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Abstract: Artificial intelligence used in unmanned aerial vehicle (UAV) flight control systems tends
to leave UAV control systems without any radio communication emissions, whose signatures in
an electromagnetic spectrum (ES) are widely used to detect UAVs. There will be problems in the
near future in detecting any dangerous threats associated with UAV swarms, kamikaze unmanned
aerial vehicles (UAVs), or any other UAVs with electrically powered thrust engines because of the
UAV’s flight capabilities in full radio silence mode. This article presents a different approach to the
detection of electrically powered multi-rotor UAVs. The main idea is to register the electromagnetic
spectrum of the electric thrust engines of the UAV, which varies because of the changing flight
conditions. An experiment on a UAV’s electric thrust engine-produced electromagnetic spectrum is
carried out, presenting the results of the flight-dependent characteristics, which were observed in
the electromagnetic spectrum. The electromagnetic signature of the UAV’s electric thrust engines is
analyzed, discussed, and compared with the most similar behaving electric engine, which was used
on the ground as a domestic electric appliance. A precision tunable magnetic antenna is designed,
manufactured, and tested in this article. The physical experiments have shown that the ES of the
electric thrust engines of multi-rotor UAVs can be detected and recorded for recognition. The unique
signatures of the ES of the multi rotor UAV electric engine are recorded and presented as a result of the
carried-out experiments. A precision tunable magnetic antenna is evaluated for the reception of the
UAV’s signature. Moreover, results were obtained during the performed experiments and discussions
about the development of the future techniques for the identification of the ES fingerprints of the
UAV’s electric thrust engine are carried out.

Keywords: electromagnetic signature; electromagnetic spectrum; magnetic antenna; UAV detection

1. Introduction

Unmanned aerial vehicles are rapidly integrating into everyday life by performing
previously impossible tasks. The military, academic research, agriculture, and leisure
industries are the most active in the development of UAVs. UAVs are equipped with
cutting-edge intelligent autonomous technologies aimed at collecting data, conducting
search and rescue operations, military missions, firefighting, and medical assistance. Recent
developments related to UAV threats have shown that UAVs are capable of conducting
targeted, lethal attacks on distant infrastructure and have important global impacts on
critical supply [1,2]. On 14 September 2019, a high-volume UAV attack was launched,
which reduced Saudi Arabia’s oil production by 50% [3]. This year, the Ukrainian–Russian
war shows the massive use of UAVs as attack, defense, or intelligence tools [4].

It is important to note the growing danger posed by “kamikaze drones” (a form of UAV
loaded with deadly bombs and shrapnel), which are becoming more and more common
and lack any effective technological means of detection from terrorist attacks, particularly
in densely populated urban areas. These UAVs are typically handcrafted and operate
with unique remote controls that are not mass-produced and are easy to find in populated
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places [5]. When fully autonomous flight autopilot systems handle flight without the aid of
radio communication or navigation, detecting UAVs becomes much more challenging [6].

On 5 August 2018, Venezuelan President N. Maduro was attacked by civilian UAVs,
including two DJI M600 UAVs carrying C4 explosives [7]. One of the busiest runways at
Gatwick Airport closed on 20 December 2018. Some 110,000 passengers were delayed on
760 flights as UAVs repeatedly flew over the airfield. The threat of drones is clearly one of
the biggest unsolved security problems in the near future. As a result, the task of detecting
UAVs in no-fly zones becomes a difficult but largely unsolved task [8]. Each country has its
own no-fly UAV zones for airport security and strategic infrastructure. However, with the
development of intelligent UAV control technology, future high-capacity communication
links are likely to fail to achieve the desired security. They are likely to become obsolete.

UAVs that communicate with other devices via radio communication or are controlled
by radio communication from other devices could be detected by detecting the radio com-
munication channel. However, UAVs whose control is completely autonomous eliminate
this possibility of their detection. For this purpose, alternatives are needed that allow UAVs
to be detected in another way.

The article proposes a unique motor-driven antenna that allows the stepless switching
of the resonant frequency for signal tracking and reception.

In a recent work, the possibility of detecting drones up to 1.5 m using an extremely
low frequency range (5–20 kHz) range was demonstrated [9,10]. Measurement of the
magnetic field of the rotating elements of the asynchronous motor and the rotating field
of the stator was shown to allow identification of the corresponding frequencies of the
motor [11]. The possibility of drone detection using leakage flows from different brushless
direct current (BLDC) motors was successfully demonstrated in a low-frequency radio
frequency band [12]. A hypothesis has been formulated that, by measuring the spectrum of
the engine control signals, we can detect UAV-specific traces in the spectrogram.

1.1. UAV Propulsion Types

In general, propulsion energy is required for takeoff, flight, and landing by all UAVs.
All unmanned aerial vehicles (UAVs) except gliders and lighter-than-air devices are pro-
pelled during flight by thrust engines. UAVs with glider-type architecture do not require
propulsion energy because they can fly using rising air streams, but they do require lifting
or towing in the air. UAV engine types based on propulsion energy can be divided into
three categories, as shown in (Figure 1).

