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Abstract: As interest grows in unmanned aerial vehicle (UAV) systems, UAVs have been proposed
to take on increasingly more tasks that were previously assigned to humans. One such task is the
delivery of goods within urban cities using UAVs, which would otherwise be delivered by terrestrial
means. However, the limited endurance of UAVs due to limited onboard energy storage makes it
challenging to practically employ UAV technology for deliveries across long routes. Furthermore, the
relatively high cost of building UAV charging stations prevents the dense deployment of charging
facilities. Solar-powered UAVs can ease this problem, as they do not require charging stations
and can harvest solar power in the daytime. This paper introduces a solar-powered UAV goods
delivery system to plan delivery missions with solar-powered UAVs (SPUs). In this study, when the
SPUs run out of power, they charge themselves on landing places provided by customers instead of
charging stations. Some advanced path planning algorithms are proposed to minimize the overall
mission time in the statically charging efficiency environment. We further consider routing in the
dynamically charging efficiency environment and propose some mission arrangement protocols to
manage different missions in the system. The simulation results demonstrate that the algorithms
proposed in our work perform significantly better than existing UAV path planning algorithms in
solar-powered UAV systems.

Keywords: drones; path planning; solar-powered UAV; UAV-based delivery system

1. Introduction

As unmanned aerial vehicles (UAVs) become increasingly popular, their applications
for drones/UAVs (drones and UAVs can be used interchangeably, although many profes-
sionals in the industry believe UAVs need to have autonomous flight capabilities, whereas
drones do not; in this study, we only talk about UAVs in the form of quadcopters) are
developed and expanded to many civilian or military areas. Soon, UAVs are predicted to
play a significant role in the intellectualization of urban cities. However, the limited battery
capacity makes it difficult for UAVs to finish long-distance/long-term missions without
any power charging on the way.

In some UAV delivery systems, the solution is to build many charging stations along
the way, so that UAVs can carry out longer missions. For example, in [1–3], charging
stations were built for UAV power supply. Unfortunately, it is costly and sometimes illegal
to build charging stations on rooftops or personal property in urban cities. Although some
hosts are willing to have charging stations on their property, other issues arise, such as
the power, the safety of the station and potential UAV-caused accidents. It is, therefore,
challenging to build UAV charging infrastructures in both public and personal places.

Solar-powered UAVs can harvest sunlight power anywhere in the daytime given
suitable weather. As a result, to achieve more extended distance/time missions by UAVs
without building many charging infrastructures, we propose an autonomous solar-powered
UAV delivery system to take over the traditional delivery work in urban cities. In our
proposed system, places such as roofs of buildings (the study in [4] presented potential
solar energy stations on rooftops in modern cities that can be easily discovered by UAVs),
high grounds in parks and small places in people’s gardens are identified as possible
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charging places on city maps. It is much cheaper and more efficient to simply utilize
such places as they are rather than building charging infrastructures there instead. In the
proposed system, hundreds of solar-powered UAVs are prepared in stores with thousands
of charging places determined throughout a city. When the system receives a delivery
mission, it automatically finds the proper UAV that takes the least amount of time to finish
the task. Since the UAVs can run out of power during the mission, the system helps with
UAV path planning and determines how much time they need to stay on each passed
landing place for solar power charging. In previous studies, authors paid more attention
to path planning for solar-powered UAVs to harvest more energy during the flight (for
fixed-wing UAVs), and no path planning methods were proposed for solar-powered UAV
delivery systems. Thus, we believe it is necessary to comprehensively analyze the routing
problem in solar-powered UAV delivery systems.

This study discusses the path planning problem by considering both the distance and
the energy charging efficiency, since SPUs are applied here. The charging rates (efficiency)
(the charging rate here represents the charging speed of a solar panel in a landing place in
units of energy per minute, depending on the illumination/radiation level of the landing
place) of different charging places differ in our scheme. Sequentially, we perform a trade-off
between the distance and energy charging efficiency in this problem. The charging efficiency
can either be static or dynamic in UAV systems. If the charging efficiency is considered
static, it means the energy price in the normal UAV delivery system or the charging rate
in the solar-powered UAV system is considered constant for each landing place. At the
beginning of our study, both the optimal charging time assignment (CTA) algorithm and
the globally optimal path planning algorithm (GOA) with pruning strategies are proposed
to solve the path planning problem in the statically charging efficiency environment. As
described in the solar radiation model proposed in [5], we also consider a dynamically
charging efficiency in our study. It is much more efficient to charge the UAV in the period
close to noon than in earlier or later daytime. Hence, the path planning problem became
more complicated here. To solve the routing problem in the dynamically charging efficiency
environment, we also propose a dynamically greedy CTA algorithm to further reduce the
charging time on a known path. In addition, a heuristic path planning algorithm based
on the dynamically greedy CTA algorithm is proposed to reduce the path finding time.
Finally, some protocols are proposed to optimize the global UAV delivery works in the
whole system.

