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Abstract: Current unmanned aerial vehicles have been designed by applying the traditional ap-
proach to aircraft conceptual design which has drawbacks in terms of the individual analysis of each
discipline involved in the conception of new aircraft, the reliance on the designer’s experience and
intuition, and the inability of evaluating all possible design solutions. Multidisciplinary analysis
and optimization focus on solving these problems, by synthesizing all the disciplines involved and
accounting for their mutual interaction. This study presents a multidisciplinary analysis and opti-
mization method for conceptually designing electrical flying-wing micro-unmanned aerial vehicles.
The conceptual design task was formulated as a non-linear mathematical programming problem.
The method considers the trimming of the UAV during each mission profile phase, consisting of the
climb, cruise, and descent. We used two algorithms, one for design space exploration and another for
optimization. Typical examples of solving conceptual design problems were considered in the work:
the modernization of an existing UAV; the effect of the change of the payload and endurance change
on the takeoff weight; and the influence of different static margins on aerodynamic characteristics.
The advantages of using this design method are the remotion of additional internal cycles to solve the
sizing equation at each optimization step, and the possibility of not only obtaining a unique optimal
solution but also a vector of optimal solutions.

Keywords: aircraft conceptual design; multidisciplinary analysis and optimization; flying-wing
aircraft; unmanned aerial vehicle

1. Introduction

Unmanned aerial vehicles (UAVs) have been an object of interest since the early years
of aviation [1–3], but they have only recently become widely used. The interest in this
aircraft resides in their implementation in either low human interventions or complete
human exclusion tasks. For instance, in traffic monitoring [4–6], infrastructure monitor-
ing [7,8], environmental monitoring [9–11], and surveillance [12–14], UAVs are employed
because they require long periods of activity and direct human intervention is limited.
Agriculture [15–17], terrain mapping [18], and data collection (gathering) are examples of
tasks in which the use of UAV cuts operational costs, along with military applications [14],
emergency rescue, and natural disaster tasks [19,20], in which the deployment of UAVs is
in preference due to the dangerous nature of the performed tasks.

Regardless of the task, the search for a design configuration and parameters that fulfill
requirements is the priority and is accomplished during the conceptual design phase. Even
though during this phase the time consumption and cost are less than the whole design
process, many tasks must be completed, and many important decisions must be taken.
Several authors have reported the importance of this design phase [21–26]; for example,
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it is estimated that up to 80% of the costs of an aircraft’s life cycle are determined during
the conceptual and preliminary design phase [27], reminding us of the importance of this
phase. Conceptual aircraft design has seen different approaches. First, they were designed
by trial and error. Then, after gathering enough information, a statistical methodology
was developed, which is based on empirical data from existing aircraft. This has been
the traditional design paradigm until today and has been adequate for past demands.
Examples of this design paradigm are found in the literature [21–25,28–30]. The methods
and approaches founded on these studies are primarily based on empirical formulas,
decoupling of the involved disciplines for separated analysis, a sequential approach which
converges by iteration, and, more importantly, on the designer’s experience and intuition.
To illustrate this, the studies [31–34] are related to the design of UAVs by applying the
traditional design paradigm. Other works present a slightly different method for conceptual
design. For instance, in work [35], a method for the conceptual design of small aircraft
with hybrid-electric propulsion systems was proposed by adapting the existing methods.
Similarly, [36] proposed the use of neural networks as a surrogate model, due to the high
computational requirements required by the genetic algorithm used for the optimization
of the wing geometry. Another example was presented in [37], in which not only genetic
algorithms were used, but also differential evolution algorithms for performing multi-
objective optimization.

However, current needs demand more efficient aircraft [38]; hence, new methods for
aircraft design are required. Concurrent design is a design paradigm aimed at significantly
reducing product development time and optimizing product performance, which has been
gradually replacing the traditional design paradigm [39,40]. One of the main methodologies
of concurrent design is multidisciplinary analysis and optimization (MDAO), a new physics-
based design methodology which considers the relation between disciplines involved in
aircraft design, has been widely applied to aircraft design [41–48], and lately, to the design
of UAVs. For example, in [49], an MDAO-based methodology for designing an electric
UAV, which optimizes aerodynamic configurations and propulsion systems, was presented;
or in [50], which performed a multi-objective MDAO for maximizing both the payload
weight and cruise duration of a tail-sitter UAV.

Nevertheless, the presented works regarding conceptual fixed-wing UAV design have
shown some limitations [31–33,36,37,49,50]: for instance, the optimization process does
not consider any stability or control constraints [34,49,51] (which are especially important
in flying wing configurations); the optimization does not contemplate a whole mission
profile [34,36,50,51]; the optimization approach converges to a local minimum [49]; an
optimization algorithm was not even considered [32–35].

In this paper, we present an MDAO design method for electric propulsion flying wing
UAVs. Aerodynamics, stability and control, propulsion, and weight and balance were the
disciplines considered in the conceptual phase. The objective of the current work was to
further increase the model fidelity at the conceptual design level, without compromising
the design time. This was accomplished by introducing a trimming procedure during the
analysis of the mission profile stage, which considers the aircraft pitch angle by performing
penalty-based optimization for minimizing the maximum take-off weight (MTOW), varying
geometrical and flight conditions parameters subject to stability, balance, aerodynamic
constraints, by solving the sizing equation, and reducing the population size within the
optimization for reducing the computational time.