The propulsion, electric thrust engines are often the best option for recreational UAVs.
They can be agile, light, reliable, and easy to handle in flight. However, flight time and
distance are limited by batteries. Typically, a gasoline–electric power plant uses a tiny gas
engine to extend the range of an unmanned aerial vehicle.

1.2. Types of Engines for UAV’s Propulsion

For any UAV to fly, propulsion is a must. An overview of the primary thrust engine
types for UAV flight performance is given with an emphasis on internal combustion
and electric engines. An internal combustion engine, called a piston, often known as a
reciprocating engine, employs one or more reciprocating pistons to transform pressure
into rotational motion to generate thrust power from liquid fuel. An electrical device
that transforms electrical energy into mechanical energy is known as an electric motor.
The interplay of a motor’s magnetic field and electric current in its wire windings produces
the rotation force of the motor shaft.

An internal combustion engine, known as a two-stroke, completes two cycles in
one shaft revolution. In a two-stroke engine, the intake and exhaust processes occur
simultaneously at the end of the combustion stroke and at the beginning of the compression
stroke. Compared to other forms of internal combustion engines, this type of engine has a
high power-to-weight ratio because of the tremendous power that can be achieved in this
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way. These engines are fairly lightweight and are frequently utilized for UAV propulsion
due to their straightforward construction.

Figure 1. The main UAV propulsion energy and engine types.

A four-stroke engine has a four-stroke duty cycle. They are the intake stroke, com-
pression stroke, power stroke, and exhaust stroke. Four-stroke engines tend to be heavier
because they use oil pumps and oil reservoirs to lubricate the engine. The engine has a
valve system, which also adds weight. A four-stroke engine provides one power stroke for
every two piston cycles (or four piston strokes), resulting in a lower power-to-weight ratio.
However, this type of engine is much more reliable and energy efficient than a two-stroke
engine due to the built-in oil lubrication system. A four-stroke engine is typically used for
the propulsion of long-life military-type UAVs. The Wankel engine has been redesigned for
use in UAV propulsion as a hybrid power generation unit.

Jet engines are used in large UAVs. A jet-type engine’s propulsion is produced by
releasing liquid fuel combustion products at high velocities, thus inducing thrust that acts
as the thrust of the UAV. Rocket engines are powered by liquid or solid fuels. The driving
force is obtained by burning fuel. This type of motor has limited use in UAV propulsion
because it does not have a mechanism to control the thrust. There is no way to stop the
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engine before all fuel is burned. A supercharged jet engine has different stages of rotating
blades. Air in the engine enters each stage and each stage compresses the air into stages.
The flow path through which air passes gradually decreases in area as it progresses to the
next stage. At the end of the compressor, there is a diffuser that slows down the airflow to
further increase the static pressure.

An aircraft propeller or a turbofan enclosed in an enclosure is driven by a turboprop or
turbofan engine. The compressor is powered in part by the energy produced by the turbine,
and the remaining energy is transferred through the reduction gears to the propeller or
turbofan. The fundamental distinction between a turbofan and a turbojet engine is that a
turbofan uses almost all of its power to drive a propeller, whereas a turbojet uses its exhaust
gases to produce tremendous thrust.

The take-off, flight, positioning, and landing of a UAV are often performed with
electric propulsion motors. The often-referred-to “copter” UAV can conduct take-off, flight,
positioning, and landing procedures with a minimum of three thrust engines. The copter
can be placed when the thrust of the electric motors is adjusted and the position and flight
path of the UAV are maintained.

A tiny copter UAV can employ a brushed direct current (DC) electric motor as its
thrust motor. Due to the existence of airfoil-style wings, it may also power a fixed-wing
UAV, eliminating the requirement to generate lifting force. A DC motor can be run on DC
current or under pulse width modulation control without the usage of complex electronic
speed controller circuitry.

Modern electric motors, known as brushless direct current (BLDC) motors, are fre-
quently utilized in small UAVs that are powered by electricity for all purposes. The key
benefits of the motor are:

• The design is more sturdy and compact because brushes, commutators, and slip rings
are not used.

• Low rotor inertia results in rapid dynamic reaction; simple, lightweight, and lossless
rotor construction yields low inertia and great efficiency.

• High efficiency enables the machine’s structure to be smaller.
• High life cycle occasionally exceeding 30,000 h.
• Due to the fact that the motor windings are a component of the permanent stator, there

are no moving electrical components and mechanical commutation.
• High reliability because the only component that is subject to friction force is the bearing.

Permanent magnets spinning around a fixed stator with windings make up a BLDC
motor. The electronic speed regulator circuit, which also detects the rotor’s rotational
speed and direction, controls the flow of power to the stator windings. High-current pulse
width modulation is utilized to regulate motor speed. As a result, the stator windings are
activated at varying times while maintaining a consistent frequency.