The main contributions in this paper include the following:

1. We propose globally optimal CTA and path planning algorithms for UAV delivery
problems in a statically charging efficiency environment. Previous studies have not
proposed such globally optimal algorithms.

2. We propose a greedy CTA algorithm and a heuristic path planning algorithm for the
solar-powered UAV delivery problem in a dynamically charging efficiency environ-
ment, which has never been proposed before.

3. We are the first to propose a SPU delivery system with a prototype, system design,
and protocols to operate different missions.

The rest of this paper is organized as follows: Section 2 compares our study with
related works. Section 3 proposes the path planning problems we encounter in the SPU
delivery system. Section 4 proposes the CTA algorithm and globally optimal path planning
algorithm for a single SPU mission in a statically charging efficiency environment. Section 5
proposes a dynamically greedy CTA algorithm and heuristic SPU path planning algorithm
to solve the SPU routing problem in the dynamically charging efficiency environment.
Section 6 proposes the mission arrangement protocols to solve the system-level problems.
Section 7 proves the feasibility of applying SPUs in delivery works. Section 8 presents the
simulation results for our proposed algorithms. The last section concludes the paper and
suggests future work.
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2. Related Studies

The subject of this paper was to solve the path planning problem in solar-powered
UAV delivery systems, whereas no other studies explored the same topic as our study. Most
papers about solar-powered UAV path planning have focused on fixed-wing solar-powered
UAV path planning, which plans the optimal path to create wings with solar panels that
can harvest the most power during the flight, such as [6,7]. However, since we aimed to
work on the UAV delivery problems, it was not practical to apply fixed-wing solar-powered
UAVs in this study. (Fixed-wing UAVs require runways to take off and land on, and it
is not practical to build a lot of runways in modern cities. In addition, in our study, the
optimization of charging time on a series of landing places was considered, whereas in
fixed-wing solar-powered UAV path planning problems, the optimization of continuous
charging efficiency on different flight paths is generally considered. Thus, we did not
compare our proposed algorithms with any algorithms applied to fixed-wing UAVs.) As a
result, we focused on the path planning problem for solar-powered quadcopters, which are
more practical for delivery missions.

Some other studies discussed that the path planning problems of UAVs were related to
obstacle avoidance, such as [8,9]. In our study, we ignored this kind of problem because we
assumed that UAVs would fly to a safe altitude where no obstacles needed to be considered.
Consequently, we focused on finding the best route for UAVs to finish a delivery mission
with several landing times. Thus, we did not compare our algorithms with such kinds
of studies.

Hence, we compared our study with papers related to quadcopter path planning
problems and UAV delivery problems. As described in [10], since UAV path planning
problems are always treated as being NP-hard (nondeterministic polynomial-time hardness)
problems, the time complexity and complexity of the problems increase in complex terrains.
They pointed out all the challenges for solar-powered UAV implementations, but did not
give a particular solution to the UAV delivery path planning problem. In addition, different
from fixed-wing UAVs, solar-powered quadcopter path planning problems are mainly
affected by distance and solar power factors. Thus, in our study, we focused on the trade-off
between energy charging and flying distance to find the best route. The authors of [11]
concluded that in UAV routing problems, which require the finding of a set of locations
as paths, authors are always trying to find a path that minimizes the operational cost.
Accordingly, in our study, this cost stood in for the mission time, since no money was
deducted during the solar-powered UAV delivery missions.

For UAV delivery research, such as [12–14], authors proposed routing algorithms for
UAV delivery problems with the help of ground vehicles. Solar-powered UAVs are not
appropriate for these delivery systems, because it takes more area to charge them than
normal UAVs and requires a safe charging environment, while, in [15,16], the authors
studied the path planning algorithm for the coverage plan of delivery customers. The UAV
delivery system was discussed in some studies before, such as [17–19]. For example, in [17],
the authors focused on the optimization of mission scheduling, while in our study, we
focused on the optimization of path planning. Thus, the algorithms proposed in such kinds
of studies cannot be compared with our study as well.