The advantages of using this method in design are the remotion of additional internal
cycles to solve the sizing equation at each optimization step; the possibility of not only
obtaining the single optimal solution, but also the optimal solution vector, the ability to
perform a rapid study of the impact of various parameters and flight conditions on flight
performance and technical indicators, while ensuring a sufficiently detailed view of the
aircraft designed considering the aircraft trimming, given the static margin, as well as the
requirements of pitch control.
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2. Materials and Methods

The problem of selecting the optimal parameters of an electric flying wing UAV was
formulated in terms of non-linear mathematical programming:

minimize f(x)
by varying xI ≤ xi ≤ xI i = 1, . . . , nx
subject to gj(x) ≤ 0 j = 1, . . . , ng

hl(x) = 0 l = 1, . . . , nh

The MTOW W0 was chosen as the objective function. The design variables were the
aspect ratio AR, leading-edge sweep angle ΛLE, taper ratio λ, geometric twist τ, wing
loading W/S, flight speed v, the first coefficient of the polynomial of the camber line C, the
angle of attack α, and the static margin (xCG − xAC). The proposed method allowed for the
consideration of other types and a number of design variables. However, emphasis was
placed on these parameters, as they have the greatest influence on the flight and energetic
characteristics of small electric UAVs. The constraints were as follows:

• Zero longitudinal momentum to trim the aircraft, considering the given static margin;
• The constraint on the maximum lift coefficient value;
• An inequality constraint on the minimum relative elevon moment arm value to ensure

enough UAV pitch control;
• The equality constraint on the value of the lift coefficient required to ensure horizon-

tal flight.

The objective function, as well as the constraints, are presented as follows:

f
(
x, x′

)
= W0

(
x, x′

)
g1(x’) = |CM(x’)|−δCM ≤ 0

g2(x) = CL(x) − CL max ≤ 0

g3(x) = fpcAR − lel ≤ 0

h(x,x’) = CL eq(x’) − CL(x) ≤ 0

where: x = [AR, Λ, λ, θ, W/S, V] and x’ = [C, α, (xCG − xAC)] are the design variables vector;
CM is the pitching moment coefficient; δCM is the pitch coefficient threshold; CL is the lift
coefficient; CL max is the maximum lift coefficient; fpc is the fudge factor for pitch control;
lel is the relative elevon moment arm; CL eq is the trimming lift coefficient.

The method relies on 2 main steps:

1. Calculation of the objective function and constraints values.
2. Solution of the optimization problem.

The objective function and the constraints calculation process is presented in Figure 1.
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2.1. Calculation of the Objective Function

The sizing equation used for calculating the MTOW was the following:

W0 =
Wpayload + Wequip + Wstruct + Wreserve

1−
(

max
i

(
Wpu
W0

)
+ ∑n

i=1

(
Wbatt
W0

)) , (1)

where the absolute weights in kg been the payload Wpayload, equipment Wequip, structure
Wstruct, and reserve weight Wreserve are represented in the numerator, while the weight
ratios been the power unit Wpu/W0 and batteries weight ratio Wbatt/W0 are in the numerator;
i is the flight phase.

Mathematical models for determining the energy carrier weight of the batteries are
different from those for determining the fuel weight of aircraft with a heat engine. For
designing aircraft with electric propulsion systems, the battery weight ratio was calculated
as the ratio of specific energy consumption SEC to the specific energy of battery E. The
power unit weight ratio was calculated as the product of the engine weight-to-thrust
(W/P)pu by the power-to-weight ratio P/W, thus

Wbatt
W0

= g
1

ηpuSoC
SEC

E
, (2)

Wpu

W0
=

(
W
P

)
pu

P
W

, (3)

where SEC = P
W t in kWh/kg; ηpu is the power unit efficiency; SoC is the battery state of

charge; g is the Earth’s gravitational acceleration in m/c2.
The battery and power unit weight ratio depend on the power-to-weight ratio, which

was calculated by solving the flight equilibrium equations with respect to and normal to
the flight path:

T cos α − D − W sin γ = 0,
L − W cos γ + T sin α = 0.

(4)

where T is the thrust in N; D is the drag force; W is the UAV’s weight; L is the lift force;
α is the angle of attack; γ is the flight path angle.

Obtained from the analysis of the free body diagram shown in Figure 2.
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Figure 2. Forces acting on the UAV.

The power-to-weight ratio can be written as (P/W) = T/W V, then the equation for the
required power-to-weight ratio considering the propeller efficiency became:

(
P
W

)
=

V
ηprop

((
L
D

)
sinγ+ cosγ

)
(

sinα+
(

L
D

)
cosα

) , (5)

The power-to-weight ratio depends on the aerodynamic efficiency, and for its determi-
nation AVL [52], a vortex lattice method was used to calculate the lift and inductive wing
drag, and empirical formulas were used for calculating the parasite drag [53].

For small/mini-UAVs, the weight of the flying wing structure primarily depends on
the manufacturing technology, more than on its strength. Hence, the following equation,
depending primarily on the area and material of the wing, was used for its calculation:

Wstruct = 2 kρδS, (6)

where: k is a coefficient accounting for the manufacture; ρ is the density of the material; δ is
the thickness of the layer; S is the wing area.

The payload, equipment, and reserve weight were considered fixed weights. Therefore,
their value depends exclusively on the value assigned by the designer.

2.2. Calculation of the Constraints

The calculation of the terms of the sizing equation is performed when the UAV is
trimmed. The trimming of the flying wing UAV can be ensured by two parameters: the
angle of attack and the airfoil shape; both parameters influence the lift and pitching moment
coefficients.

The baseline airfoil was the NACA M6, modeled by a similar method of the combi-
nation of camber lines and thickness distributions. The third-order polynomial yc = ax3

− bx2 + cx, describes the airfoil. The coefficient a of the polynomial of the camber line is
responsible for determining the degree of bending in its tail.