Internal combustion engines are not used on copter-type UAVs due to the weight,
momentum, and lack of mechanical thrust control possibilities of the motor. A mass-
produced solution for the use of internal combustion engines in recreational-type copter
UAVs has not yet been available. Most recreational copter-type UAVs use electrically
driven thrust power plants for propulsion. The only internal combustion engines that could
be utilized in copter-type UAVs alongside BLDC electric thrust motors as electric energy
generators are probably hybrid internal combustion engines.

1.3. Methods for UAV Detection

The number of approaches to the problem of UAV detection is increasing. Precision,
range, operating circumstances, and a host of other factors vary between each method.
The most advanced and rapidly evolving techniques for UAV detection are as follows:

• Examination of the acoustic signal footprint. An acoustic signal from the UAV’s
thrust motors is picked up by a microphone or microphone array that is analyzed and
compared to the known UAV’s signal pattern in real time. The UAV is discovered if
the signal patterns match [13].
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• Analyzing the optical footprint. An individual video camera or a camera array is
used to record the scene around it. The image data is processed in real-time for the
recognition of the signature of the flight-path [14].

• Examination of heat signatures. The image of the surroundings is captured using
a thermal camera or camera array. The image data is processed in real-time for the
recognition of the signature of the flight-path [15].

• Analysis of a radar signature. The presence of a UAV’s radar signature, which is cre-
ated when the UAV’s body interacts with RF pulses that were emitted by the detecting
element. Real-time processing of the UAV’s reflected signal for flight path detection.
Recently, a concept of a built-in radar in the UAV’s structure was proposed [16].

• Radio transmission. Real-time reception and analysis of the radio frequency spectrum
are performed for modulation, video, telemetry, and control data decoding. Decoding
of the well-known communication data packets yields useful information [17].

• Combined techniques. Any combination of multiple detection techniques is used
for UAV detection in order to improve precision, reliability, stability, location, and
range [18].

1.4. Features of UAV Detection Methods

• Analysis of the acoustic signal characteristics: Compatible with a variety of other
UAV detection techniques. The combination of different techniques effectively im-
proves the accuracy of an optical detection [19]. For example, a microphone array that
is easy to deploy for building or perimeter security is presented in [20,21]. These kinds
of systems are economical and easy to install in urban places, stadium security, large
gatherings, airports, and locations close to noise sources. These kinds of systems are
not ideal due to noise interference. The reliability of detection can be affected by rain,
wind, and noise. Additionally, there is no capability to track objects.

• Analysis of optical signatures: The capability to track objects quickly and precisely.
Can be combined with a variety of additional detecting techniques [22]. Possibilities to
interact with methods of the artificial intelligence [23,24]. The technology is ineffective
in low-light situations, mist, fog, rain, and snow. The problems with low light are not
resolved by infrared light. Flying UAVs can be difficult to distinguish from gliders
and can cause false alerts [25].

• Heat signatures: The study of heat signatures can be combined with a variety of dif-
ferent UAV detection techniques in order to increase the accuracy. However, weather
conditions have a significant impact on the accuracy of detection. The thermal sig-
nature of birds causes erroneous warnings of UAV detection. As a defense against
thermal signature detection, UAVs can utilize thermal shielding and ventilation.

• Analysis of a radar signature: This technique allows reaching a high detection range.
Passive radar may be used when using another source of sent signals, for example, a
TV broadcast signal. Characteristics of digital broadcast signals are successfully used
to detect high-altitude UAVs [26]. With the aid of conventional radar devices, huge
winged drones can be located [27]. Small drones can be detected using solid-state
marine radars in the range of more than half a km [28]. However, UAVs with active RF
emitting systems can be set up to fly over detecting zones or close to the surface. Small
UAVs with unique construction and materials are difficult to find. It is difficult to
identify small birds from UAVs. Due to the impact of radiation on human health and
building protection, metropolitan locations are not ideal [29]. The cost of operations
and equipment is substantial.

• Analysis of radio frequency communication signatures: Software defined radio
(SDR) technology is combined with methods of artificial intelligence in order to better
accommodate urban reception [30]. High-altitude mobile UAV communication sources
can be used for the future development of detection systems with object-tracking ca-
pabilities that enable the detection of swarming UAVs [31]. However, early detection
methods were only used to detect communications in known frequency ranges. UAV’s
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control data frequencies are typically low power and can be used on WI-FI, GSM,
DVB, or public frequency ranges that are nearly impossible to detect in urban areas.
New UAV models were not detected by such systems unless they were uploaded to
the system, but only the detection of pre-stored pattern data packets was available.
Advances in UAV autopilots have made it possible to complete pre-programmed flight
missions in complete radio silence and without RF transmissions.

