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Abstract: The multiple unmanned aerial vehicles (UAVs) system is highly sought after in the fields
of emergency rescue and intelligent transportation because of its strong perception and extensive
coverage. Formulating a reasonable task scheduling scheme is essential to raising the task execution
efficiency of the system. However, the dynamics of task arrival and the heterogeneity of UAV
performance make it more difficult for multiple UAVs to complete the tasks. To address these issues,
this paper focuses on the multi-UAV scheduling problem and proposes a method of rolling-inspired
scheduling for emergency tasks by heterogeneous UAVs (RISE). In order to ensure that emergency
tasks can be allocated to UAVs in a real-time manner, a task grouping strategy based on a density peaks
(DP) clustering algorithm is designed, which can quickly select UAVs with matching performance for
the tasks arriving at the system. Furthermore, an optimization model with multiple constraints is
constructed, which takes the task profit and UAV flight cost as the objective function. Next, we devise
a rolling-based optimization mechanism to ensure that the tasks with shorter deadlines are executed
first while maximizing the objective function, so as to obtain the optimal task execution order for
each UAV. We conduct several groups of simulation experiments, and extensive experimental results
illustrate that the number of tasks successfully scheduled and the utilization rate of UAVs by RISE
are superior to other comparison methods, and it also has the fastest running time. It further proves
that RISE has the capability to improve the completion rate of emergency tasks and reduce the flight
cost of multiple UAVs.

Keywords: multi-UAV scheduling; emergency tasks; rolling-based optimization mechanism; task
profit; UAV flight cost

1. Introduction

Unmanned aerial vehicles (UAVs) offer the advantages of being lightweight and low
cost compared with manned aircraft. They can carry out specified tasks according to the
load type via remote control or independent planning without the need for operators.
For these reasons, UAVs are frequently utilized as an alternative to performing difficult and
hazardous activities [1,2]. The task execution mode has gradually shifted from single UAV
to multi-UAV cooperation with the ongoing advancement of relevant technologies and the
diversification of application scenarios [3]. A single UAV cannot complete complex tasks
independently due to its restricted load and performance, especially in the face of dynamic
changes of the task environment [4]. As multiple UAVs can be used simultaneously to
perform tasks in a coordinated and robust manner amid a complex environment, multiple
UAV systems have received extensive attention in the fields of emergency rescue, intelligent
transportation, and logistics distribution in recent years [5,6].

A multi-UAV system has clear advantages in both space and time of task execution.
For one thing, a group of UAVs can complete multiple tasks simultaneously in different
geographical locations [7]. Additionally, these UAVs can flexibly cope with the changing
environment. When one of the UAVs is unable to perform tasks due to interference or
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breakdown, its incomplete tasks can be reassigned so that the system is less affected and
has better fault tolerance [8]. Moreover, the multi-UAV system has presented the distinct
characteristics of various types and wide applications with the rapid development of UAV
technology. The UAVs in the system are quite different in many aspects, such as size, weight,
mileage, flight time, and flight speed [9,10]. Hence, the system composed of a group of
heterogeneous UAVs is widely used, which can better adapt to scenarios involving diverse
task types and unknown threat environments. It is worth noting that the key to ensuring
that the multi-UAV system can accomplish the tasks efficiently is formulating a reasonable
task planning scheme and clarifying the division of labor of each UAV. Task scheduling,
a crucial component of task planning, can assist multiple UAVs to obtain higher benefits
on the premise of completing tasks [11]. However, multi-UAV task scheduling is a NP-
hard problem, and numerous studies focus on modeling and solving this problem. Some
work [12,13] models multi-UAV task scheduling as the traveling salesman problem (TSP)
or the vehicle routing problem (VRP). On this basis, the variants of the above models are
also proposed successively by considering the constraints such as task completion time and
UAV load capacity [14,15], and they have better adaptability to the environments. These
methods are suitable for the situation of fewer tasks and stronger UAV capability and have
the advantages of simple principles and low complexity. However, they need to simplify the
relevant constraints or task elements to seek model standardization in the modeling process.
In addition, the choice of the proper solution algorithm for the established model is another
significant issue in the research on multi-UAV task scheduling [16], which is determined
by the task scenario, number of tasks, performance of UAVs, and communication mode,
among other factors.

Motivation. Multi-UAV task scheduling is a process in which a mission is decomposed
into some number of tasks, and these tasks are assigned to UAVs in a multi-UAV system
to complete them, with the goal of achieving the optimal or suboptimal performance
of a certain criterion function [17]. Nevertheless, this process is limited by constraints
such as task execution time and UAV performance. The majority of current research uses
the conventional model and solution algorithm when addressing the multi-UAV task
scheduling problem. These approaches struggle to adapt to the complex and changeable
task environment. As a result, the tasks’ features in the actual scenario still need to
be carefully examined. In particular, there are two issues that need to be taken into
consideration in the design of the multi-UAV task scheduling scheme:

• The rationality of task scheduling. The tasks that will be assigned should be compatible
with the UAV performance. For example, the UAV that carries materials can carry out
the tasks of distribution and rescue. However, most of the existing task scheduling
schemes fail to establish a certain mapping relationship between tasks and UAVs,
which prevents the performance of UAVs from meeting the requirements of the tasks
that are assigned to them, ultimately leading to task rejection or execution delays that
have an impact on the multi-UAV system’s overall efficiency.

• The adaptability of task scheduling. The arrival of emergency tasks and the depletion
of UAV energy frequently occur during the task execution of the multi-UAV system.
Some methods build task scheduling models based on the known task environment but
lack dynamic scheduling mechanisms that can adapt to the changes in the environment.
Once an emergency occurs, the established scheme cannot be applied to the changed
scenario, which easily leads to the problems of low task completion rate and low
utilization rate of UAVs.

In summary, there is an urgent need for an emergency task scheduling method with
a real-time and rapid response capability that can effectively save unmanned resources
and improve task completion efficiency. This kind of method can quickly generate the
task UAV matching mechanism after the attributes of the tasks and UAVs change, and it
can modify the original task execution sequence and scheduling scheme in a real-time
manner to maximize the benefits of task execution. Aiming at the above issues, we propose
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a method of Rolling-Inspired Scheduling for Emergency tasks by heterogeneous UAVs
(RISE). The main contributions of our work are as follows:

Contributions: The major contributions of this paper are summarized as follows:

• We construct an optimal scheduling framework for emergency tasks, which is mainly
composed of two phases: task clustering and optimization scheduling. It can rapidly
generate scheduling schemes for tasks that arrive in the system dynamically.

• We devise a task clustering strategy inspired from a density peaks (DP)-based cluster-
ing method, which realizes the reasonable grouping of dynamic tasks by constructing
a distance matrix based on multiple task attributes.

• We present a dynamic task scheduling model for heterogeneous UAVs. We create
an objective function that takes the value and completion probability as the task
profit, and it also takes the safety risk and energy consumption as the UAV flight
cost. Furthermore, a task allocation strategy based on the rolling optimization idea is
designed to improve the execution efficiency of emergency tasks.

The remainder of this paper is organized as follows. Section 2 introduces the related
work. The system framework and problem statement are depicted in Section 3. Section 4
provides a thorough explanation of the modeling and formulation. The proposed task
scheduling method is introduced in Section 5, followed by the simulation experiments and
performance analyses in Section 6. Section 7 concludes with a summary of this paper.

2. Related Work

Multi-UAV task scheduling is a typical combinatorial optimization problem. It con-
structs the objective function in accordance with the task requirements and UAV perfor-
mance and reasonably allocates the task sequence for each UAV under the constraints
of mileage and energy consumption to maximize the overall efficiency of the multi-UAV
system. In the face of complex task environments and various task scheduling models, de-
signing effective solution algorithms is the key to enhancing the task execution capabilities
of multiple UAVs. In the existing research work, the methods based on optimization [18],
heuristics [19], and swarm intelligence [20] are all effective solutions to this kind of problem.