Studies from [1–3,20,21] were quite like our study. All these studies talked about path
planning algorithms in UAV delivery systems with charging stations deployed. However,
authors of [1,3,20] proposed heuristic algorithms to solve the path planning problems
in UAV delivery systems, whereas authors of [2,10] proposed Dijkstra-based algorithms
to solve the path planning problems. Since we are the first to propose path planning
algorithms in solar-powered UAV delivery systems, it is quite difficult to compare our
proposed algorithms with existing heuristic algorithms. The existing heuristic algorithms
for UAV delivery path planning did not consider the factor of dynamically charging
efficiency, which is very important in solar-powered UAV delivery routing problems.
Additionally, in our study, we completed a comprehensive study of the optimization of
solar-powered UAV routing problems, which has never been performed before. However,
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it is difficult to compare our proposed algorithms with existing heuristic algorithms, since
the weights of factors were different.

On the other hand, when compared to Dijkstra-based algorithms, our proposed algo-
rithm was much better, because of the introduction of charging time assignment algorithms.
In Dijkstra-based algorithms, authors assume that UAVs always charge themselves to a
full battery state without considering CTA plans (in Dijkstra-based algorithms, the cost
between nodes should be constant, and if UAVs are allowed to be partially charged in a
charging station/landing place, the cost between nodes becomes a variable when the paths
change). As a result, the Dijkstra-based algorithms cannot obtain globally optimal solutions
in any scenarios where UAVs can be partially charged. More specifically, we proposed
different CTA algorithms that modified the linear greedy algorithm proposed in [21] for
vehicle recharging in the UAV delivery system. In a statically charging efficiency environ-
ment, our proposed CTA algorithm had an advantage compared with the linear greedy
algorithm in SPU problems, because we could prune the path if any node was assigned
0 charging time by the linear greedy algorithm and reduce the total mission time in some
cases. In a dynamically charging efficiency environment, our proposed dynamically greedy
CTA algorithm further optimized the linear greedy algorithm with a local minimization
operation and increased its efficiency when dealing with SPU path planning problems.
With the great advantage brought by our proposed CTA algorithms for solar-powered UAV
delivery systems, our proposed path planning algorithms showed obvious improvements
compared to Dijkstra-based algorithms.

3. The Proposed Model of SPU Delivery System
3.1. SPU Delivery System

To replace the human work in delivery systems in urban cities, we proposed a system
with solar-powered UAVs, which allowed for energy charging on landing places during
their missions. There are two kinds of solar-powered UAVs, fixed-wing SPUs and multirotor
SPUs. We chose multirotor solar-powered UAVs, because it is difficult for fixed-wing SPUs
to lift and land in urban cities. In addition, it can be inefficient, and unsafe for multirotor
SPUs to fly with their wings expanded during delivery missions when they are expected to
carry heavy payloads. Thus, we preferred the transformable multirotor SPUs from [22],
because, during the flight, the solar panels can be folded and unfolded again when landing
to charge. The feasibility study of such an SPU is discussed in Section 7. Each UAV could
only carry one package at a time, since the payload of a single UAV is limited.

Therefore, the solar-powered UAV delivery system could be built with three elements:
delivery stores, solar-powered UAVs and landing places. The packages were stored at deliv-
ery stores, and these were the start nodes of the delivery missions. The solar-powered UAVs
that carried out the delivery missions charged themselves on landing places. The landing
places could either be intermediate nodes or the destination of the delivery missions, and
in some emergency or the return voyages, they could be the start nodes as well.

In the proposed system, we assumed that the system would operate during the
daytime, with optimal weather conditions for flight and solar power charging. As the
energy required for flying was larger than the capacity of the battery, the UAVs periodically
needed to land and stay grounded until having accumulated enough energy to continue
their mission (this is reminiscent of the way that flying bugs travel, such as flies or bees,
where these bugs periodically land to rejuvenate); we referred to such times as charging
times. The charging rates at different locations were typically different and were assumed
to be known (or approximately predictable) to the path planning facility. The goal of the
proposed algorithms was to minimize the sum of total flying times and charging times, (see
Equation (1) below). Thus, the proposed algorithm determined the path the UAV should
follow, and how much time the solar-powered UAV should stay at each passed landing
place. Note that for any UAV delivery mission, the path with the shortest distance may not
be the path with the shortest total mission time. In other words, we determined a trade-off
between flying distance and energy charging efficiency. In practice, the solar-powered
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UAV path planning problem was more complicated, since our path planning algorithm
was proposed for solar-powered UAVs and the charging rate in any landing place varied
in the daytime; we also needed to find the best path planning algorithm in a dynamically
charging efficiency environment. Finally, after finding the best path planning algorithm for
each SPU delivery mission, the arrangement protocol for hundreds of missions was needed.