• Combined detection methods: Any known method that is combined by integrating
a variety of different sensor types can be used to provide more reliable detection
capabilities. Detection reliability is greatly improved when used in conjunction with
a voice-assisted video camera array [19,32]. However, the methods require complex
coordination between different UAV detection systems of different manufacturers.
There is no common interface standard for connecting multiple systems from different
manufacturers. Several widely used features in passive and active UAV detection
systems are different between manufacturers. As shown in the paper, each UAV detec-
tion system manufacturer has different UAV detection capabilities [33]. The system
integrates radar, video, audio, and HF UAV detection technology to improve detection
reliability. Using multiple types of different UAV detection sensors and technologies
minimizes the potential for false alarms in UAV detection and ensures highly flexible
system customization options.

1.5. Advantages of UAV Thrust Power Plant Detection

The energy source and the thrust power plant are the two primary components
that are obviously necessary for UAV flight operation when the development of small
UAV structures is considered historically and from a prospective viewpoint. Numerous
additional parts used in UAV operations are rapidly modernizing and becoming obsolete.
A tiny UAV that is produced in large quantities often uses an electrically powered BLDC
motor as its thrust source. Due to their excellent motor efficiency and dense energy storage
capacities, electrically driven UAVs can be built in small sizes and light weights, making
them difficult to identify using standard UAV detection techniques.

UAVs already have the ability to fly completely autonomously without the aid of
radio communication or GPS. They can be readily programmed to fly over any active radar
detection system that emits RF and to carry out the preprogrammed mission in complete
radio silence.

UAV manufacturers are competing to increase the maximum payload mass of the
UAV with an increase in thrust motor power as a result of the rapidly growing demand for
payload and the advances of lightweight battery energy storage technologies. The signature
of electromagnetic interference emitted by electrically driven UAVs increases as the thrust
power of electric motors increases, requiring increasingly strong switching capabilities for
the management of electric motors [34,35]. The increase in the maximum payload or cargo
of electrically powered UAVs will also cause a detectable increase in the signature of the
electromagnetic interference.

2. Materials and Methods
2.1. Measured Objects

In the performed experiments, two similar-sized multi-rotor UAVs were used for
measuring their generated signature of an electromagnetic spectrum. Equipment was
chosen according to the possibilities of performing a static flight with the flight stabilization
function in use. A similar widely used motor-powered BLDC tool was also selected for
comparison with the obtained EM signatures from the multi-rotor UAVs.

First of all, the model of the four brushless electric motor-powered Eachine FPV Tyro
109 was used in the experiments. The drone has a built-in flight controller, capable of
performing flight stabilization functions. After the flight controller was calibrated for
the correct horizontal position, any external force applied to the drone body on any of
the three rotation axes makes the engines interact individually in order to obtain the
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position it was calibrated for. The stabilization function results in an independent change
of the thrust engine’s acceleration and rotation speed. The unique electromagnetic field
change influenced by the change of power of brushless motors results in an electromagnetic
spectrum signature of the drone.

The second drone that was used in the experiments is the well-known model of
the Mavic 2 Enterprise from the DJI company. The drone is powered by four small-size
brushless electric motors. The performed measurements and used experimental techniques
were the same as with the Eachine drone.

The electromagnetic spectrum of the Dewalt DCF809 270 brushless motor powered
impact driver is also received and recorded for the evaluation of the experimental results
from drones. This is the most common tool that is powered by the closest size brushless
electric motor (BLDC) and has the ability to accelerate fast. Additionally, the electric impact
driver has the unique load characteristics of an electric engine when the hammer force is in
action. The resulted load during hammer action load on the brushless engine has a unique
signature in the received electromagnetic spectrum.

All received signatures of the electromagnetic spectrum were recorded for evaluation
and comparison.

2.2. Measurement Equipment

The antenna is the most important device of the overall engine signature detection
systems. The antenna must have the following characteristics. First of all, it should be
selective. There should be a possibility to receive the signal from 1 to 100 kHz.

The resonant frequency range of the antenna should be from 1 kHz to 100 kHz,
because different manufacturers use different motors that have their own programmed
frequency of the pulse width modulation. Two drones and an electric-powered impact
driver were used during experiments, all of which were powered by a similar type, size,
and acceleration-capable brushless electric motors that have their own unique signatures
on the electromagnetic spectrum.

The ferrite rod of the widely used radio magnetic antenna has standard physical
dimensions: diameter 10 mm, length 200 mm, and ferrite type 600NN. The widely available
standard ferrite rod type 600NN (Φ600) has a maximum working frequency of 4 MHz,
which satisfies the condition of signal reception at the interval of 1–100 kHz. The ferrite rod
also satisfies physical conditions (diameter—10 mm, length—200 mm) for implementation
of stepless induction change using the precision linear motor actuator. The coil’s parameters
were selected according to the specification of the ferrite rod, which satisfies the stepless
reception frequency range from 1 kHz to 100 kHz. The antenna setup for the experiment
was chosen according to the future prospects of the development of the multi-rod tunable
antenna. Several rods with the same physical dimensions and characteristics will be used
in order to increase the sensitivity of the reception of the signature from the electromagnetic
spectrum and in order to realize the capability of the direction finding.