Trimming the aircraft, with respect to the UAV center of gravity xCG and the given
static margin, was performed by changing the coefficient C of the camber line and the
angle of attack (see Figure 3). The trimming was formulated as the following optimization
problem within the main optimization (see Figure 1):

minimize f(x’) = |CM(x’)|
by varying 0.19 ≤ C ≤ 0.29

−10 ≤ α ≤ 10
subject to h(x, x’) = CL eq(x’) − CL(x)cos γ = 0
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Figure 3. Influence of the coefficient C on the airfoil shape.

The optimization problem was solved using the COBYLA method, which was applied
using the Python package OpenMDAO [54].

The maximum lift coefficient of the wing was limited to 0.35, recommended for flying
wing configurations.

The constraint of the relative elevon arm was formulated by statistical analysis and
limited to 20% of the aspect ratio. It was formulated as follows and is geometrically
presented in Figure 4.

Lel ≥ 0.2AR, (7)

lel =
lel

MAC
=

xAC el − xCG

MAC
where xAC is the position of the elevon aerodynamic center in m.
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The elevon occupies the relative area bounded from 0.8 to 1 along the chord. The
elevon aerodynamic center was located at 85% along the semi-wingspan.

2.3. Metrics

The aircraft mass growth factor kMGW [55,56] is defined as

kMGW = 1/Wpayload , (8)

and is used for assessing the design solutions, i.e., the weight efficiency of the evaluated design.

2.4. Optimization Methods

In this paper, two optimization methods, the stationary Gauss-Seidel method and a
differential evolutionary algorithm based on penalty functions, were used for design space
exploration and minimization of the objective function, respectively.
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The Gauss-Seidel method is written as:

u(k+1) = u(k)+E−1 r(u(k)), (9)

where r(u(k)) = b + Au(k) is the residual vector; E−1 is the lower triangular matrix;
u(k) = [x(k), m0

0] is the parameters vector.
The Gauss-Seidel method was used along with the response surface method for design

space exploration. First, the objective function was calculated for a pair of parameter
vectors, while the rest of the parameters remain unchanged. Second, the response surface
was constructed. Third, the minimum objective function was calculated from the obtained
response surface, and the pair of parameters corresponding to this minimum was now fixed
while the next iteration was performed for a new pair of parameters. The algorithm for
minimizing the objective function using the Gauss-Seidel method, along with the response
surface method, is presented in Figure 5.
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Alternatively, a differential evolutionary algorithm based on penalty functions was
proposed to increase the objective function probability to reach the global minimum. The
penalty-based function is formulated as follows:

minimize L(x)
by varying x

The adaptative penalty function was taken from [57]:

L(x, R) =


f (x)

ψ(x) + U∗
ψ(x) + f (x)

if
if
if

ψ(x) = 0 and f(x) ≤ U∗
ψ(x) > 0 and f(x) ≤ U∗
ψ(x) > 0 and f(x) ≥ U∗

(10)
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where: ψ(x) = ∑m
j=1 max

[
0, gj(x)

]
; f(x) is objective function; gj(x) is inequality constraint;

U* is an upper bound on the constrained global minimum value.
The value of U* is provided by the user. In our method, U* corresponds to 15 times

the payload weight, which corresponds to the maximum aircraft mass growth of existing
aircraft reported in [55,56].

The SHADE E-PSR evolutionary algorithm, as presented in [58], was used as the
optimization algorithm, along with the exponential population size reduction method [59]
for decreasing the optimization execution time.

Particular attention was given to the process of solving the sizing equation, which was
directly solved in the optimization process (Figure 6) and did not require a separate cycle
for its convergence. The take-off weight, as a design variable, was solved by the sizing
equation with the optimization process (without the need for an extra iteration process for
the equation convergence) by narrowing the upper and lower take-off parameter values
after each iteration. The lower and upper take-off parameter bounds are updated to the
minimum and maximum L(x) that fulfill ψ(x) = 0, or else the take-off bounds keep their
previous value.
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3. Verification of the MDAO Method

A mesh independence study of the vortex lattice method was performed. The variable
parameters are the number of panels by semi-wingspan (from 10 to 100 in steps of five) and
by chord (from 10 to 30 in steps of five). Thus, 95 types of meshes were created, ranging
from coarse to dense, to ensure that the simulation results were sufficiently independent of
the mesh. As a control value, the variant with the densest mesh was taken as the reference
value. The result of the analysis shows that the aerodynamic results are independent of the
mesh density, with a mesh consisting of thirty elements along the chord and ten along the
semi-wingspan obtaining the following errors: 0.97%, 0%, and 0.88% for the lift, inductive
drag, and pitching moment coefficients, respectively.

The results of the aircraft trim were verified by comparing the obtained values with
the geometric solution to this problem. Table 1 presents the input data, and Table 2 presents
the design variables of the algorithm for trimming the flying wing UAV.
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Table 1. Initial optimization data.

Input Data Value

Aspect ratio 3.3
Leading edge sweep angle, ◦ 10

Taper ratio 0.77
Geometric twist angle, ◦ −1
Wing loading, daN/m2 5

Flight velocity, m/s 20
MTOW, kg 2.2

Table 2. Intervals of design variables.

Design Variable Lower Value Upper Value

Angle of attack, α −20 20
Polynomial coefficient of the airfoil camber line 0.17 0.27

The combination that trims the aircraft has parameters α = 1.13◦ and C = 0.2080. The
found point coincides with the point by using the COBYLA algorithm (see Figure 7). The
error of the required angle of attack and the polynomial coefficient of the airfoil camber
line was 0% and 0.1%, respectively.
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Verification of the objective function calculation algorithm. Table 3 presents the input
data for the process shown in Figure 5, calculating the objective function and constraint values.