The optimization-based task scheduling method is to calculate all possible solutions
satisfying the constraints of UAVs and tasks in the finite solution space and to find the
optimal solution as the final assignment result, that is, to find the exact solution in the finite
space. Zhang et al. [21] modeled a path planning problem as a nonlinear optimal control
problem with non-convex constraints and proposed a solving algorithm by approximating
the non-convex parts. Yao et al. [18] formulated a joint optimization problem of the task
allocation and the flying control as a mixed integer non-linear programming (MINLP) prob-
lem and minimized the drone’s journey time constrained by the battery capacity and task
deadlines. In order to achieve optimal task allocation with the differential-and-distortion
geo-obfuscation, Wang et al. [22] built a mixed-integer non-linear model to minimize the
expected travel distance of the selected workers. Lippi et al. [23] proposed a mixed-integer
linear programming model to address a task allocation problem for human multi-robot
settings. This model could minimize the overall execution time while optimizing human
and robotic workload. You et al. [24] formulated an optimization model with the aim of
minimizing the energy consumption of all UAVs under the constraints of task deadline
and computing resources and proposed an iterative algorithm by applying block coordi-
nate descent methods to solve it. For the task allocation problem of heterogeneous UAVs,
Chen et al. [25] established a multi-constraint linear programming model and proposed an
adaptive clustering-based algorithm to obtain approximate optimal point-to-point paths for
UAVs. On this basis, they also designed a symbiotic organisms search-based optimization
strategy [26] to plan the execution sequence to minimize the time consumption of the tasks.

Heuristic-based algorithms are another kind of effective solution for task scheduling
problems with multiple objectives and constraints, which can find satisfactory solutions
in polynomial time. Aiming at the issue of UAV coordinated scheduling, Wu et al. [27]
designed a hybrid simulated annealing algorithm to obtain a scheduling scheme that took
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into account the interests of both task requesters and task assigners. Zhu et al. [28] devel-
oped an efficient hybrid particle swarm optimization with a simulated annealing algorithm,
which produced a high-quality solution for the rapid-assessment task-assignment problem.
For Ant Colony Optimization (ACO), Wu et al. [19] proposed a dynamic labor division
model to solve the UAV swarm task allocation problem by designing the dynamic task
stimulus and response threshold. In addition, Zhen et al. [29] put forward an improved
distributed ACO algorithm for the search–attack task scheduling for a multi-UAV platform,
which showed robustness through numerical experiments. Focusing on the path planning
problem of heterogeneous UAVs, Chen et al. [30] proposed an ACO-based algorithm to
seek approximately optimal solutions and minimize the time consumption of tasks in the
cooperative search system. For the multi-UAV task scheduling, Liu et al. [31] proposed a
tabu-list-based simulated annealing algorithm to realize task allocation among multiple
UAVs. They then adopted the variable neighborhood descent algorithm to generate a satis-
factory scheduling scheme. Huang et al. [32] proposed an iterated heuristic framework to
periodically schedule tasks. They employed the Roulette-based flight dispatching approach
and a simulated annealing-based local search method to optimize the solutions.

In the application of swarm intelligence algorithms, Chen et al. [20] modified the
two-part wolf pack search algorithm, which was applied to the time-sensitive multi-UAV
cooperative task allocation problem. Inspired by the collaborative hunting behavior of a
wolf pack, Hu et al. [33] proposed a distributed self-organizing method for UAV swarm
search–attack mission planning. This method could realize flexible motion planning and
group task coordinating. For the cooperative surveillance task, Liu et al. [34] established a
cooperative model based on moving cost and formation stability and used a sparrow search
algorithm (SSA) with fast convergence speed and strong optimization capability to solve
it. Aiming at the multi-UAV search task, Fei et al. [35] devised a cooperative architecture
oriented to local communication networks and proposed an improved SSA to enhance the
formation optimization capability. Duan et al. [36] proposed a dynamic discrete pigeon-
inspired optimization algorithm to handle cooperative search–attack missions, which could
balance between benefit and consumption under the validity of constraints. Zhou et al. [37]
designed an intelligent UAV swarm-based cooperative algorithm for consecutive target
tracking and physical collision avoidance. Yu et al. [38] developed an improved genetic
algorithm to solve the cooperative mission planning problem, which designed an efficient
logic-based unlocking mechanism for the crossover and mutation operations.

The majority of the methods noted above can be used to address static scheduling
issues. Table 1 provides a list of several representative methods to more effectively illustrate
their attributes. These methods are frequently applied in the task pre-scheduling phase of
multiple UAVs. However, the task pre-scheduling scheme will be affected by the dynamic
changes of the environment and the limitations of UAV capabilities during the process
of task execution, so this scheme needs to be dynamically adjusted in accordance with
the environment. Thus, aiming at the above issues, we develop a method of rolling-
inspired scheduling for emergency tasks by heterogeneous UAVs (RISE). This method
can enhance the capabilities of rapid response and task execution for multiple UAVs in a
dynamic environment.
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Table 1. The basic attributes of the representative methods.

Method Literature Tasks UAVs Dynamic Tasks Base Station

Optimization
[18] Single type Heterogeneous No No
[24] Single type Heterogeneous Yes No
[25] Single type Heterogeneous No No

Heuristics
[30] Single type Heterogeneous No No
[31] Single type Heterogeneous No No
[32] Single type Heterogeneous Yes Yes

Swarm intelligence
[34] Single type Heterogeneous No No
[36] Multi-type Heterogeneous No No
[38] Multi-type Heterogeneous No Yes

3. System Framework and Problem Statement

In this section, the framework of RISE and the primary notations utilized in this work
are briefly summarized. In addition, the main issues with emergency task scheduling are
briefly discussed, as well as the basic task model and UAV model. Before describing the
framework and method, we first introduce the notation in this work. The main notations
are summarized in Table 2.

Table 2. The definition of notations.

Notation Definition

Ti, Tj, Tk the ith task, jth task, and kth task
Ui the ith UAV
Bi, Bq the ith base station and qth base station

PTi, RTi, ati, dli
the task position, number of resource requirements, arrival time,
and deadline of task Ti

PUi, RUi, MMi, VUi, f ti
the UAV position, number of resources, maximum flight mileage,
UAV velocity, and flight time of Ui

sti the service time of Bi
vk the initial value of Tk
prk the completion probability of Tk
µi the energy consumption of Ui per unit flight distance
di,j,k the Euclidean distance from Tj to Tk for Ui
dmin

k,q the shortest plane distance from Tk to Bq

Dc the cutoff distance

LFnorm
j,k

, typenorm
j,k

the life cycle difference and type difference between Tj and Tk after
regularization

disnorm
j,k

the distance between Tj and Tk after regularization

LFmax, LFmin
the maximum difference and minimum difference between the life
cycles of Tj and Tk

dismax, dismin the maximum distance and minimum distance between Tj and Tk
CVi the capability value of Ui
RVi the requirement value of ith task sequence
Li the length of ith task sequence

3.1. Framework

The emergency task scheduling of multiple UAVs is a complicated optimization
issue with various constraints in consideration of task attributes and UAV capability.
Figure 1 depicts the RISE framework in its entirety. For a given task set, an emergency
scheduling process is designed via the following two phases: the task clustering phase and
the optimization scheduling phase.
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Figure 1. The framework of RISE.

The first phase of the RISE framework determines the classification of existing tasks,
taking into account multiple inherent attributes of tasks (e.g., task position, task resource
requirements, and deadlines, etc.). A DP-based algorithm is used to obtain the clustering
results of the tasks in a task set. These tasks are divided into different clusters, each with its
own cluster center.

The second phase of the framework delineates the allocation and scheduling of tasks-
to-UAV. The tasks in each cluster are placed in a rolling queue, waiting for the UAV to
complete them. The task monitor continuously monitors the system. The emergency tasks
are divided into different clusters based on their attributes when they arrive at the system.
These tasks are sorted according to their importance scores before being added to the
rolling queues with the unscheduled tasks. Finally, the task scheduler assigns tasks in the
rolling queues to different UAVs. The task will be rejected if it fails to be completed within
its deadline.

3.2. Problem Statement

A fundamental problem of multiple UAV task scheduling is determining which UAVs
are assigned to which tasks. In addition, a number of limits should be considered, including
the service time of the tasks and the UAV energy consumption and flight distance, among
others. Especially when emergency tasks arrive, due to the timeliness requirement, it is
critical for the system to produce new scheduling schemes as rapidly as possible to ensure
that these tasks are completed within their deadline. This section mainly discusses the
assumptions based on the aforementioned problems, as well as the basic model in the
scheduling process. We are dedicated to developing a scheduling model for multi-UAV
rescue tasks in this study. In contrast to general scenarios, it is important to take into
account the issue of UAVs carrying rescue materials when designing the model for rescue
tasks [39,40]. As each task point has different requirements for materials and the load
capacity of each UAV is limited, these two issues need to be reflected in the model.