Selectivity is a must-have property in this kind of system because it is necessary to
investigate not only the main harmonics falling into this interval but also additional har-
monics. Additional harmonics can be useful in order to avoid environmental interference
when environmental noise does not allow unambiguous identification of the drone from
the main harmonic. Additionally, the property of selectivity allows isolating and analyzing
several harmonics separately. This functionality allows verifying the assumption that the
drone has been detected more accurately.

The uniqueness of the proposed antenna is that it is a magnetic antenna that is insen-
sitive to the electrical component of the signal. This is its advantage in comparison with
electromagnetic antenna, in which the electrical component adds interference that interferes
with detection. There could be many different sources of environmental disturbances. For
example, the sources of interference in the city could be outdoor lighting, ultrasonic sensors,
power lines of trolleybuses, and others.
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Another outstanding advantage of such an antenna is the stepless change of resonant
frequency while maintaining maximum interference with ambient noises and high selectivity.

The proposed model of the antenna is presented in Figure 2. The resonant frequency
of the antenna could be changed by varying the inductance and/or capacitance in the
antenna matching circuit. There was no option to apply the variable capacitor of large
capacity which is required in such type of antennas. Therefore, this antenna was realized
by varying the inductance. The ferrite rod and the motorized actuator that were used affect
the capacitance and change the resonant frequency of the proposed magnetic antenna.

Figure 2. Precision tunable variable inductance magnetic antenna. 1—antenna coil with cooper
windings; 2—antenna coil holder; 3—linear motion actuated ferrite rod; 4—insulating textolite insert;
5—shaft of the precision linear actuator; 6—body of the precision linear actuator; 7—step motor of
the linear actuator. The dimensions of the proposed and manufactured antenna are coil length—
100 mm; coil diameter—13 mm; ferrite rod diameter—10 mm; ferrite rod length—200 mm; insulator
length—50 mm; overall system length of the magnetic antenna—600 mm.

Such a tunable antenna allows scanning the environment (electromagnetic spectrum)
and detecting the trace of the motors of drones in the spectrogram. The trace of the motor
in the spectrogram could be additionally verified by analyzing the higher harmonics of
the spectrum.

The dimensions of the antenna are determined by several factors. In order to achieve
higher sensitivity, it is necessary to manufacture a longer and wider ferrite rod. Therefore,
larger dimensions are aspirational. On the other hand, it was necessary to stick to the
maximum available size of the ferrite rod during the production of the prototype. Conse-
quently, the variable inductance of the variable magnetic antenna could vary in the range
of 5–258 mH.

The experimental studies with the proposed tunable antenna were carried out by
changing the distance of the motor from the antenna in the range of up to 4 m using an
SDR receiver. The signals can be detected at a distance of 25 m or more by using the short
wave receiver.

Additional equipment was also used during measurement in order to collect the data
from the antenna. First of all, the software defined radio receiver USRP 2920 from National
Instruments was used. The reception range of the particular model is DC-30 MHz. The local
ethernet communication line was used for data transmission. Additionally, the advanced
software-defined radio Airspy Discovery +HF receiver was used. The reception range of
the following SDR is 500 Hz–31 MHz. The data transmission is implemented using a USB
interface. The SDR Console version 3.1, running on Windows 10 PRO operating system
was used for both above-mentioned SDRs.

2.3. Experimental Setup

First of all, the multi-rotor UAV is permanently fixed on a holder during the experi-
ments. The holder is implemented using the tripod interconnecting ball joint (see Figure 3).
This kind of construction of the presented holder allows the free rotation of the UAV in
three axes representing the yaw, pitch, and roll of the UAV during normal flight. The
horizontal position of the UAV is obtained by using a counterweight that is connected to
the tripod ball joint. When all the UAV’s thrust engines are turned off, the counterweight
stabilizes the UAV in a perfect horizontal plane, thus making it possible to apply any force
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direction that is produced by the UAV’s thrust engines or any external force. The altitude
of the UAV is fixed and stays the same during the experiment.

Figure 3. The experimental test bench of the tripod interconnecting ball joint holder: 1—roll axis
of the UAV fixture; 2—pitch axis of the UAV fixture; 3—yaw axis of the UAV fixture; 4—the UAV’s
fixture connecting ball joint; 5—the UAV’s fixture horizontal stabilizer connecting rod; 6—the UAV’s
fixture horizontal stabilizer counterweight; 7—UAV’s thrust engine; 8—holder.

A precision tunable variable inductance magnetic antenna is placed 1 to 5 m from
the UAV. The antenna is connected to the SDR receiver, which sends data to the personal
computer with dedicated software. Initially, the ES of the surrounding was recorded
and examined in order to evaluate the presence of any artifacts before powering on the
UAV thrust engines. The electric thrust motors of the UAV started to spin at a minimal
speed. The control of the motors was established using the remote controller of the UAV.
The signature of the ES was observed and recorded.