Table 3. Input data for calculating the objective function and constraints.

Input Value

Mass, kg

payload 0.500
equipment 0.150
propeller 0.050
reserve 0.020

Correction factor
power unit weight ratio 1.1

structure weight 1.5

Flight endurance, h (min)
in cruise 1 (60)
in climb 0.05 (3)

in descent 0.10 (6)

Flight path angle, ◦
in cruise 0
in climb 50

in descent −30
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Table 3. Cont.

Input Value

Efficiency
propeller 0.6

engine 0.5
batteries 0.7

Power-to-weight ratio, kWh/kg 0.3

Engine weight-to-thrust, daN/kW 0.3

Density, kg/m3 air 1.225
material 2600

Batteries’ specific energy density, kWh/kg

Flight speed, m/c in climb 0.9 Vcruise
in descent 0.9 Vcruise

Number of composite laminate layers 1

Composite laminate layer thickness, mm 0.25

Table 4 presents the design variable for the process shown in Figure 6.

Table 4. Intervals of design variables for calculating the objective function and constraints.

Design Variables Lower Value Upper Value

Aspect ratio 3 10
Leading edge sweep angle, ◦ 0 45

Taper ratio 0.4 1
Geometric twist angle, ◦ −5 2
Wing loading, daN/m2 3 12

Flight velocity, m/s 10 30
Polynomial coefficient of the airfoil camber line 0.19 0.24

To verify the performance of the objective function calculation algorithm, the response
surfaces of MTOW, the lift-to-drag ratio from aspect ratio and leading-edge sweep angle
(see Figure 8a), and the specific wing loading and cruise speed (see Figure 8b) at other
“frozen” parameters were plotted. The intervals at which the target function has been
calculated are for aspect ratio, from 4 to 10; leading-edge sweep angle, from 0 to 50; wing
loading, from 3 to 10 daN/m2; and cruise speed, from 10 to 30 m/s. Figure 8b shows the
response surfaces at a specific wing loading of 6 daN/kg and a cruise speed of 20 m/s.
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The area of the feasible solution is represented by colors. The part of the surface marked
in gray does not fall within the area of feasible values according to the presented constraints.

For the given initial data, the most suitable combination of the two parameters is
AR = 4 and Λ = 17. The MTOW is 3.202 kg, and the lift-to-drag ratio is 18.75. It should be
said that the solution satisfying the minimum MTOW and maximum L/D exists for the
same combination of these parameters. This circumstance is characteristic of small UAVs
with an electric propulsion system. The MTOW of such vehicles is largely determined
by the batteries’ weight, which in turn is directly determined by the lift-to-drag ratio,
strongly dependent on the aspect ratio and leading-edge sweep angle, while the considered
parameters have no significant impact on the design weight of small UAVs, unlike the
manufacturing technology and the absolute dimensions of the wing structure.

In the second iteration, a rational combination of wing loading and cruise speed at
“freezing” parameters of AR = 4 and Λ = 17 are selected. Figure 9 shows the obtained
response surfaces.
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The response surfaces of the objective function are shown in Figure 9a,b, and the region
of the feasible solution is represented in color. The line along which the surface breaks
define the domain of the sizing equation. For the given input data, the best combination
for minimization of W0 = 1.568 kg was (W/S) = 8.7 daN/kg and v = 20 m/s, and for
maximization of L/D = 19.97 was W/S = 4.6 daN/kg and v = 20 m/s. The difference
of optimal parameter values in the optimization of different objective functions can be
explained by the fact that the wing loading determines the wing area and significantly
affects the structure weight; despite the need to increase the power unit and batteries
weight when increasing the wing loading, reducing the structure weight leads to a decrease
in takeoff weight. At the same time, the maximum lift-to-drag ratio is realized at smaller
angles of attack and requires a lower flight speed and lower wing loading.

The validation of the SHADE E-PSR algorithm was assessed based on the repeatability
of the results obtained. The optimization parameters of the SHADE E-PSL are presented in
Table 5.

The algorithm was executed ten times with different initial populations. To ensure the
randomness of the design variable vectors, each initial sample was generated with the Latin
hypercube sampling method [60] from the SMT (surrogate modelling toolbox) package [61].
Table 6 presents the results of the validation of the algorithm; the taken sample consists
of ten vectors, each vector corresponding to the best of the optimal remaining vector after
each algorithm run.
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Table 5. Optimization parameters.

Optimization Parameters Value

Initial population, vector 60
Maximum number of objective function evaluations 6000

Minimal final population size 6
Threshold value ε, kg 0.01

SHADE algorithm parameters
H 6
P 0.11

rA 2.6
Initial mutation operator, Fi 0.5

Initial crossover probability of the design variable vector CRi 0.5

Table 6. Statistical measures of the optimal vector of each SHADE E-PSR algorithm run.

Max Min Median x, kg σ, kg CV, %

L(x) 2.234 2.211 2.222 2.223 0.007 0.31

Analysis of the results in Table 6 confirms the good performance of the algorithm due
to the variation coefficient value of 0.31%.

In addition, a statistical analysis of the design variables was performed to investigate
the tendency of the differential evolution algorithm to find the global minimum. The taken
sample consists of 60 individuals fulfilling at least one of the algorithms’ stopping criteria.
Table 7 presents the statistical indicators of the optimization results.

Table 7. Statistical measures of the design variables and the objective function of the optimal vectors.