3.2.1. Problem Assumption

The formulation of the task scheduling problem is based on the following assumptions:

(1) Each task can be accomplished by at most one UAV.
(2) The assignment result of UAVs is regarded as the access to the positions of a series of

task points.
(3) When the UAVs land at the base stations, they will finish replenishing the resources

within a fixed time period (only considering two types of resources: battery and
supply).
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(4) UAVs carry out tasks at the same altitude. The 2D coordinates of rescue tasks are
considered to improve the timeliness of task allocation.

3.2.2. Basic Model

There are three basic models in the system: task model, UAV model, and base sta-
tion model. These models define the essential components of the system and quan-
tify their various properties. In our system, we feature every model by specifying the
following attributes.

(1) Task model: there are two sorts of scheduled tasks in the system: general tasks and
emergency tasks. The urgency of emergency tasks is greater and their deadlines
are shorter than general tasks: GT = {T1, T2, . . . , TM′} indicates the general task set,
and ET = {TM′+1, TM′+2, . . . , TM} indicates the emergency task set. Both types of
tasks have five characteristics. Each can be modeled by Ti =< IDT

i , PTi, RTi, ati, dli >
where they are represented in order by task number, task position, the number of
resource requirements, arrival time, and deadline of task Ti, respectively.

(2) UAV model: the platform model in the system is defined as a group of heterogeneous
UAVs UAV = {U1, U2, . . . , UN}. To further describe the characteristics of the UAV for-
mation, each UAV can be featured by a tuple Ui =< IDU

i , typeU
i , PUi, RUi, MMi, VUi,

f ti > in which they indicate UAV number, UAV type, UAV position, the number of
resources, maximum flight mileage, UAV velocity, and flight time, respectively.

(3) Base station: the role of the base station is to provide resources for UAVs, mainly
including batteries and rescue materials. Let BS = {B1, B2, . . . , BQ} be the set of base
station, each station can be represented by Bi =< IDB

i , PBi, sti >, where IDB
i is the

station number, PBi is the station position, and sti is the service time of Bi.

We also define a decision variable ηi,j,k, which is a binary variable, to determine
whether Tj and Tk can be carried out by UAVi; ηi,j,k can be expressed as:

ηi,j,k =

{
1, if the UAVi can perform from Tj and Tk, and j 6= k
0, otherwise

. (1)

4. Modeling and Formulation

Because the emergency task scheduling of multiple UAVs is a NP-hard problem, we
establish an optimization model to solve it. The proposed model is composed of two parts:
objective function and constraints. This section focuses on the definition process of the
objective function as well as a thorough analysis and formulation of the model constraints.

4.1. Objective Function

It is vital to ensure not only that as many tasks as possible can be accomplished during
the task execution of UAV formation, but also that the formation execution efficiency is
maintained. Thus, to solve the scheduling problem of emergency tasks with dynamic
arrival and short life cycle, we design an objective function that includes task profit, flight
energy consumption, and safety risk by thoroughly considering the task profit and UAV
flight cost in the process of task execution. Next, we calculate the best task sequence for
each UAV to ensure the formation’s task execution efficiency. The objective function of
RISE is described in detail below.

Definition 1. Task Profit. Each task is given an initial value based on its importance, and the
number of resource requirements is used to predict the probability of task completion. Thus, task
profit is defined as follows:

PF =
N

∑
i=1

M

∑
j=0

M

∑
k=1

ηi,j,k × vk × prk, (2)

where vk represents the value of Tk, which reflects the task’s importance, the value of vk is a random
number between [0, 1]: the smaller the vk, the lower the task’s value; prk indicates the probability
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that Tk is successfully executed, prk = 1− RUk/(max{RUl |l ∈ [1, M]}+ 1), which indicates
that the more resource requirements of the task, the lower prk of the task. The higher the value of
PF, the more rational the order of UAV task execution is, and the probability of task completion
rises accordingly.

Definition 2. Fight Energy Consumption. Low flight cost is one of the crucial goals for the UAV
formation due to the capacity limitation of airborne batteries, which impacts task execution efficiency.
Flight energy consumption refers to the consumption generated in the process of the UAV from the
starting position to the task position, including battery energy consumption, equipment loss, and
other factors. It is defined as follows:

EC =
N

∑
i=1

M

∑
j=0

M

∑
k=1

ηi,j,k × µi × di,j,k, (3)

where µi is the energy consumption of UAVi per unit flight distance, and di,j,k represents the
Euclidean distance from Tj to Tk for UAVi. The lower EC, the lower the flight cost of the UAV
formation and the higher the task execution efficiency.

Definition 3. Safety Risk. Flight safety is a factor that must be considered when UAVs perform
missions, and it needs to be analyzed from the level of the whole flight route. All UAVs take off from
the same initial position and perform the assigned tasks, respectively. Each UAV is independent
of the others according to Assumption 1. The safety risk for any UAV refers to the flight risk
assessment value affected by the length of the task queue and the distance between adjacent tasks. It
is defined as follows:

FR =
N

∑
i=1

M

∑
j=0

M

∑
k=1

ηi,j,k ×
di,j,k

MMi
. (4)

It can be seen from (4) that the greater the number of tasks and the longer the flight dis-
tance, the greater FR and the lower the flight reliability of the UAV formation. Consequently,
based on the three factors above, the objective function of RISE is:

max FRISE= max(α1PF−α2EC−α3FR), (5)

where α1, α2, and α3 are normalization coefficients.

4.2. Constraints

Multiple UAVs are limited by various constraints during task execution. These con-
straints and their formulation are described in detail in this section, involving task time
constraints, UAV flight constraints, and energy consumption constraints. The specific
descriptions are as follows:

(C1) Each UAV starts from the initial position to perform the assigned tasks. If tasks
are accepted, the UAV will take off from the initial position and fly to the first task position.
The UAV will stay at the initial position for task preparation when it does not receive the
tasks. Constraint C1 can be formulated as follows:

M

∑
j=1

ηi,0,j ≤ 1,∀i ∈ [1, N], (6)

where ηi,0,j indicates UAVi takes off from the initial position and carries out the jth task.
(C2) Each task can be carried out by at most one UAV. The purpose of C2 is to avoid

repeated task execution, which will affect the overall efficiency of the UAV formation.
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For Tj, the number of arriving and departing UAVs is less than or equal to one. Constraint
C2 is expressed as:

N

∑
i=1

M

∑
j=0

ηi,j,k =
N

∑
i=1

M

∑
l=1,l 6=k

ηi,k,l ≤ 1, ∀k ∈ [1, M]. (7)

Specially, if UAVi does not carry out Tk, the number of times UAVi arrives and leaves

Tk is
N
∑

i=1

M
∑

j=0
ηi,j,k =

N
∑

i=1

M
∑

l=1,l 6=k
ηi,k,l = 0. If UAVi carries out Tk, the number of times UAVi

arrives and leaves Tk is equal to 1 (
N
∑

i=1

M
∑

j=0
ηi,j,k =

N
∑

i=1

M
∑

l=1,l 6=k
ηi,k,l = 1).