Next, the thrust engines are powered up to 40% of the full throttle with the stabilization
function activated while the UAV stays permanently fixed to the holder. The force to the
UAV’s body is applied in a such way that the stabilization on any of yaw, pitch, and roll
axes is present and visible as an ES signature. To confirm that the ES signature is not an
artifact, force to the UAV’s body is applied in a repetitive way, which is also represented in
the recorded UAV’s ES signature. The connected counterweight system was used in the
experiment as a pendulum for a repetitive external force generation to any of the UAV’s
axes except yaw.

Any small applied force to the UAV’s body leaves a proportional frequency change
as the ES signature during the stabilization mode. This kind of experimental setup is an
alternative to the UAV’s natural free-flight conditions in order to simulate any wind gust,
take off, landing, yaw, pitch, and roll axis movements.

The physical experiments are based on collecting data on the operating modes of
different engines from different drones (see Figure 4).

Several engines were used as a source of investigation. First of all the engine from
the DEWALT DCF809 impact drive was used in the investigation, because its spectrum
is similar to the spectrums of engines from drones. The second engine used was from
a DJI MAVIC 2 Enterprise drone. The last engine was from the ACHINE TYRO 109
multi-rotor drone.
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Figure 4. Performance of the physical experiments.

3. Results and Discussion

The physical experiments were conducted with three engines from three different
sources. First of all, two similar-sized multi-rotor UAVs were used for measuring their
generated signature on an electromagnetic spectrum. The equipment was chosen according
to the possibilities of performing a static flight with the flight stabilization function in use.
The first engine was from a DJI MAVIC 2 Enterprise drone and the second engine was from
an ACHINE TYRO 109 multi-rotor UAV drone, respectively. A similar BLDC motor from
the widely used DEWALT DCF809 impact drive was selected for the comparison of the
obtained ES signatures, which were generated by the engines of multi-rotor UAVs.

From Figures 5–10, one can seen that after applying the tunable repositioning of the
ferrite rod it is possible to achieve:

• Smooth (continuous) variation of the resonant frequency.
• It is possible to detect both the first and other higher harmonics of the electromagnetic

spectrum which are emitted by engines of the drone.
• Environmental disturbances are eliminated during measurements. The system is not

sensitive to environmental disturbances.

There were 100 attempts made with every selected device in order to get the elec-
tromagnetic spectrograms. Overall, there were 300 attempts. The three summarizing
spectrograms are presented for discussion. The aim of the work was to confirm the concept
that the designed and manufactured tunable magnetic antenna allows identifying the
appearance of the drone in the research area. Additionally, the magnetic antenna allows
identifying different operation modes of the engines of the investigated drones.

First of all, the 30 s window of the spectrogram of the engine from the Eachine Tyro
multi-rotor UAV is presented in Figure 5. The visible essential areas of the spectrogram
are: 1—the UAV’s thrust motors are turned off; 2—the UAV’s thrust motors are spinning
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at minimal idle rotation speed; 3—the UAV’s thrust motors are spinning from 40% to
30% of the full power; 4—the UAV’s thrust motors are spinning at 40% of full power
while forced repetitive body destabilization movements in the pitch, yaw, and spin axes
are performed. Each forced movement of the UAV is generating a unique signature in
an electromagnetic spectrum which is proportional to the frequency shift of the signal.
5—the UAV’s thrust motors are spinning at 50% of full power. Equal repetitive forced
body destabilization movements in the pitch axis are performed. Each forced movement is
generating a proportional signal’s frequency shift in an electromagnetic spectrum. 6—the
UAV’s thrust motors are spinning at the minimal idle rotation speed.

Figure 5. Recorded signature of a 24 kHz electromagnetic spectrogram, generated by the thrust
engines of the multi-rotor Eachine Tyro UAV.

According to the results from the spectrogram, it is visible that the appearance of the
working engines of the drones is clearly visible in the spectrogram. The actual mode of
operation of the engines of the drone can be also identified by using the spectrum of the
obtained signal to the magnetic antenna. The level of the amplitude of the spectrum and
the distribution of energy at different frequencies will be different in the different modes
of operation.

For example, the spectrum of obtained signals to the magnetic antenna from all four
engines while working in the 50% power of the engines (fifth mode) is presented in Figure 6.
The energy of the signal is more concentrated in the lower frequencies.

On the other hand, while the UAV’s thrust motors are spinning at a minimal idle rota-
tion speed, peaks of amplitudes and the root mean square (RMS) will have the lower values.
Additionally, the energy in percentages will be more spread out in higher frequencies (see
Figure 7).

A similar situation is obtained in the spectrograms of the engines from the DJI MAVIC
2 Enterprise drone (see Figure 8).
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Figure 6. Spectrum of the multi-rotor Eachine Tyro UAV at the fifth operating mode while engines
work at 50% of its maximum power.

Figure 7. Spectrum of the multi-rotor Eachine Tyro UAV when the thrust motors are spinning at the
minimal idle rotation speed.