Design Variables Objective Function

AR Λ, ◦ λ θ, ◦ W/S, daN/kg v, m/s W0, kg

x 5.08 23.16 1.01 −2.64 4.73 14.68 2.229
σ 0.33 3.34 0.02 1.74 0.20 0.33 0.007

CV, % 6% 14% 2% −66% 4% 2% 0.32%

4. Cases of Study

The presented method for conceptually designing electric flying wing aircraft was
tested by solving three case studies. First, by modernizing an existing flying wing UAV.
Second, by analyzing the effect of different payloads and endurance on the MTOW. Third,
by analyzing different static margins on the aircraft performance characteristics.

4.1. Modernization of Existing UAV

The UAV to be modernized is a UAV “Boomerang”, designed according to the flying
wing configuration with a twin-wing vertical tail, and a single-engine propulsion system
consisting of a brushless motor. A layout is shown in Figure 10.

The geometric, flight performance, weight, mass, and aerodynamic characteristics
of the UAV “Boomerang” are presented in Table 8. Table 3 presents the input data of the
optimization algorithm for calculating the objective function. A couple of changes were
introduced to match the characteristics of the “Boomerang”; the mass of the equipment is
duplicated, and the flight endurance was changed from 1 h to 40 min. Table 4 presents the
intervals of the design variables for UAV parameter optimization. The value of the taper
ratio was fixed to 1 due to the almost null correlation with either the objective function
or the constraints. Table 5 presents the parameters of the SHADE E-PSR evolutionary
algorithm for UAV parameter optimization.
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Figure 10. Boomerang UAV appearance.

The initial population size consists of 60 vectors, in each generation the algorithm
reduces the population based on the upper limit of MTOW. Figure 11 shows the evolution
of the population over the iterations, and the maximum and minimum values of the penalty
function at each iteration.
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Figure 11. Convergence graph of the maximum and minimum values of the objective function.

In this study, convergence was achieved after 88 iterations. The design variables
corresponding to the optimal vector and their corresponding objective and constraint
function values are shown in Table 8. The layout of the resulting optimum UAVs and the
UAV subjected to modification are shown in Figure 12.
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Table 8. UAV specifications.

UAV A
“Boomerang” UAV B UAV C

Geometric

AR 3.3 5.4 4.7
Λ, ◦ 11.3 24.6 17.9
λ 1.3 1.0 1.0
θ, ◦ −2.6 −2.5 −3.2
ψ, ◦ −0.5 0 0
b, m 1 1.043 0.988
S, m2 0.3 0.203 0.206
cr, m 0.345 0.194 0.208
ct, m 0.245 0.194 0.208

MAC, m 0.297 0.194 0.208

Flight-performance

t, hr (min) 0.66 (40) 0.66 (40) 0.66 (40)
W/S, daN/m2 7.5 10.1 9.9

V, m/s 20 21.51 21.27(
P
W

)
, kW/kg 0.241 0.259 0.256

Weight and mass

W0, kg 2.265 2.046 2.039
Wpayload

(
Wpayload

W0

)
,

kg
0.500 (0.221) 0.500 0.500

Wstruct

(
Wstruct

W0

)
, kg 0.589 (0.260) 0.398 0.402

Wbatt

(
Wbatt
W0

)
, kg 0.631 (0.279) 0.603 0.595

Wpu

(
Wpu
W0

)
, kg 0.175 (0.077) 0.175 0.172

Wequip

(
Wequip

W0

)
, kg 0.300 (0.132) 0.300 0.300

Wprop

(
Wprop

W0

)
, kg 0.020 (0.009) 0.020 0.020

Wreserve

(
Wreserve

W0

)
, kg 0.050 (0.022) 0.050 0.050

xCG 0.083 0.136 0.099
kMGW 4.52 4.09 4.08

Aerodynamic

CL cruise 0.32 0.35 0.35
CD cruise 0.017885 0.018187 0.018274(

L
D

)
cruise

17.91 19.30 19.29

α, ◦ 7.2 7.4 8.1
lel 0.736 1.075 0.947

Notably, as a result of the optimization, we obtained a UAV (Figure 12b,c) of smaller
area compared with the original (Figure 12a), which can be explained not only by an
increase in the wing loading as a consequence of the reduction in the wing structure weight
due to the reduction of its area but also by a reduction in the aircraft weight due to the
batteries weight reduction, due to the lowering of the specific energy consumption. Despite
some increase in flight speed, the decrease in power consumption was achieved due to an
increase in the lift-to-drag ratio caused by an increase in the wing aspect ratio and the cruise
flight execution at more optimal angles of attack. The reduction in wing structure weight
by 32% led to an improvement in the objective function by about 9.8%. This example also
clearly demonstrates the effect of the minimum elevon arm constraint in the longitudinal
axis on the optimization result: increasing the wing aspect ratio to improve the lift-to-drag
ratio also requires increasing the leading-edge sweep angle of the wing to ensure pitch
control. The effect of the constraint is clearly visible in the two competing variants B and C,
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and it is noticeable that these modifications do not differ much in terms of weight summary.
The improvement in take-off weight for the “B” and “C” aircraft relative to the “A” aircraft
is shown in Figure 13. Figure 12 illustrates the change in the appearance of the aircraft
top view for the variants considered. Moreover, the efficacy of the resulting wings by
optimization was demonstrated by comparing the aircraft gross weight factor of the initial
and optimized wings; the value of kMGW was reduced by 10.7%.
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4.2. Effect of Change in Payload and Endurance on MTOW

For the second and third cases of study, the same input data were used, as presented
in Table 3. The weight of the propeller is considered part of the reserve weight.