3.2. SPU Routing Problem Definition (Statically Charging Efficiency)

Before we optimized the whole SPU delivery system, we needed to solve the SPU
routing problem for a single UAV. The ultimate objective of this path planning problem,
called the single SPU problem, was to find a path that minimized the total mission time.
The following diagram shows an example of a single SPU problem in our proposed system.

In Figure 1, the single SPU problem was designed to find a path from node 1 to node
10 with minimized mission time. Path 1-3-8-10 was a candidate optimal solution to this
problem. The UAV started at node 1 then landed on nodes 3 and 8 to charge itself, and then
arrived at node 10 if the system assigned this routing plan to it.
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To simplify the routing problem, we ignored the lifting and landing time and energy
costs in this routing problem, since they were negligible when we considered a long-term
journey by the UAVs. However, it was still not simply a problem of finding the shortest
path, since there was a trade-off between distance and energy charging for any path. For
example, even if the length of a path was short, the total mission time would still be long
because the charging efficiencies of the nodes along this path were low, and it would
take much more time for the UAV to charge along this path. To deal with this issue, we
simplified the path planning problem with Assumptions 3.2.1–3.2.3, discussed below.

The path planning problem was equivalent to a mission time minimization problem:

minTtotal = min
(

Ttotal−flight + Ttotal−charge

)
(1)

where Ttotal−flight represents the total flying time and Ttotal−charge represents the total charg-
ing time during the mission. Ttotal is the total mission time that we wanted to minimize.
Further, we assumed that the charging efficiency at node x, defined as the fraction of the
maximum charging rate of the UAV’s energy storage, was ρx. If node x had the maxi-
mal possible charging rate (i.e., sufficiently large radiation that allowed for the maximal
charging rate of the UAV energy storage), ρx = 1, then, in general, 0 < ρx ≤ 1.

We defined the problem formally as follows: given a geographical (local) map with
marked n locations (called nodes): Vlocal = {v1, v2, . . . , vn}, where v1 = vS is the start
node and vn = vD is the destination, and v2, . . . , vn−1 are possible landing places on the
geographical map. At first, a graph was generated to describe the reachability relation
between the nodes G = (Vlocal, Ereachable). Ereachable = {e1, e2, . . . , em} represents all the
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edges that follow lei ≤ dmax, where lei is the length of edge ei, and dmax is the maximum
one nonstop flying distance of the UAV with its energy storage maximally charged. Then,
the SPU path planning problem could be described as the mission time minimization
problem with Equation (1) when graph G and distance dmax were chosen.

Let lS−D denote the straight-line cross node vS and node vD. Additionally, let eij denote
the edge between nodes vi and vj.

Assumption 3.2.1. G is a graph as defined above for all the edges in Ereachable. Line lS−D needs to
be the parallel line of the X-coordinate in the local city map. The coordinate of node vS is (0, YS)
and the coordinate of node vD is (XD, YS). For any edge in Ereachable as eij, assume the coordinate of
node vi is (Xi, Yi) and the coordinate of node vj is (Xj, Yj), always keeping Xj ≥ Xi.

This assumption ensured that the UAV did not fly significantly “back” to nodes
away from the destination. Additionally, circulations in paths were also eliminated with
this assumption.