(C3) The system requires that each UAV only perform one task at a time to ensure that
it can carry out tasks reliably and effectively, that is, the task sequence assigned to the UAV
is executed in order. We use a two-dimensional matrix S = {si,j|1 ≤ i ≤ N, 0 ≤ j ≤ M} to
record the execution order of each UAV. The expression si,k is the integer variable, which
can be expressed as:

si,k =

{
si,j + 1, ifηi,j,k = 1
0, ifηi,j,k = 0

,
∀i ∈ [1, N], ∀j ∈ [0, M]
∀k ∈ [1, M], k 6= j

, (8)

where si,0 = 0 represents UAVi taking off from the initial position. For the task execution or-
der of UAVi, si,k should be less than or equal to the total number of tasks M. The expression
is as follows:

si,k ≤ M, ∀i ∈ [1, N], ∀k ∈ [1, M]. (9)

(C4) Each UAV must perform tasks within a given mileage range. The UAV takes
off from the initial position to execute tasks, and energy is continuously consumed with
the increase in flight mileage. As the battery carried by the UAV is fixed, the UAV needs
to be refueled with energy when confronted with the dynamic arrival tasks. The base
stations are set up in the task region for the UAV’s energy provisioning. Assume that UAVi
departs from the position of Tj, it must determine whether the current remaining mileage
is sufficient to reach the position of Tk, and C4 is formulated as follows:

M
∑

j=0
ηi,j,k(di,j,k + dmin

k,q ) ≤ MMi

di,j,k = sqrt((xT
j − xT

k )
2
+ (yT

j − yT
k )

2
)

dmin
k,q = min(sqrt((xT

k − xB
q )

2
+ (yT

k − yB
q )

2
))

,
∀i ∈ [1, N], ∀j ∈ [0, M]
∀k ∈ [1, M], ∀q ∈ [1, Q]

, (10)

where dmin
k,q is the shortest flight distance from Tk to Bq, and di,j,k is the distance from Tj to

Tk for UAVi.
(C5) Only if the UAV meets the premise that its number of resources is greater than

the demand for task resources can it carry out the task. Due to the different types of tasks,
the consumption of UAV resources is also different. As the total resources of the UAV
are constantly consumed, UAVi needs to determine whether the resources it carries meet
the requirements of task execution in advance before executing Tk. If this condition is not
met, UAVi needs to fly to the base station to supplement resources. Constraint C5 can be
formulated as:

M

∑
j=0

ηi,j,kRTk ≤ RUi, ∀i ∈ [1, N], ∀k ∈ [1, M]. (11)

(C6) Each task is required to be completed within its deadline. The dynamically
reached task has stringent time constraints, and the UAV must complete it within the
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specified time. The task will be rejected if it is not completed within the time limit. The time
it takes for UAVi to fly from Tj to Tk is di,j,k/VUi; C6 can be formulated as:

TUi +
M

∑
j=0

ηi,j,k × di,j,k/VUi ≤ dlk, ∀i ∈ [1, N], ∀k ∈ [1, M], (12)

where TUi represents the total flight time of the completed tasks for UAVi.
Based on the above definitions and descriptions of objective functions and constraints,

we conduct an optimization model of task scheduling, which is formulated as follows:

max FRISE= max(α1PF−α2EC−α3FR)
s.t. C1, C2, C3, C4, C5, C6

. (13)

Although the above linear programming problem can obtain the exact solution,
the complexity and difficulty of addressing this problem increases as a large number
of tasks arrive at the system dynamically, especially if there are certain emergency tasks,
and the timeliness of this problem cannot be guaranteed. On the basis of the above facts,
we propose the optimization algorithm RISE.

5. Emergency Task Scheduling Method

We devise RISE to generate a high-quality scheduling scheme that includes two phases:
task clustering and optimization scheduling. Task clustering is critical to the whole task-
to-UAV scheduling process. The reason for this is that the task scheduling problem is
a multi-constraint optimization problem with exponentially increasing solution space
and time complexity as the number of tasks increases. Moreover, task attributes such
as geographical position, resource requirements, and deadline have an impact on UAV
allocation. Hence, we use the improved DP algorithm to achieve task clustering, which
improves the efficiency of UAV task allocation. In addition, we design a rolling-inspired
optimization scheduling approach, which transforms the dynamic optimization problem
into multiple local optimization problems. The attribute information of tasks and UAVs is
fully considered to achieve the optimal scheduling of task-to-UAV.

5.1. Improved DP-Based Task Clustering

The density peaks clustering (DP) algorithm [41], which was published in Science, can
automatically find cluster centers and achieve efficient clustering of arbitrary shaped data.
It can be observed that the core of it is the design of cluster centers. The authors considered
that cluster centers have two characteristics: (i) cluster centers are surrounded by neighbors
with lower local density ρj; (ii) they are at a relatively large distance δi from any points with
a higher local density. The formulations are given as:

ρj =
M
∑

k=1,k 6=j
χ(Dj,k − Dc)

χ(Dj,k − Dc) =

{
1, Dj,k < Dc ;
0, otherwise

, (14)

δj =


min
j∈I j

S

{
Dj,k

}
, I j

S 6= 0;

max
j∈[1,M]

{
Dj,k

}
, otherwise

I j
S =

{
k ∈ [1, M] : ρk > ρj

} , (15)

where Dc is the cutoff distance, which can be selected so that the average number of
neighbors is 2% of the total number of tasks; χ() is the logical judgment function; Dj,k is

the distance between Tj and Tk; I j
S is index set, indicating that the local density ρj < ρk.



Drones 2022, 6, 310 11 of 28

The “distance” in DP does not only refer to Euclidean distance but also a broad concept,
which can be composed of task’s deadline and distance, etc. In our approach, we try to
improve DP and build a two-dimensional distance matrix D =

{
Dj,k|j, k ∈ [1.M]

}
among

tasks using two attributes: life cycle and position. A task’s life cycle refers to a period from
the time it arrives at the system to its deadline; Dj,k is formulated as follows:

Dj,k = λ1LFnorm
j,k

+ λ2disnorm
j,k

, (16)

where LFnorm
j,k

is the life cycle difference between Tj and Tk after normalization, respectively;
and disnorm

j,k
is the distance between Tj and Tk after normalization. They are expressed

as follows: {
LFj,k =

∣∣(dlj − atj)− (dlk − atk)
∣∣

LFnorm
j,k

= (LFj,k − LFmin)/(LFmax − LFmin)
, (17)

{
disj,k =

√
(xT

j − xT
k )

2
+ (yT

j − yT
k )

2

disnorm
j,k

= (disj,k − dismin)/(dismax − dismin)
, (18)

where LFmax and LFmin are the maximum difference and minimum difference between
the life cycles of Tj and Tk. Similarly, dismax and dismin are the maximum distance and
minimum distance between Tj and Tk, respectively.

We use the decision factor γj of DP to automatically select the cluster centers of the
current task set; γj requires that each center have a high local density and a greater distance
from other high-density tasks. It can be defined as follows:

γj = ρjδj, ∀j ∈ [1, M]. (19)

The number of cluster centers depends on the number of UAVs in the system. We
select the same number of cluster centers and UAVs, so that each UAV can perform a group
of tasks with similar attributes; {γj}M′

j=1 of all tasks are sorted in descending order, and the
top N tasks with the highest γ are chosen as the cluster centers of the current task set.

It is critical to classify other task members after obtaining the cluster centers. If the
nearest neighbor strategy of DP is used to partition these members, the number of them
in each cluster will be greatly different. A large number of members will easily cause the
UAV to take too long to perform such tasks and be unable to handle the emergency tasks
that arrive to the system in a timely manner, resulting in a reduction in the task completion
rate. Conversely, a small number of members might quickly lead to the UAV becoming idle
when executing such tasks, and the UAV can rapidly complete these tasks and remain idle
in hover until new tasks are assigned, resulting in lower platform utilization. As a result,
we propose a balanced allocation mechanism to improve DP in the process of partitioning
members, so as to ensure that the number of members in each cluster is balanced as much
as possible. For the current task set T, the average value of the number of tasks to be
assigned to each UAV is formulated as follows:

AVG = dM/Ne. (20)

In the process of nearest neighbor partition, it is required to limit the boundary density
of each cluster, i.e., the number of cluster members, during the nearest neighbor partition
procedure. For each cluster center ci, i ∈ [1, N], Tk is divided into corresponding cluster if
Dci ,k satisfies:

Dci ,k ≤ Dci ,AVG, ∀k ∈ [1, M]. (21)

The improved DP algorithm has the following characteristics:

(1) It can effectively avoid the generation of halo points and ensure the accuracy and
rationality of task clustering.
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(2) The number of members in each cluster is more balanced, which can effectively solve
the problems of low platform utilization and low task completion rate.