Figure 14 shows the weight summary for several payload weights. The ratios of
change of different payloads to the MTOW and variable weights are presented in Table 9.
It is observed that the change in the payload weight generates a linear increment in the
variable weights. This is confirmed in Figure 14, in which the dependence of different
weight components on the payload is more intuitive. Moreover, the battery weight increases
at almost twice the increment of the structure weight.
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Table 9. Component weight ratio with respect to the change in payload weight.

Component ∆Wi/∆Wpayload ∆Wi/∆W0 kMGW

Payload 1 0.3951 2.5312
Structure 0.4416 0.1913 5.2274
Batteries 0.8570 0.3386 2.9533

Power unit 0.1675 0.0632 15.8228

MTOW 2.5312 1 1

The mass growth factor and its effects are presented in Table 10. If the payload weight
is changed by 100%, the mass growth factor changes by −23%. For a 200% conversion, it
is −27%. Table 10 and Figure 14 clearly outline the cause of the problem for large electric
aircraft: as the payload weight increases, the payload weight efficiency rapidly deteriorates,
while the rest of the conditions remain equal, and it is possible to find the minimum value
of the mass growth factor of the given design task.

Table 10. MTOW dependence on the change in payload weight.

Payload, kg kMGW

Effect on
Additional
kMGW, %

W0, kg

Effect on
Original

Additional
Weight, %

0.5 3.55 1.773
1 2.97 −16% 2.969 67%

1.5 2.73 −23% 4.098 131%
2 2.68 −25% 5.351 202%

2.5 2.58 −27% 6.456 264%
3 2.56 −28% 7.667 332%

For the study of the effect of the endurance on the MTOW, the endurance of 1 hr
was increased and the change of the mass growth factor was recorded. The results are
summarized in Table 10. Figure 15 shows the weight summary for several endurances. It
is observed that the change in the endurance generates a linear increment in the variable
weights, as in the previous scenario, except for the structure weight, which falls to the
lower interval of the wing loading during the optimization process.
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Table 11 presents the effect of the endurance change on the MTOW. It was noticed that
if the endurance is changed by 50%, the mass growth factor changes by 48%. If the range
grows by 100%, the factor grows by 94%. This sensitivity is highly dependent on the initial
endurance at the maximum fixed weight. In the right column, the effect is shown on the
original additional weight. The more endurance grows, the greater the mass growth factor
is. The more the UAV endures, it carries more batteries, which increases its fraction; hence,
the mass growth factor is correspondingly high. The greater the sum of the variable weight
fractions approaches 1, the more the mass growth factor will grow.

Table 11. MTOW dependence on the change in endurance.

Endurance, h kMGW

Effect on
Additional
kMGW, %

W0, kg

Effect on
Original

Additional
Weight, %

1 3.55 1.773
1.5 5.26 48% 2.628 48%
2 6.89 94% 3.443 94%

2.5 11.06 212% 5.531 212%
3 19.41 447% 9.704 447%

By comparing the effect of the change of the payload weight and the change of the
endurance on the MTOW, it is observed that the endurance is more sensitive than when
increasing the payload. Indeed, the MTOW dependence on endurance is non-linear.

4.3. Effect of Different Static Margins on the Aerodynamic Characteristics

Figure 16 shows the main and standard deviations of the angle of attack and the
lift-to-drag ratio. The results of the third case of study show that the angle of attack is
highly dependent on the static margin. The angle of attack shows little deviation compared
to the lift-to-drag ratio, mainly at margins 0 and 0.5.
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An increase in static stability leads to an increase in pitch movement. Trimming the
UAV, in this case, is ensured by deflecting the elevons upward, or by using airfoils with
a more upward leading-edge angle. The lift coefficient required for the horizontal flight
can be maintained by increasing the angle of attack (Figure 16a). The flying wing trim
at different angles of attack due to changes in the static stability causes changes in the
lift-to-drag ratio. By shifting the center of gravity, the static margin, it is possible to trim the
aircraft at the most favorable angles of attack with the maximum lift-to-drag ratio. However,
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for each degree of the static longitudinal static margin, a choice of optimal parameters was
made; for example, for low static margins, it was required to increase the wing loading and,
in contrast, increasing the static margin led to the need to reduce the wing loading to change
the angles of attack to a more optimal configuration. Therefore, in the range considered,
the degree of the aircraft static margin did not significantly affect the lift-to-drag ratio.

5. Discussion

First, this work presented an MDAO method and two optimization processes for mini-
mizing the MTOW of a flying wing UAV during the conceptual design step by choosing the
optimal geometrical and flight conditions. The Gauss-Seidel method and response surface
method for a couple of parameters were used to verify the correctness of the obtained
results, and to visualize the solution during the differential evolutionary algorithm testing,
which also allowed us to trace the correctness of applying restrictions. Similarly, using the
response surface method, both the graphical solution of UAV trimming and the solution
to the COBYLA algorithm were attained, which were used within the developed MDAO
method. The optimization process, based on a differential evolution algorithm and penalty
functions, allowed for the generation of not just one, but several design solutions (depend-
ing on the minimum threshold specified within the solver) which converged to the same
MTOW value with a coefficient of variation of 0.31%. This means that it is highly probable,
with the application of the second algorithm, to find the global minimum of the design
task. In both optimization processes, the UAV was trimmed by solving an optimization
routine within the main optimization process. The twist angle had demonstrated to have
a slight influence on the MTOW. It was found that the aspect ratio and the leading-edge
sweep angle are highly correlated (not a surprise given that both are linked through the
maneuverability constraint) making it possible to reduce the number of design variables,
by making one dependent on the other, in future works.