For any given path Pk =
[
vS, vk1 , vk2 . . . vkj , vD

]
, where vk1 , . . . , vkj were possible

landing places along the path, Ttotal−flight was fixed, because the speed of the UAV and
the distance between any two nodes were fixed in G. As a result, Equation (1) could be
written as:

minTtotal = Ttotal−flight + min
(

Ttotal−charge

)
(2)

Assuming that the number of nodes in Pk is L, Ttotal−flight = ∑L−2
q=0 Tflight(max) ×

dkq→kq+1
dmax

, where Tflight(max) is the maximum flying time for a fully charged UAV, dmax
is the maximum distance a UAV could fly with a fully charged energy storage, dkq→kq+1

represents the distance between node vkq and node vkq+1 (vkq is the (q + 1)th node in Pk),

and the start node vS ≡ vk0 on path Pk. Ttotal−charge = ∑L−2
i=1 Tcharge(ki)

, where Tcharge(ki)
is

the charging time in node ki. Subsequently, if the path is known as Pk, the total mission
time along path Pk can be calculated as:

Ttotal =
L−2

∑
q=0

Tflight(max) ×
dkq→kq+1

dmax
+

L−2

∑
i=1

Tcharge−est(ki)

ρki

(3)

where Tcharge−est(ki)
represents the estimated charging time at node kI when ρki

= 1. Then,

the actual charging time for any node kI could be obtained with Tcharge(ki)
=

Tcharge−est(ki)
ρki

.

Ttotal−charge depended on the charging time assignment plans along a path Pk; e.g., one
possible scheme was that we assumed that the UAV was charged only to the level needed
to reach the next node on the path. In general, the approximate range of Ttotal−charge could
be found with the following formula:

Tρmax
charge(max) ×

Ttotal−flight − Tflight(max)

Tflight(max)
≤ Ttotal−charge ≤ Tρmin

charge(max) ×
Ttotal−flight − Tflight(max)

Tflight(max)
(4)

where ρmin represents the minimum charging efficiency for all charging places on a local
city map, ρmax = 1 represents the maximum charging efficiency for all charging places and
Tρ

charge(max) represents the total time to charge the battery from empty to a fully charged

state when the charging efficiency was ρ. Tρmax
charge(max) = ρminTρmin

charge(max).
Assuming that Ep was the remaining power in the UAV when the UAV reached the

(p + 1)th node on path Pk, Rp represented the charging time to charge the UAV battery to Ep
when charging efficiency was ρmax. Assumption 3.2.2 was created to simplify the derivation:

Assumption 3.2.2. R1 = RS = Tρmax
charge(max); if Ttotal− f light > Tf light(max), RL = RD = 0.
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Assumption 3.2.2 supposes that we always had a fully charged UAV at the beginning
of a mission. If the UAV could not fly from node S to D without recharging, meaning that
Ttotal−flight > Tflight(max), we assumed that when the UAV reached the destination it had
no remaining power. On the other hand, if Ttotal−flight ≤ Tflight(max), we did not need to
consider the energy charging time of any path, because we did not need to charge the UAV
during its mission.

We also ignored the landing and lifting-off times, as those are typically negligible
relative to the flight time between two nodes on a path:

Assumption 3.2.3. The lifting-off times and the landing times of each mission were assumed to
be negligible.

Besides the assumptions above, we needed to claim that, in this study, the energy
charging time and distance between nodes were the only two factors we took into consider-
ation. Here, we assumed a fixed flying speed for all solar-powered UAVs in this problem
to simplify the path planning problem, since energy and distance are more crucial for
solar-powered path planning problems.

In addition, to finding an optimal charging time assignment plan for any path Pk, we
recorded the sets of reachable nodes for every node vI in Vlocal as Ui = {U1, U2, . . . , Un}.
Any node vj in reachable set UI should follow di→j ≤ dmax and Xj ≥ Xi. For example, in
Figure 2, for the start node vs, which was node one, nodes two, three and four were in the
blue circle with the center as node one and the radius as dmax. Consequently, the reachable
set of node one was U1 = {2, 3, 5}.
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The routing solution in the statically charging efficiency environment, as described by
Equations (1) and (3), was solved in Section 4.

3.3. SPU Routing Problem Definition (Dynamically Charging Efficiency)

In our SPU path planning problem discussed above, we considered the charging
efficiency ρki

of the node ki as a fixed value. However, in practice, the charging efficiency
is a variable and varies during the daytime; thus, it is time dependent: ρki

(t). Solar
radiation/illumination prediction is of great importance for many applications in a modern
city [5], and we could see from [5] that the solar radiation in a place can be approximately
represented by a curve.
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In our study, we adopted the time-dependent solar radiation model called the S.
Kaplanis’s model from [5], shown in Figure 3 (the Y-axis label was replaced with charging
efficiency, as defined in this paper):

ρki
(t) = (a1(ki )

