reach the same
yaw angle ψA1 , ψA4 and ψA7 respectively. For the second layer, G2 achieve the intra-group
consistent yaw angle from the average of the ψA1 , ψA4 and ψA7 . Based on this rule, the
entire swarm achieves consensus eventually.

1A

2A
3A

4A

5A
6A

7A

8A
9A

1

1

2

1

3

1

2

1A

2A

6A

9A

1

1

2

1

3

1

2

1A

3A

4A

5A

7A

8A
6A

2

1

4A

5A

2A

1

1

1A

3A

2

9A

3

1

7A

8A
6A

2

1

4A

5A

2A

1

1

1A

3A

2

BO

By

1f
2f

3f
4f

1
2

3
4

2A

1

1

1A

3A

9A

3

1

7A

8A6A

2

1

4A

5A

2A

1

1

1A

3A

2

2 1A Af

2 3A Af

1
21

1

2f

1
31

1

2f

Figure 1. Communication topology with n = 9, No = 2.

4. Simulation Study

To illustrate the effectiveness of the proposed multi-layer topology and the consensus
algorithm, corresponding simulation results under different conditions are presented in
this section. For the multi-layer UAVs swarm, we consider a group of networked UAVs
with n = 27, No = 2, which contains two layer subgroups. The control parameters are
chosen as r0 = 2 m, r2

0 = 4 m, ξ = 20, η = 5.
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4.1. Swarm Configuration

For the proposed multi-layer UAVs system, all the UAVs are randomly distributed in
a fixed working area. Firstly, based on the adjacent principle, under the control law (10),
all the neighbors in the UAVs swarm are assigned to establish the multi-layer network
topology. All the UAVs move towards their desired location and keep the desired distances
with their neighbours under the forces between the UAV individuals and the forces between
layers at the same level, the repulsive forces makes UAVs avoid collisions and keep the
desired distance between them, while the force between layers makes the UAV swarm
achieve the desired configuration, then the resultant force from the artificial potential
converges to zero. In different situations, the number of UAVs in the whole system and the
number of their neighbors can be seted arbitrarily, so as to adjust the structure of the entire
network topology. When all the UAVs complete the assignment of neighbors, the first layer
topology within a set of subgroups is constructed, under the swarm configuration control
law (14), all the subgroups can be treated as independent individuals, then the neighbors
are assigned to these subgroups and the second layer network topology is established.
Based on this rule, the subgroups will adjust their position and form a higher level group,
until all the UAVs achieve the desired configuration. Here, we take 27 UAVs as an example
to illustrate the effectiveness of control laws. As shown in Figure 2, in the initial state,
the distance between UAV individuals is arbitrary, within the range of 25 m, then after
the UAVs start to communicate with each other, in a short iteration step, the UAVs at
any position converge quickly. When the step reaches around 150, the distance between
UAVs is within 2 m, and the expected configuration is basically achieved. As a result, all
UAVs in the swarm of each layer tend to be at the desired distance with the high formation
configuration results after 800 steps.

0 500 1000 1500
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5

10

15

20

25

D
is

ta
nc

e 
(m

)

Figure 2. The distance between all neighbor UAVs in the configuration.

4.2. Consensus Control

When the swarm have achieved the desired configuration, the proposed consensus
control approach will adjust the attitude of all the UAVs to achieve consensus. Figure 3
shows the process of achieving consensus from the initial yaw angle states. After the system
completes the desired configuration, the UAVs have arbitrary yaw angles. Then, under
the control law (23), the three UAVs in each group in the first layer adjust the yaw angles
to reach a consistent state, and then control law (24) enables the unification of the yaw
angle of UAVs between layers. It can be seen that when step = 150, the yaw angle of UAV
basically reaches 3 degree. After step = 500, the swarm completes the unification of yaw
angle. As a result, all the UAVs realize the motion consensus according to the proposed
recursive consensus control concept, while maintaining the desired swarm configuration
and moving in the same direction.
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Figure 3. The yaw angle of each UAV in the configuration.

5. Conclusions

The current paper proposed a multilayer framework based on the multi-layer con-
cept to deal with the multiagent problem with arbitrary number of UAVs. The primary
contribution is that the designed multi-layer structure can be used to form the desired
configuration and keep consensus under the context of large-scale UAVs swarm with
Assumption 1 and Assumption 2, rather than moving into random positions. A potential
function-based multi-layer controller is developed to drive all the UAVs to achieve the
desired configuration precisely without collisions. Then all the UAVs reach an agreement
through the consensus algorithm. The stability of the system is proved by the Lyapunov
approach. The simulation studies demonstrated the effectiveness of the proposed methods
for the UAVs swarm. In our future work, the trajectory tracking and the obstacle avoidance
of the large-scale UAVs swarm will be investigated under the Active Disturbance Rejection
Control approach.
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