Figure 2 depicts task clustering based on improved DP with fifteen tasks as examples.
The tasks are located on a two-dimensional map, which is shown in Figure 2a, and their
positions are randomly generated. Next, ρj and δi are calculated using improved DP
to generate a decision graph. We employ (20) to evaluate the quality of cluster centers.
From Figure 2b, we can see that T4, T5, T6, and T15 are selected as cluster centers. Once the
centers are determined, we utilize (20) and (21) to partition the remaining tasks to ensure
that the number of members in each cluster is as balanced as possible. The results are
shown in Figure 2c.
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Figure 2. Illustrations of task clustering phase: (a) task layout; (b) center selection; (c) task partition.

5.2. Rolling-Inspired Optimization Scheduling

Three key parts in the optimization scheduling phase are devised to enable RISE to
achieve efficient task scheduling, namely, task-UAV adapter, emergency task manager,
and rolling queue generator. The adapter is responsible for completing capability mapping
between UAV and a cluster of tasks, which means providing a UAV with a task queue after
clustering. The manager monitors the emergency tasks arriving at the system in a real-time
manner and assigns them to the appropriate task cluster. The most significant part of this
phase is the rolling queue generator, which can determine the execution order of tasks
in the queue and dynamically adjust the order as required. The detailed descriptions are
as follows.

5.2.1. Task-UAV Adapter

The requirement value of the task sequence and the capability value of the UAV
should be evaluated to ensure that the UAV formation can effectively carry out these tasks.
To meet the requirements of task scheduling for timeliness and completion rate, the crucial
attributes (RUi and MMi) are used to assess the capability value of the UAV. It can be
defined as follows:

CVi =
MMi

N
∑

j=1
MMj

+
RUi

N
∑

j=1
RUj

, ∀i ∈ [1, N], (22)

where CVi indicates the capability value of Ui; the larger CVi implies that Ui has superior
task execution capability. Due to the heterogeneous nature of UAVs, we arrange all UAVs in
descending order according to their capability values to get a list of UAVs. The task queues
are assigned to UAVs based on this list, which can dramatically enhance the execution
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efficiency of UAVs. Similarly, the requirement value of the task sequence RVi is formulated
as follows:

RVi =

[
Li

∑
l=1

(dll − atl)/
M

∑
k=1

(dlk − atk) + RTl/
M

∑
k=1

(RTk)

]
/Li, ∀i ∈ [1, N], (23)

where Li is the length of ith task sequence; dll− atl represents the life cycle of Tl : it can reflect
the task urgency; the larger dll − atl is, the lower urgency is. We arrange the requirement
values of all tasks in descending order and adapt them to the UAV list. The adaptation
principle is that the task sequence with the largest requirement value is matched to the UAV
number with the largest capability value, so as to improve the success rate of task execution.

5.2.2. Emergency Task Manager

Due to the shorter deadline of emergency tasks compared to general tasks, UAVs
should be arranged to execute such tasks as soon as they arrive at the system. The task
surveillance module in the emergency task manager is set to detect the arrival of the
emergency tasks in a real-time manner. After receiving the emergency tasks, the attribute
PT of these tasks are extracted and quickly matched with the cluster centers Cluster =
{Clu1, Clu2, . . . , CluN} obtained by the improved DP algorithm, so as to generate the task
sequence for each UAV at the current time. The match score MSi,j can be formulated
as follows:

MSi,j = min
(xClu

i − xET
j )

2
+ (yClu

i − yET
j )

2

N
∑

i=1
(xClu

i − xET
j )

2
+ (yClu

i − yET
j )

2
, ∀j ∈ [1, M−M′], (24)

where M−M′ is the number of the emergency tasks. For each emergency task, MSi,j is
calculated based on task position, which is inversely proportional to the distance between
the task and the cluster center. The emergency task Tj is quickly assigned to the sequence
of the cluster center with the smallest distance from it.

5.2.3. Rolling Queue Generator

Each UAV is assigned a task sequence after the previous two parts are completed.
Many tasks may be rejected due to exceeding their life cycle if only the tasks in the se-
quence are executed in order, resulting in a low completion rate of tasks. Aiming at this
issue, the rolling queue generator is designed to optimize the task sequence of each UAV.
The execution order of tasks will be modified according to their attributes such as urgency
and location, so as to improve the completion rate of these tasks.

We arrange the tasks in the sequence in ascending order according to the deadline
during the process of rolling queue generation, so that the task with the highest urgency can
be completed first, meeting constraint C6. If C6 is not satisfied, this task will be assigned to
other UAVs that meet C6. Furthermore, this task will be rejected if no UAV in the formation
can meet its requirements.
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In addition, there is still another issue to be resolved. When facing scheduled tasks
with the same deadline, it is vital to comprehensively analyze the profits and costs of
executing tasks so as to optimize the execution order of these tasks. However, due to the
limitation of a UAV’s maximum mileage and resource capacity, we devise the rolling queue
in the optimization scheduling and arrange tasks with the same deadline in descending
order of importance (max FRISE), so as to generate the final task execution order. Suppose
that there are m tasks TRL = {TRL

1 , TRL
2 , . . . , TRL

m } in the rolling queue at this moment
for UAVi.

(1) If TRL
1 fails to meet C4, UAVi cannot perform tasks. This phenomenon indicates that

UAVi needs to fly to the nearest base station for supplemental energy. Because its
position has changed after arriving at the base station, the tasks in the rolling queue
must be reordered so that the task with the highest importance score is completed first.

(2) If TRL
1 fails to meet C5, UAVi cannot perform tasks. There are two factors that con-

tribute to this occurrence. One is that if the initial resource of UAVi is insufficient
to meet the requirement of TRL

1 , then TRL
1 should be assigned to other UAVs that

meet C5 and C6, and it will be deleted from the queue. If not, TRL
1 will be rejected.

The second is that the UAVi needs to fly to the nearest base station for supplemental
energy. The tasks in the rolling queue need to be reordered just as in (1).

(3) If TRL
1 meets C4 and C5, UAVi is scheduled to carry out this task, and TRL

1 will be
removed from the queue.

The following are the advantages of the rolling queue generator:

(1) The dynamic optimization problem is transformed into multiple local optimization
problems by fully considering the profits and costs of task execution, which can
effectively reduce the cost of optimal scheduling and enhance task execution feasibility.

(2) The tasks with the earliest deadline are scheduled first to ensure the overall success
rate of task execution.

(3) Tasks are awaiting execution in the rolling queue. There is no migration over-
head caused after rescheduling, effectively lowering the energy consumption of
system scheduling.

The optimization scheduling process is shown in Figure 3. When the emergency tasks
T6, T7, and T8 arrive in the system, they are quickly assigned to the UAV that meets their
requirements according to the task-UAV adapter. They are inserted into the task queue
waiting for scheduling according to their deadlines. After that, the rolling queue is sorted
according to the importance score of each task and generates a new task scheduling scheme;
the positions of T6, T7, and T8 in the queue are readjusted at this moment. In the rolling
queue, T4 and T5 are assigned to other UAVs if they could not be completed before their
deadlines. If all UAVs are unable to perform these two tasks, they will eventually be
rejected by the UAV formation.
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Figure 3. Illustration of task clustering phase.
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5.3. Algorithm Implementation

The main framework of the proposed RISE is described in Algorithm 1. First, the essen-
tial parameters, which include attributes of tasks, UAVs, and base stations, are initialized.
The improved DP algorithm is used to realize the matching between the UAV and a cluster
of tasks (steps 2–3). Subsequently, the main loop of RISE is proposed. For each iteration,
the emergency task is assigned into the task sequence, then Rolling Optimization() is
enabled to achieve optimal scheduling of emergency tasks (steps 5–10).

Algorithm 1: RISE

1 Parameter initialization of UAVs, tasks, and base stations;
2 Improved DP(N,M′,{Tj}M′

j=1);

3 Adapt {Tj}M′
j=1 to {Ui}N

i=1;

4 f lagT ← 1;
5 while f lagT do
6 if Emergency task {ETj}M−M′

j=1 arrives then
7 Assign the emergency task to the task sequences of UAVs by (24);

8 Rolling Optimization(N, {TaskU}N
i=1);

9 if the task sequences of UAVs are ∅ then
10 f lagT ← 0;

The detailed implementation procedure of the improved DP is as follows. As shown in
Algorithm 2, the distance matrix D is constructed by (16) for existing tasks after initializing
parameters. The cutoff distance dc is determined according to D, and the local density
ρj and distance δi of each task are calculated by (14) and (15), respectively. To evaluate
the quality of cluster centers, the decision factor γj is calculated by (19), and {γj}M′

j=1 of
all tasks are sorted in descending order. After sorting, we select the top N tasks with the
highest γ as the cluster centers (steps 11–18). Subsequently, the remaining tasks are divided
into the closest cluster by calculating the distance from each center, and the proposed
balanced allocation mechanism is used to balance the number of members in each cluster
(steps 19–30).