+ a2(ki )
cos

π
(

t− tpeak

)
tend

) (5)

where t0 = 0 represents the time of 6:00 a.m., tpeak = 360 is the peak time of radiation,
which was noon, and tend = 720 represents the end of the daytime, which was 6:00 p.m.
(since the unit of time in our study was minutes). Taking the example from [23], where
the mean annual solar radiation in the state of Hawaii was shown, we could say that in
different places in the same city, radiations are different, so the prediction factors a1 and a2
in Equation (5) were location dependent.
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Thus, based on the radiation data collected in any potential landing place, we could
generate the radiation prediction formula per Equation (5) with a simulation of the de-
trending model in [5]. Then, the total mission time along path Pk could be expressed with
Equation (6):

Ttotal =
L−2

∑
q=0

Tflight(max) ×
dkq→kq+1

dmax
+

L−2

∑
i=1

Tcharge−est(ki)(ti1 − ti0)∫ ti1
ti0

ρki(t)·dt
(6)

where ti0 represents the time that the UAV arrived at node ki and ti1 represents the time
the UAV left node ki at. When ti0 and ti1 for each node were determined, we could find
the value of Ttotal with Equation (6). To solve the total mission time minimization problem
described by Equation (6), we studied how these variables affected the total mission time
and tried to find the corresponding algorithm for the dynamically charging efficiency
environment in Section 5.

3.4. Mission Arrangement of Problems Definition

The final problem of our study was to plan a UAV delivery system with multiple UAVs
operating at the same time. There could be a large number of possible landing places on a city
map. We assumed to have a multitude of C missions M = {m1, m2, . . . , mC} to perform ev-
ery day, and there was a set of UAVs (with B UAVs prepared) UAV{UAV1, UAV2, . . . , UAVB}
that could be used to execute these missions.
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Considering the coordination of the missions in the whole city, the problem described
by Equation (1) was changed to:

minTtotal−mission =
c

∑
i=1

Ttotali (7)

where Ttotali is the total time of the ith mission, all the missions had to be completed and
the total mission time Ttotal−mission had to be minimized.

In Figure 4, the ten stores were marked with red circles and one hundred possible
landing places were marked with blue crosses. The mission destinations were some of the
landing places.
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In the whole proposed SPU delivery system, we needed to consider the
following problems:

1. Whether the space in each landing place was limited.
2. Whether the local city map needed to be updated from time to time.
3. Whether the system should be able to handle emergencies caused by bad weather.

Section 6 further addresses the above problems by our proposed protocols.

4. Proposed Routing Algorithms (Statically Charging Efficiency)

In Section 2, we mentioned that the algorithm in [2,3] did not yield a globally optimal
solution. Their CTA plan was not optimal for any given path because, in their assumption,
the UAVs always charged their battery to a full battery state. For example, in Figure 5, on
the 1-5-9-10 path, let us say that the charging efficiency on node eight was much larger
than on node three. When we reached node three, as opposed to fully charging the battery,
we only needed to charge enough to reach node eight. This plan was more efficient
than plans determined by [2,3]. When we considered both the total flying distance and
energy charging efficiency in the path planning problem, even though the path found by
the Dijkstra algorithm had a minimized distance (the distance for the Dijkstra algorithm
here was from a drone navigation and charging station (DNCS) [2], which was calculated
with the summation of flying time and charging time under the scenario of UAVs always
charging themselves to a full battery capacity in any station/landing place [3]) of a mission,
the path found by this Dijkstra algorithm may not have been the optimal one. For example,
in Figure 5, assume that the Dijkstra algorithm found an optimal path 1-5-9-10 for the
following graph. However, node nine had a much higher charging efficiency than nodes
along path 1-5-9-10. Thus, if we charged the UAV on node nine on path 1-4-5-9-10, the total
mission time Ttotal could be smaller than that on path 1-5-9-10 obtained with Dijkstra’s
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algorithm. Thus, to find a globally optimal path planning solution for the SPU delivery
mission, we needed a principle to traverse all the possible paths and to find the optimal
charging time assignment along each such path.

Drones 2022, 6, x FOR PEER REVIEW 10 of 34 
 

3. Whether the system should be able to handle emergencies caused by bad weather. 
Section 6 further addresses the above problems by our proposed protocols. 