Second, results on the modernization of an existing UAV showed that, with the
application of this method, it is possible to optimize the conceptual design; in our study, by
a 22% improvement. Results concerning the investigation on the effect of different payloads
and endurance on the MTOW showed that by incrementing the payload weight, the mass
growth factor decreases, converging to 2.5; this is an indication that by incrementing the
payload up to the value corresponding to the mass growth factor, the UAV becomes more
efficient. However, by increasing the payload, the MTOW increases to a point (that depends
on the structural material), in which the structure weight calculation must account for
the stresses. The MTOW dependence on endurance is non-linear, and, by looking at the
divergence of the mass growth factor, we observed that by incrementing the endurance,
the task becomes unsolvable. When the sum of the weight ratios is more than 1, the
computed value lies outside the sizing equation domain. These studies are valid for mass
increasing close to the center of gravity; if the mass increment happens, for instance, at
the nose of the UAV, the results are expected to be different. This tells us that the work
could be further improved by adding a weight distribution model that could not only more
precisely calculate the aircraft weight factor when the weight increment is far from the
center of gravity, but also account for a more accurate interaction between stability and
weight disciplines.

And finally, the results of the investigation on the effect of different static margins on
the aerodynamic characteristics showed that one of the main benefits of choosing a less
stable, even a neutral or unstable configuration, would be that trimming the UAV is possible
at a lower angle of attack; especially important with a flying wing configuration. However,
a negative impact could be that the uncertainty regarding lift-to-drag ratio is higher.

Future works on this topic will be aimed toward extending this technique to other
aerodynamic schemes of UAVs, introducing into the algorithm the requirements of lateral
stability and control, and adding a weight distribution model that could not only more
precisely calculate the aircraft weight factor when the weight increment is far from the
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center of gravity, but also account for a more accurate interaction between stability and
weight disciplines.

6. Conclusions

The developed MDAO method for conceptually designing electric flying-wing UAVs
makes it possible to obtain a sufficiently detailed view of the designed aircraft, including
its optimal geometric, flight parameters, as well as the corresponding flight performance
and weight summary of the components at a sufficiently low computational and time costs.
Several used constraints allow us to obtain the optimal solution, consider aircraft trimming
with a given static margin, and consider the requirements of pitch control. The method
was verified by performing a mesh independence study, comparing optimization solutions
for the trimming of the UAV against geometrical solutions, assessing the SHADE E-PSR
algorithm, and evaluating the deviation of the objective function.

The introduction of the MTOW as a parameter within the differential evolutionary
algorithm and the consequent reduction of its upper interval value by taking the maximum
MTOW, in the previous iteration, made it possible to dispense of an extra internal cycle for
solving the sizing equation at each optimization step; therefore, increasing the algorithm
performance. Another advantage of using this method in design is the possibility to obtain
not just one optimal solution, but a few concurrent options due to a low coefficient of
variance; the values of the design variables can significantly vary, indicating the possible
presence of several minima towards the global minima. The application of traditional
optimization methods would lead to only one of the minima, ignoring the others.

The application of this method in UAV conceptual design will make it possible to
quickly study the impact of changes in various parameters and flight conditions on flight
performance, and technical and economic indicators, which are relevant in the design of
new vehicles, and in the modernization of existing ones. Typical examples of solving such
design problems have been considered in the work.
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36. Boutemedjet, A.; Samardžić, M.; Rebhi, L.; Rajić, Z.; Mouada, T. UAV Aerodynamic Design Involving Genetic Algorithm and

Artificial Neural Network for Wing Preliminary Computation. Aerosp. Sci. Technol. 2019, 84, 464–483. [CrossRef]
37. Champasak, P.; Panagant, N.; Pholdee, N.; Bureerat, S.; Yildiz, A.R. Self-Adaptive Many-Objective Meta-Heuristic Based on

Decomposition for Many-Objective Conceptual Design of a Fixed Wing Unmanned Aerial Vehicle. Aerosp. Sci. Technol. 2020,
100, 105783. [CrossRef]

38. Mavris, D.N.; Pinon, O.J. An Overview of Design Challenges and Methods in Aerospace Engineering. In Complex Systems Design
& Management; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–25.

39. Komarov, V. Concurrent Design. Ontol. Des. 2012, 3, 8–23.
40. Weisshaar, A.A.; Komarov, V. Chelovecheskiy Faktor v Proyektirovanii Aviatsionnykh Konstruktsiy [The Human Factor in the

Design of Aircraft Structures]. All-Russ.Sci.-Tech. J. 1998, 1, 17–23.
41. Lukyanov, O. Razrabotka Metodiki Vybora Oblika Gruzovykh Samolotov s Ispol’zovaniyem Mnogodistsiplinarnoy Optimizatsii [Devel-

opment of a Methodology for Selecting the Shape of Cargo Aircraft Using Multidisciplinary Optimization]; Candidate of engineering
sciences thesis; Samara National Research University: Samara, Russia, 2019.

42. Komarov, V.; Lukyanov, O. Multidisciplinary Optimization of the Cargo Airplane Wing Parameters. All-Russ. Sci.-Tech. J. 2018, 3,
3–15.

43. Martins, J.R.R.A.; Kenway, G.; Brooks, T. Multidisciplinary Design Optimization of Aircraft Configurations Part 2: High-Fidelity
Aerostructural Optimization; University of Michigan: Ann Arbor, MI, USA, 2016.

44. Haryanto, I. Aeroelastische Optimierung von Tragflügelstrukturen Mit Semi-Analytischen Finite-Element-Modellen. Ph.D. Thesis,
Lehrstuhl fur Leichtbau, Munchen, Germany, 2004. Available online: https://mediatum.ub.tum.de/doc/601951/601951.pdf
(accessed on 18 October 2022).