The implementation of the rolling optimization phase is shown in Algorithm 3. The in-
puts of this algorithm are composed of the number of UAVs, the task sequences of UAVs,
and the task set. For each UAV, the tasks in the sequence are arranged in ascending order
according to their deadlines, and then the execution order of tasks with the same deadline
is determined by calculating their importance. When the resources and flight distance of Ui
are sufficient to meet the execution of Tϕ, Tϕ is arranged into SSi (steps 8–13). If the distance
between Ui and Tϕ is greater than the maximum flight mileage, the UAV should fly to the
nearest base station, followed by the tasks in the sequence being reordered according to
Importance Sort() (steps 14–17). When the resources of Ui fail to satisfy the requirements of
Tϕ , the UAV also needs to fly to the station. However, if the UAV is still unable to complete,
Tϕ will be assigned to another UAV. Finally, Tϕ is rejected if no UAV can perform it.
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Algorithm 2: Improved DP()

1 Input: The number of clusters N; The number of tasks M′; Task set {Tj}M′
j=1;

2 Output: Task label set {TL}M′
j=1;

3 for j = 1 to M′ − 1 do
4 for k = j + 1 to M′ do
5 Construct the distance matrix D by (17);

6 Determine cutoff distance dc according to matrix D;
7 Calculate the local density {ρj}M′

j=1 of the task by (15);

8 Calculate the distance {δj}M′
j=1 of the task by (16);

9 Calculate the decision factors {γj}M′
j=1 by (19);

10 Sort {γj}M′
j=1 in descending order;

11 {TL}M′
j=1 ← 0;

12 Ncluster ← 1;
13 center = [];
14 for j = 1 to M′ do
15 if ρj × δj ≥ γN then
16 TLj = Ncluster;
17 center = [center; Ncluster];
18 Ncluster = Ncluster + 1;

19 AVG = dM′/Ne; {num}N
i=1 ← 0;

20 for j = 1 to M′ do
21 if TLj == 0 then
22 DTL = max(D);
23 cluster = 0;
24 cnum = 0;
25 for i = 1 to N do
26 if DTL ≤ D(j, center(i)) and num(center(i)) ≤ AVG then
27 DTL = D(j, center(i));
28 cluster = center(i);

29 TLj = cluster;
30 num(cluster) = num(cluster) + 1;

The pseudocode of the function Importance Sort() is given in Algorithm 4. It can be
seen that the task with the minimum deadline is scheduled first (step 3), but it fails to
carry out Tj because the finish time of Ui is less than the deadline of Tj. At this point,Tj is
assigned to Uk; otherwise, it will be rejected (steps 5–13). For the tasks that Ui can perform,
their importance scores are calculated by (5), and Algorithm 4 finally outputs the sorted
results of these tasks according to importance score (steps 16–17).
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Algorithm 3: Rolling Optimization()

1 Input: The number of UAVs N; The task sequences of UAVs {TaskUi}N
i=1;

2 Output: The scheduling sequences of UAVs {SS}N
i=1;

3 for i = 1 to N do
4 The task sequence of Ui is arranged in ascending order according to deadline Tdl ;
5 Importance Sort(task sequence of Ui);
6 decision← 1;
7 while decision do
8 if Tϕ.RT ≤ Ui.RU and dis(Tϕ, Ui) ≤ Ui.MM then
9 Update Ui.PU according to Tj.PT;

10 Ui.MM = Ui.MM− dis(Tϕ, Ui);
11 Ui.RU = Ui.RU − Tϕ.RT;
12 Arrange Tϕ into SSi;
13 decision← 0;

14 else if Tϕ.RT ≤ Ui.RU and dis(Tϕ, Ui) ≥ Ui.MM then
15 Ui flies to the nearest base station for supplemental energy;
16 Update MM, PU, RU and f t of Ui;
17 ImportantSort(task sequence of Ui);

18 else if Tϕ.RT ≥ Ui.RU then
19 if Tϕ.RT ≤ initial Ui.RU then
20 Ui flies to the nearest base station for supplemental energy;
21 Update MM, PU, RU and f t of Ui;
22 Importance Sort(task sequence of Ui);

23 else
24 if Tϕ.dl and Tϕ.RT meet the requirements of Uk then
25 Reassign Tϕ to Uk and delete Tϕ from the task sequence of Ui;

26 else
27 Refuse Tϕ;

28 decision← 0;

Algorithm 4: Importance Sort()

1 Input: The task sequence of Ui;
2 Output: The task number ϕ with max importance score;
3 J ← min(Tdl of the task sequence);
4 for j = 1 to J do
5 if Tj.dl > Ui. f t then
6 f lag = 0;
7 for k = 1 to N do
8 if Tj.dl ≤ Uk. f t and k 6= i then
9 Reassign Tj to Uk;

10 Delete Tj from the task sequence of Ui;
11 f lag = 1;

12 if f lag == 0 then
13 Refuse Tj;

14 else
15 Calculate the importance score ISj of Tj by (5);

16 Sort {ISj}
J
j=1 in descending order;

17 ϕ← num(IS1);
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6. Experiment Results

In this section, we conduct a simulation experiment aimed at the rescue task scheduling
problem in an open outdoor environment, which fits to the assumptions in Section 3.2.1.
All our experiments are implemented on the Intel Core i7 3.00GHz PC with 16GB RAM
(Lenovo, Beijing, China). The tasks in the experiment are all rescue tasks, and they are
divided into general tasks and emergency tasks according to the arrival time. The initial
scenario of multi-UAV task scheduling is deployed as shown in Figure 4. The size of the
task region is 8× 12 km, the blue points mark the positions of general tasks, and the red
rectangles indicate the deployment positions of the base stations. Moreover, the required
weight of each task is randomly generated in the interval (0,2] kg, and the deadline of each
task is randomly selected in [300 s, 600 s, 900 s, 1200 s].
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Figure 4. Task location deployment in an outdoor environment.

The basic information about UAVs and base stations is shown in Tables 3 and 4. It
can be seen from Table 3 that six heterogeneous UAVs with different attributes are used
to perform rescue tasks.The flight speed is a key factor to be considered in path planning,
whereas our work is to design a reasonable task allocation scheme to achieve dynamic
task scheduling. As a consequence, we set the UAV’s flight speed as a fixed value in the
experiment. Although they have the same initial position and flight speed, their maximum
mileage and carrying resources are different. The position coordinates and service time
of each base station are listed in Table 4. We assume that the process of UAVs’ energy
supplement is to replace the battery, so it takes a fixed time (30 s) to replenish the energy in
the base stations.

Table 3. The basic information of the UAVs.

ID PU RU(kg) MM(km) VU(m/s) ft(s)

U1 (0,0) 25 100 50 0
U2 (0,0) 25 100 50 0
U3 (0,0) 15 250 50 0
U4 (0,0) 15 250 50 0
U5 (0,0) 20 200 50 0
U6 (0,0) 20 200 50 0



Drones 2022, 6, 310 19 of 28

Table 4. The basic information of the base stations.

ID PB st(s)

B1 (5.4,2.4) 30
B2 (4.0,6.0) 30
B3 (10.8,6.0) 30

The main work of this paper is to address the task scheduling problem of multiple
UAVs in a dynamic environment. Six UAVs begin to perform tasks after the initial task
scheduling scheme is generated. Emergency tasks arrive at the system after a period of time,
and these tasks are allocated to the task rolling queues of the UAVs, so the order of each
group of unscheduled tasks needs to be recalculated. In our experiment, the number of
general tasks is set at M′ = 200, and the number of emergency tasks is set at M−M′ = 50.
Based on the above parameter settings, the task execution results of UAVs are shown in
Figure 5. It illustrates the change in the number of unscheduled tasks for each UAV.
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Figure 5. The flight routes generated by four methods: (a) SC; (b) FCM; (c) DPGA; (d) RISE.