Figure 8. Recorded signature of a 92 kHz electromagnetic spectrogram, generated by the thrust
engines of the multi-rotor DJI Mavic 2 Enterprise UAV.
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Again, the 30 s window of the spectrogram is presented in Figure 8. The essential
areas of the spectrogram are: 1—the UAV’s thrust motors are turned off; 2—the UAV’s
thrust motors are spinning at a minimal idle rotation speed; 3—the UAV’s thrust motors are
turning at 40% of the full power. Forced, equal and repetitive destabilization movements in
the pitch axis are applied to the body of the UAV. Each forced movement is generating a
proportional frequency shift of the signal in an electromagnetic spectrum. 4—the UAV’s
thrust motors are spinning at 80% of full power, takeoff static motor thrust is generated
in stabilization mode; 5—the UAV’s thrust motors are turning at 30% of full power, equal
repetitive forced destabilization movements in the pitch axis are performed. Each forced
movement is generating a proportional signal’s frequency shift in an electromagnetic
spectrum. 6—the UAV’s thrust motors are turning at 30% of full power. Forced repetitive
body destabilization movements in the pitch, yaw, and spin axes are performed.

The last spectrogram is presented of the motor that is not from the drone, but from the
DEWALT DCF809 impact driver (see Figure 9). The time window of the spectrogram is 30 s.
The spectrogram of the Dewalt DCF809 impact driver has five essential working modes:
1—the BLDC impact driver motor in slow speed impact mode under the load, hammer in
action; 2—the BLDC impact driver motor driving a bolt without impact hammer operation;
3—the BLDC impact driver motor under load condition, with pretension of the hammer
spring; 4—the BLDC impact driver motor under load with the hammer in action; 5—the
BLDC impact driver motor switched off.

Figure 9. Recorded signature of a 40 kHz electromagnetic spectrogram, generated by the single BLDC
motor of the Dewalt impact driver.

The physical experiments have shown that every set of engines of the drone could be
recognized using the proposed and investigated tunable magnetic antenna. For example,
the DJI drones have a specific signature in the spectrogram obtained during engine start-up,
which allows the drone type/manufacturer to be identified from the spectrogram. All
the transitions from minimum to maximum revolutions of the engines were visible in the
spectrograms with their unique signatures. A clearly visible signature in the spectrogram
was obtained in the fundamental and other higher harmonics of the spectrum while
measuring the drone signature in the spectrogram positioning (stabilization) mode.
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The higher harmonics could be investigated by shifting the resonant frequency of the
antenna. For example, a precision tunable variable inductance magnetic antenna shifted
the frequency from 23 kHz to 46 kHz and back to 23 kHz (see Figure 10). As it is seen from
the recorded spectrum, the amplitude of the second harmonic increased and became visible
for recognition. Comparing different harmonics of the same signal and continuous tracking
of the ES signature enables new capabilities of AI-powered UAV detection systems.

Figure 10. Spectrogram of antenna with shifted frequency from 23 kHz to 46 kHz and back to 23
kHz, when 1—received UAV EM spectrum signature of the second harmonic; 2—stepless transition
of magnetic antenna resonant frequency to the first harmonic of UAV EM spectrum signature; 3—
received UAV EM spectrum signature of the first harmonic; 4—stepless transition of magnetic antenna
resonant frequency to the second harmonic of UAV EM spectrum signature; 5—received UAV EM
spectrum signature of the second harmonic.

A precision tunable variable inductance magnetic antenna can be used together with
the AI systems for more reliable ES signature detection and recognition. The advantage
of the antenna is that it can track the movement of the ES signature in ES continuously
or jump to any other frequency with precalculated harmonics for signature evaluation
or comparison.

In the case of a situation when the investigated harmonic at the particular frequency
of the UAV’s ES signature is with high disturbances, variable inductance magnetic antenna
can instantaneously change reception frequency to other harmonics for signature reception
and comparison. According to the obtained spectrograms from different engines, it is
possible to summarize that:

• ES signatures of electrically powered multi-rotor UAVs are received, recorded, and
analyzed.

• ES signatures of Dewalt impact driver are received, recorded, and analyzed.
• There are enough data to conclude that ES signatures of engines from different

drones and ES signature of engine from impact driver generates completely different
ES signatures.

• A precision tunable variable inductance magnetic antenna can be used to detect the
first harmonic of the UAV’s ES signature and then retune to the second or any other
present harmonics.

• An antenna capable of tuning harmonics can increase the effectiveness of signature
detection algorithms by checking ES signatures between the different harmonics of
the same UAV.
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• Each forced movement of the UAV generates a unique signature in an electromagnetic
spectrum that is proportional to the frequency shift of the signal.

For example, the comparison of the ES signature of the Eachine Tyro drone in the
spectrogram with all five harmonics in the 0–120 kHz frequency range are presented in
Figure 11a. Overall, there are five harmonics at 24, 48, 72, 96, and 120 kHz frequencies,
respectively. In the case of the DJI drone, there are three harmonics (see Figure 11b).
The width of the different harmonics in the spectrogram of the Dewalt impact driver are
compared in Figure 11c.