45. Wunderlich, T.; Dähne, S.; Heinrich, L.; Reimer, L. Multidisciplinary Optimization of an NLF Forward Swept Wing in Combination
with Aeroelastic Tailoring Using CFRP. CEAS Aeronaut. J. 2017, 8, 673–690. [CrossRef]

46. Sgueglia, A.; Schmollgruber, P.; Bartoli, N.; Benard, E.; Morlier, J.; Jasa, J.; Martins, J.R.R.A.; Hwang, J.T.; Gray, J.S. Multidisciplinary
Design Optimization Framework with Coupled Derivative Computation for Hybrid Aircraft. J. Aircr. 2020, 57, 715–729. [CrossRef]

47. Leifsson, L. Multidisciplinary Design Optimization of Low-Noise Transport Aircraft [Electronic Resource]. Ph.D. Thesis, Virginia
Polytechnic Institute and State University, Virginia, Montgomery, 2005.

48. Butler, R.; Lillico, M.; Banerjee, J.R.; Patel, M.H.; Done, G.T.S. Sequential Use of Conceptual MDO and Panel Sizing Methods for
Aircraft Wing Design. Aeronaut. J. 1999, 103, 1026. [CrossRef]

49. Gu, H.; Lyu, X.; Li, Z.; Zhang, F. Coordinate Descent Optimization for Winged-UAV Design. J. Intell. Robot. Syst. Theory Appl.
2020, 97, 109–124. [CrossRef]

50. Aksugur, M.; Inalhan, G. Design Methodology of a Hybrid Propulsion Driven Electric Powered Miniature Tailsitter Unmanned
Aerial Vehicle. J. Intell. Robot. Syst. Theory Appl. 2010, 57, 505–529. [CrossRef]

51. Chung, P.H.; Ma, D.M.; Shiau, J.K. Design, Manufacturing, and Flight Testing of an Experimental Flying Wing UAV. Appl. Sci.
2019, 9, 3043. [CrossRef]

52. Drela, M.; Youngren, H. MIT AVL User Primer-AVL 3.36. 1–43. Available online: https://web.mit.edu/drela/Public/web/avl/
(accessed on 18 October 2022).

53. Kholyavko, V. Raschot Aerodinamicheskikh Kharakteristik Samolota. CH.1 [Calculation of the Aerodynamic Characteristics of the Aircraft.
Part 1]; Kharkiv Aviation Institute: Kharkiv, Ukraine, 1991.

54. Gray, J.S.; Hwang, J.T.; Martins, J.R.R.A.; Moore, K.T.; Naylor, B.A. OpenMDAO: An Open-Source Framework for Multidisci-
plinary Design, Analysis, and Optimization. Struct. Multidiscip. Optim. 2019, 59, 1075–1104. [CrossRef]

55. Korolkov, O. Uravneniye Sushchestvovaniye Samolota [Aircraft Sizing Equation]; Samara State Aerospace University: Samara, Russia, 2000.
56. Cheema, J.S.; Scholz, D. The Mass Growth Factor-Snowball Effects in Aircraft Design; Aircraft Design and Systems Group (AERO):

Hamburg, Germany, 2020.
57. Ali, M.M.; Zhu, W.X. A Penalty Function-Based Differential Evolution Algorithm for Constrained Global Optimization. Comput.

Optim Appl 2013, 54, 707–739. [CrossRef]
58. Tanabe, R.; Fukunaga, A. Success-History Based Parameter Adaptation for Differential Evolution. In Proceedings of the 2013

IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013.
59. Quijada Pioquinto, J.G.; Shakhov, V. Acceleration of Evolutionary Optimization for Airfoils Design with Population Size Reduction

Methods. Presented at a. In Proceedings of the 20th International Conference “Aviation and Cosmonautics”, Samara, Russia,
22–26 November 2021.

http://doi.org/10.1155/2019/8104927
http://doi.org/10.1007/s10846-012-9695-4
http://doi.org/10.1016/j.energy.2020.117937
http://doi.org/10.1016/j.ast.2018.09.043
http://doi.org/10.1016/j.ast.2020.105783
https://mediatum.ub.tum.de/doc/601951/601951.pdf
http://doi.org/10.1007/s13272-017-0266-z
http://doi.org/10.2514/1.C035509
http://doi.org/10.1017/S0001924000064617
http://doi.org/10.1007/s10846-019-01020-2
http://doi.org/10.1007/s10846-009-9368-0
http://doi.org/10.3390/app9153043
https://web.mit.edu/drela/Public/web/avl/
http://doi.org/10.1007/s00158-019-02211-z
http://doi.org/10.1007/s10589-012-9498-3


Drones 2022, 6, 307 22 of 22

60. Jin, R.; Chen, W.; Sudjianto, A. An Efficient Algorithm for Constructing Optimal Design of Computer Experiments. J Stat Plan
Inference 2005, 134, 268–287. [CrossRef]

61. Bouhlel, M.A.; Hwang, J.T.; Bartoli, N.; Lafage, R.; Morlier, J.; Martins, J.R.R.A. A Python Surrogate Modeling Framework with
Derivatives. Adv. Eng. Softw. 2019, 135, 102662. [CrossRef]

http://doi.org/10.1016/j.jspi.2004.02.014
http://doi.org/10.1016/j.advengsoft.2019.03.005

	Introduction 
	Materials and Methods 
	Calculation of the Objective Function 
	Calculation of the Constraints 
	Metrics 
	Optimization Methods 

	Verification of the MDAO Method 
	Cases of Study 
	Modernization of Existing UAV 
	Effect of Change in Payload and Endurance on MTOW 
	Effect of Different Static Margins on the Aerodynamic Characteristics 

	Discussion 
	Conclusions 
	References