6.1. Performance Evaluation

As far as we know, there is no work on dynamic scheduling of multiple UAVs for
emergency tasks. We cannot compare the proposed algorithm with other complete algo-
rithms, so we are only able to improve existing similar algorithms to fulfill the experimental
requirements of our method. In this section, we select the more popular spectral clus-
tering (SC) [42], fuzzy c-means algorithm (FCM) [43], and DPGA [25] in recent years for
qualitative and quantitative analysis.

SC is a clustering method based on the concept of graph theory. It obtains clustering
results by calculating the similarity matrix of data samples and selecting appropriate feature
vectors. Nevertheless, the original SC method does not have the capability to optimize
the task execution order. To ensure the experiment’s fairness, we add the designed rolling
optimization process to SC.
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FCM is a fuzzy clustering algorithm based on an objective function. Similar to SC,
when a UAV is assigned a series of tasks, it is impossible to determine the execution order
of each task. Hence, we also add the rolling optimization process to FCM. The purpose of
comparing with SC and FCM is to prove the accuracy of DP in emergency task scheduling,
so that UAVs can complete as many assigned tasks as possible at the minimum cost.

DPGA is proposed to solve the path planning problem of multiple UAVs in a bounded
number of regions. In terms of task allocation, this method uses the DP-based algorithm to
partition task regions into clusters so as to perform tasks correctly and effectively. In addi-
tion, in the task order adjustment phase, DPGA takes the total flight length of the UAV as
the fitness function and uses the genetic algorithm (GA) to optimize iterations to find the
optimal flight path. Therefore, the purpose of choosing DPGA as the comparison method is
to illustrate the effectiveness of the designed rolling optimization mechanism. The specific
parameter settings of GA are as follows: population size = 50, crossover rate = 0.8, mutation
rate = 0.01, maximum iterations =100, generations = 100 ∗ length(Ui.taskorder).

The UAVs’ flight routes generated by the four methods are shown in Figure 5.
In Figure 5a, a few task points are too far apart from other task points for the flight
routes of U1, U4, and U6, and the positions of the task points performed by other UAVs are
not compact. The flight route of U1 in Figure 5b is appropriate, but U3 also has some tasks:
it is far away from the task cluster it belongs to. Especially from the route of U6, it can be
seen that the assigned task points can be obviously divided into two sub-clusters, which
increases the flight time and service cost of the UAV formation. The task allocation results
of DPGA and RISE are better than those of SC and FCM, but there are still three task points
far away from the task cluster in Figure 5c. Although the task points of U6 are sparse in the
UAV route generated by RISE, the closeness between the tasks performed by other UAVs
is greater than that of DPGA. This is because we improve the original DP algorithm and
select the task points that are far away from the cluster, then reassign these task points to
other UAVs, which can reduce the flight distance of UAVs as much as possible and enhance
the overall efficiency of UAV formation.

The task scheduling results of the four methods are listed in Table 5. For both general
and emergency tasks, 197 tasks have been successfully scheduled by RISE, which is the
largest number of tasks completed among the four methods. In comparison to SC, FCM,
and DPGA, RISE’s running time and flight time of UAV formation are shorter. In addition,
the number of SC, FCM, and RISE accesses to the base stations is the same; the only
difference is that DPGA is 15. The running time of DPGA is 4.07 s, which is the longest
among all methods. Its flight time of UAV formation is 1253.14 s. These results also further
prove that the proposed rolling optimization mechanism can not only reasonably optimize
the execution order of unscheduled tasks but also have lower time complexity within the
premise of maximizing task execution efficiency.

Table 5. Comparison results of the four methods.

Method Number of Scheduled
Tasks

Number of Access to
Base Stations Running Time (s) Flight Time of UAV

Formation (s)

SC 170 14 0.10 1198.22
FCM 182 14 0.18 1183.24

DPGA 172 15 4.07 1253.14
RISE 195 14 0.06 1149.27

The comparison results for the number of unscheduled tasks of the four methods
are shown in Figure 6. After 200 s, the number of unscheduled tasks of all UAVs tends
to surge, which means that emergency tasks arrive in the system and are allocated to
each UAV according to the clustering results. However, as shown in Figure 6a, SC, FCM,
and RISE all have a clear downward trend after 800 s. The results indicate that numerous
tasks are rejected by UAVs at that moment because some constraints in the optimization
model (flight distance, resource requirements, etc.) cannot be satisfied. It can be observed
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from Figure 6b,d,f that the number of tasks of DPGA, SC, and FCM on U2, U4, and U6
has plummeted, respectively, and many tasks will not be executed, resulting in a low task
completion rate. In comparison, RISE rarely has a sudden drop in the number of tasks,
which can enable all UAVs to complete as many assigned tasks as possible, thus improving
the task completion rate.
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Figure 6. Comparison for the number of unscheduled tasks of the four methods: (a) U1; (b) U2; (c) U3;
(d) U4; (e) U5; (f) U6.

On this basis, in order to more clearly show the task allocation of the four methods,
the number of tasks performed by each UAV is illustrated in Table 6. From Table 6, it can
be seen that UAV4 and UAV5 are assigned more tasks than other UAVs for SC; for FCM,
U2, and U6 are assigned more tasks than other UAVs; for DPGA, U3, U4, and U5 perform
more tasks than U1, U2, and U6. This situation will make UAVs with a small number of
tasks end their work in a short time and stay idle, whereas other UAVs cannot meet their
maximum mileage due to too many tasks to be performed, and some tasks will not be
completed. In order to reduce the flight cost of multiple UAVs, we improved the original
DP algorithm and adjusted the number of tasks in each cluster after clustering the tasks
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through the proposed balanced allocation mechanism. RISE has the capability to handle
outliers and can make the number of task members in each cluster more balanced, further
improving the resource utilization of the multi-UAV system.

Table 6. The number of tasks performed by each UAV.

UAV ID
Method SC FCM DPGA RISE

U1 24 24 27 34
U2 25 40 23 30
U3 27 27 34 36
U4 36 27 33 36
U5 33 27 32 32
U6 25 37 23 27

Because the initial cluster task points are randomly selected for all methods in the
clustering phase, there will be certain differences in the results of each run. We run
RISE and the three comparison methods 20 times and calculate the average value to
reduce the randomness of the experiment and obtain more accurate task scheduling results.
The results are shown in Table 7 and Figure 7. In Table 7, we select six indicators to
evaluate the performance of all methods, including the maximum number of scheduled
tasks, the minimum number of scheduled tasks, the number of scheduled tasks, the number
of accesses to base stations, the running time, and the flight time of the UAV formation.
It can be seen that RISE shows superior performance: the number of scheduled tasks
is 203, and the overall flight time of the formation is 1157 s. The explanation for this
phenomenon is that we use an improved DP-based method to cluster the initial task points,
and the results can assist the UAVs to obtain more reasonable unscheduled task sequences.
Moreover, for each UAV, all the tasks assigned to it are more compact in location space,
and it can perform these tasks at the minimum cost within a limited number of resource
replenishments. In addition, the comparison results of running time also indicate that the
proposed method is superior to SC, FCM, and DPGA in terms of time cost. Furthermore,
there are outliers in both SC and FCM but not in DPGA and RISE. For example, among the
20 results of SC, the number of scheduled tasks at one time is the smallest, only 157, which
proves that using DP to cluster tasks is more reasonable and stable.

Table 7. Comparison results of the four methods after running 20 times.

Method

Maximum
Number of
Scheduled

Tasks

Minimum
Number of
Scheduled

Tasks

Average
Number of
Scheduled

Tasks

Number of
Accesses to

Base Stations

Average
Running Time

(s)

Average Flight
Time of UAV
Formation (s)

SC 189 157 170 15 0.12 1190

FCM 203 172 185 14 0.16 1204

DPGA 185 160 171 14 3.85 1263

RISE 214 189 203 14 0.05 1157
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Figure 7. Average number of scheduled tasks by the four methods.