Figure 11. Spectrograms of engines with all visible harmonics and their widths in the 0–120 kHz
frequency range: (a)—Eachine Tyro drone; (b)—DJI drone; (c)—Dewalt impact driver.

A more detailed comparison of spectrograms of the main frequencies of the harmonics
of the UAVs is presented in Tables 1–3.

Table 1. Main frequencies of the harmonics of the Eachine Tyro drone’s spectrogram.

Harmonics 1 2 3 4 5

The lower frequencies of the harmonic signature, Hz 21,806 45,548 69,677 93,419 117,290

The upper frequencies of the harmonic signature, Hz 26,064 49,806 73,806 97,815 121,548

The width of the harmonic signature, Hz 4258 4258 4129 4396 4258

The center frequencies of the harmonic signature, Hz 24,000 47,870 71,612 95,612 119,612

The amplitude of center frequency, dBm −47.6 −51.2 −58.9 −64.3 −70.7
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Table 2. Main frequencies of the harmonics of the DJI drone’s spectrogram.

Harmonics 1 2 3

The lower frequencies of the harmonic signature, Hz 42,468 88,793 135,465

The upper frequencies of the harmonic signature, Hz 49,977 96,533 142,859

The width of the harmonic signature, Hz 7509 7740 7394

The center frequencies of the harmonic signature, Hz 46,280 92,575 13,8931

The amplitude of center frequency, dBm −66.1 −52.6 −80.6

Table 3. Main frequencies of the harmonics of the Dewalt driver’s spectrogram.

Harmonics 1 2 3 4

The lower frequencies of the harmonic signature, Hz 19,392 39,413 59,612 79,733

The upper frequencies of the harmonic signature, Hz 20,791 40,878 60,998 81,198

The width of the harmonic signature, Hz 1399 1465 1386 1465

The center frequencies of the harmonic signature, Hz 20,090 40,110 60,270 80,221

The amplitude of center frequency, dBm −41.6 −47.5 −53.9 −61.4

The more detailed comparison of spectrograms shows that the mean width of the
harmonic signature is 4259.8 Hz. The third harmonic has the narrowest width, which is
equal to 4129 Hz and the fourth harmonic has the widest width, which is equal to 4396 Hz.
The highest center frequency of the harmonic signature could be received in the case of the
fifth harmonic—119,612 Hz and the lowest 24,000 Hz at the first harmonic (see Table 1).

The three harmonics could be received in the case of the DJI drone. The mean width
of the harmonic signature is 7547.6 Hz. The width of the harmonic signatures varies from
7394 Hz to 7740 Hz. The center frequencies of the harmonic signature vary from 46,280 Hz
to 138,931 Hz in all three harmonics (see Table 2).

The narrowest width of the harmonic signature is received in the case of the Dewalt
driver, the lowest width of the harmonic signature is 1386 Hz in the case of the third har-
monic. Additionally, we detected only four harmonics (see Table 3). The center frequencies
of the harmonic signature vary from 20,090 Hz to 80,221 Hz.

The analysis of the multi-rotor UAVs shows that the center frequencies of the harmonic
signature vary from 24,000 Hz to 13,8931 Hz. The width of the harmonic signature varies
from 4129 Hz to 7394 Hz compared with the width of the harmonic signature of the Dewalt
driver. Therefore, the center frequency of the harmonic signature of the first harmonic
of the Dewalt driver is pushed to the lower side of the frequencies compared with other
BLDCmotors.

4. Conclusions

In this study, a hypothesis was validated that, by measuring the spectrum of engine
control signals, it is possible to detect UAV-specific traces in the spectrogram. In the
Introduction section, it was shown that electromagnetic interference signatures are expected
to increase, due to the emergence of electric motors.

Thus, in this study, we showed that it is possible to detect a signature of an electro-
magnetic spectrum of multi-rotor UAVs. The interference frequency range is expected to be
from 1 to 100 kHz. For this task, a precision tunable variable inductance magnetic antenna
design was proposed.

The resonant frequency of the designed tunable antenna is changed by varying the
inductance using a motorized actuator. The obtained results show a change in the spectro-
gram based on the thrust of the engine and the different types of UAVs.
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11. Novotňák, J.; Oravec, M.; Hijj, J.; Jurč, D. Slip Control by Identifying the Magnetic Field of the Elements of an Asynchronous
Motor. In Proceedings of the 2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI),
Herl’any, Slovakia, 21–23 January 2021; pp. 000273–000278.

12. Blažek, J. Leakage magnetic fields of the electriC BLDC motors of small UAV. J. Elect. Eng. 2015, 66, 14–17.
13. Kim, J.; Park, C.; Ahn, J.; Ko, Y.; Park, J.; Gallagher, J.C. Real-time UAV sound detection and analysis system. In Proceedings of

the 2017 IEEE Sensors Applications Symposium (SAS), Glassboro, NJ, USA, 13–15 March 2017; pp. 1–5.
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