6.2. Extended Experimental Analysis
6.2.1. RISE Superiority Discussion

In the previous experiments, we selected one instance, including 200 general tasks
and 50 emergency tasks, to verify the performance of the proposed method by comparing
RISE with other methods. It is a challenge for multi-UAV task scheduling to handle the
dynamic changes in the number of tasks arriving at the system. In this section, we conduct
a group of experiments with ten instances of each comparison method to further prove the
effectiveness of RISE. Instances I1–I5 contain 50 emergency tasks, but their general tasks
are different. The number of general tasks generated for these instance ranges is [100, 300]
with a step of 50. Different from I1–I5, I6–I10 contain 100 emergency tasks. We also run
these instances 20 times and calculate their average values.

Table 8 shows the results of instances I1–I10 for the four methods. The comparative
items consist of the number of scheduled tasks, the number of accesses to base stations,
and the running time of the algorithm. As can be observed from Table 8, the number of
scheduled tasks for RISE is greater than that of SC and FCM in all instances, which indicates
that DP is feasible and effective as a task clustering method in our work. Furthermore, as
the number of accesses to base stations is fewer than that of SC and FCM, it demonstrates
that the proposed task grouping method is reasonable, so that each UAV can perform the
assigned task at a lower cost. Compared with DPGA, the number of tasks scheduled by
RISE is greater than that of DPGA, except for I7. This means that using rolling optimization
to achieve task scheduling can achieve better results than using GA. It can also be seen
that, according to the running time of all methods, DPGA is greater than that of SC, FCM,
and RISE, and the running time of RISE is less than that of SC and FCM in most instances.
The designed task grouping and optimal scheduling method can run at a lower time cost
and obtain an optimized task scheduling scheme.

Figure 8 shows the flight time of the UAV formation in each group of instances.
From Figure 8, we can see that RISE’s overall flight time of the UAV formation is superior
to SC and FCM in most instances. Although DPGA is smaller in I1 and I6 than the other
three methods, and its average flight time in I6 is only 1014 s, it can be seen from the results
in Table 8 that the number of tasks successfully scheduled by DPGA is the fewest, and the
running time of DPGA is greater than that of the other methods. In summary, our method
achieved excellent performance in solving the task scheduling problem for multiple UAVs.
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Table 8. Comparison results of ten instances generated by the four methods.

Method Instance Number of Number of Number of Number of Accesses Running TimeGeneral Tasks Emergency Tasks Scheduled Tasks to Base Station

SC

I1 100 50 135± 10 14± 1 0.09± 0.02
I2 150 50 157± 11 14± 1 0.08± 0.05
I3 200 50 170± 19 15± 2 0.12± 0.05
I4 250 50 192± 20 15± 2 0.11± 0.05
I5 300 50 218± 17 15± 2 0.13± 0.04
I6 100 100 160± 9 14± 1 0.04± 0.02
I7 150 100 199± 5 15± 1 0.08± 0.03
I8 200 100 247± 12 16± 1 0.13± 0.03
I9 250 100 272± 21 16± 2 0.15± 0.05
I10 300 100 308± 20 16± 2 0.13± 0.08

FCM

I1 100 50 135± 10 14± 1 0.05± 0.02
I2 150 50 163± 7 14± 1 0.10± 0.02
I3 200 50 185± 18 14± 2 0.16± 0.05
I4 250 50 198± 15 15± 2 0.12± 0.03
I5 300 50 235± 13 15± 1 0.12± 0.05
I6 100 100 155± 15 14± 1 0.07± 0.02
I7 150 100 203± 16 15± 1 0.11± 0.05
I8 200 100 250± 10 15± 1 0.07± 0.02
I9 250 100 288± 23 16± 2 0.12± 0.06
I10 300 100 307± 25 17± 1 0.16± 0.05

DPGA

I1 100 50 127± 9 13± 1 2.53± 0.50
I2 150 50 155± 10 13± 2 3.21± 0.30
I3 200 50 171± 14 14± 1 3.85± 0.50
I4 250 50 189± 19 15± 2 5.03± 0.20
I5 300 50 208± 13 14± 2 5.98± 0.50
I6 100 100 155± 15 12± 1 3.11± 0.30
I7 150 100 216± 15 14± 1 3.22± 0.50
I8 200 100 230± 10 15± 1 3.70± 0.30
I9 250 100 258± 18 15± 2 4.46± 0.50
I10 300 100 277± 21 15± 2 5.68± 0.20

RISE

I1 100 50 145± 12 14± 1 0.03± 0.02
I2 150 50 182± 8 14± 1 0.03± 0.02
I3 200 50 203± 14 14± 2 0.05± 0.03
I4 250 50 228± 15 14± 1 0.09± 0.02
I5 300 50 257± 10 15± 1 0.11± 0.06
I6 100 100 175± 10 14± 2 0.05± 0.02
I7 150 100 205± 15 15± 1 0.08± 0.03
I8 200 100 256± 22 15± 2 0.10± 0.03
I9 250 100 290± 17 15± 1 0.10± 0.05
I10 300 100 315± 15 15± 1 0.12± 0.05

6.2.2. RISE Scalability Discussion

The implementation of RISE is significantly impacted by the application scenario’s
complexity. Therefore, in order to demonstrate RISE’s adaptability to the dynamic task
environment, we conduct a group of experiments with varying numbers of UAVs and
emergency tasks in this section, so as to objectively evaluate the performance and scalability
of RISE. In the experiments, the number of general tasks is set to a fixed value M′ = 200;
the number of emergency tasks is within [100, 400] with a step of 100; and the number of
UAVs is set to N = 6,9, and 12, respectively. Considering the heterogeneity of the UAVs,
the attribute values of newly added UAVs are selected randomly according to the settings
in Table 3. We also run each case of RISE 20 times and calculate its average value.
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Figure 8. The flight time of the UAV formation in each group of instances.

The experimental results are shown in Figure 9 and Table 9. It can be seen from
Figure 9 that when N = 9 and N = 12, the scheduling success rate of RISE is maintained at
an excellent level with the increase of emergency tasks. Even if the number of emergency
tasks is larger than the number of general tasks, RISE can still generate a reasonable task
scheduling scheme so that most tasks are completed before their deadline. RISE has a low
scheduling success rate when N = 6. This is because the number of emergency tasks is
too large for the UAVs to complete the assigned tasks quickly. In addition, the running
time in Table 9 further indicates that RISE has an acceptable running efficiency for different
cases. In conclusion, RISE has good scalability and superior performance to cope with more
complicated task scenarios.

Figure 9. The success rate of scheduled tasks.
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Table 9. Experimental results with different numbers of UAVs.

Number of UAVs Number of
General Tasks

Number of
Emergency

Tasks

Number of
Scheduled

Tasks
Running Time

UN = 6

200 100 256± 22 0.10± 0.03
200 200 288± 12 0.11± 0.05
200 300 375± 13 0.15± 0.04
200 400 378± 9 0.22± 0.07

UN = 9

200 100 279± 11 0.09± 0.05
200 200 374± 11 0.12± 0.06
200 300 482± 13 0.19± 0.05
200 400 589± 10 0.15± 0.07

UN = 12

200 100 289± 8 0.09± 0.06
200 200 384± 7 0.05± 0.03
200 300 485± 12 0.08± 0.04
200 400 590± 10 0.13± 0.04

7. Conclusions

In this paper, we attempt to address the problem of multi-UAV scheduling for emer-
gency tasks. We develop a multi-objective optimization model of task scheduling by taking
into account the profit of task completion and the flight cost of UAVs. On this basis, we em-
ploy an improved DP algorithm to cluster the tasks and allocate the emergency tasks of the
dynamic arrival system to the established clusters, so as to achieve rapid matching between
tasks and UAVs. For the unscheduled task sequence of each UAV, a rolling optimization
mechanism is proposed to adjust the task scheduling scheme in a real-time manner to obtain
the optimal task execution order. The experimental results demonstrate that the improved
DP algorithm can obtain more reasonable task clustering results than SC and FCM, which
assists UAVs to perform tasks at a lower flight cost. In addition, the proposed rolling opti-
mization mechanism enables UAVs to schedule tasks with higher importance preferentially
on the premise of satisfying constraints such as flight distance and resource requirements,
so as to maximize the profits of task completion. RISE provides an excellent solution for
the dynamic task scheduling problem of multiple UAVs, and it has a shorter running
time than the GA-based optimization algorithm. In the future, we will concentrate on the
multi-UAV scheduling problem in unknown environments, especially the establishment of
a multi-UAV cooperation mechanism under restricted communication conditions.
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