4. Proposed Routing Algorithms (Statically Charging Efficiency) 
In Section 2, we mentioned that the algorithm in [2,3] did not yield a globally opti-

mal solution. Their CTA plan was not optimal for any given path because, in their as-
sumption, the UAVs always charged their battery to a full battery state. For example, in 
Figure 5, on the 1-5-9-10 path, let us say that the charging efficiency on node eight was 
much larger than on node three. When we reached node three, as opposed to fully 
charging the battery, we only needed to charge enough to reach node eight. This plan 
was more efficient than plans determined by [2,3]. When we considered both the total 
flying distance and energy charging efficiency in the path planning problem, even 
though the path found by the Dijkstra algorithm had a minimized distance (the distance 
for the Dijkstra algorithm here was from a drone navigation and charging station 
(DNCS) [2], which was calculated with the summation of flying time and charging time 
under the scenario of UAVs always charging themselves to a full battery capacity in any 
station/landing place [3]) of a mission, the path found by this Dijkstra algorithm may not 
have been the optimal one. For example, in Figure 5, assume that the Dijkstra algorithm 
found an optimal path 1-5-9-10 for the following graph. However, node nine had a much 
higher charging efficiency than nodes along path 1-5-9-10. Thus, if we charged the UAV 
on node nine on path 1-4-5-9-10, the total mission time T୲୭୲ୟ୪ could be smaller than that 
on path 1-5-9-10 obtained with Dijkstra’s algorithm. Thus, to find a globally optimal 
path planning solution for the SPU delivery mission, we needed a principle to traverse 
all the possible paths and to find the optimal charging time assignment along each such 
path. 

 
Figure 5. An example of a ten-node local city map. 

The algorithm proposed in this section found a globally optimal solution of the SPU 
path planning problem in a statically charging efficiency environment with an accepta-
ble running time complexity (our proposed algorithms worked on local city maps with 
at most hundreds of nodes). 

4.1. Changing Time Assignment Algorithm 
The algorithm presented in this section was a simple globally optimal algorithm 

(GOA) for solving the problem described in Section 3.2. Namely, the solution to this 
problem was just a combination of the path traverse algorithm with a depth first search 
(DFS) and the charging time assignment (CTA) algorithm. The CTA algorithm was nec-

Figure 5. An example of a ten-node local city map.

The algorithm proposed in this section found a globally optimal solution of the SPU
path planning problem in a statically charging efficiency environment with an acceptable
running time complexity (our proposed algorithms worked on local city maps with at most
hundreds of nodes).

4.1. Changing Time Assignment Algorithm

The algorithm presented in this section was a simple globally optimal algorithm (GOA)
for solving the problem described in Section 3.2. Namely, the solution to this problem was
just a combination of the path traverse algorithm with a depth first search (DFS) and the
charging time assignment (CTA) algorithm. The CTA algorithm was necessary in the case
that a UAV was unable to reach the destination and needed to find the next landing place
for charging before completing the mission.

If a UAV could not fly without recharging to the destination from the current node
(including the start node), it needed to find the next landing place for energy charging. This
was where the CTA algorithm was necessary.

Assuming the UAV at the time was in the wth node on path Pk (w ≥ 1), it could reach
the next h nodes along path Pk (which meant the distances between the wth node and its
next h nodes were smaller than dmax) and the flight time to reach the current wth node was
Tflight−total(w). For any wth node on path Pk, assume that the reachable set for the wth node
was U Pk(w), and the set u Pk(w) (u Pk(w) = Pk ∩U Pk(w)); i.e., u Pk(w) contained only the
nodes that were both in Pk and U Pk(w). Let set Z Pk(w) = ρk(w−1)

denote the charging

efficiency of the wth node on path Pk and PX−Y denote the part of the path from the Xth

node to the Yth node.

Theorem 4.1. If there existso (o > 1) such that the (w + o)th node on the pathPk has a larger
charging efficiency than all the other nodes in u Pk(w), pathPk cannot be an optimal path.

Proof of Theorem 4.1: Assume the (w + o)th node (o > 1) has a larger charging efficiency
than all the other nodes in u Pk(w). Additionally, assume two charging plans A and B.
Plan A included all the nodes on the path in Pk, and in plan B, we skipped the nodes
between the wth node and the (w + o)th node. Then, Ttotal−flight(planB) ≤ Ttotal−flight(planA),

because the distance of the straight line between the wth and (w + o)th nodes in Pk was
never larger than any other path between the nodes that went through other nodes. In fact,
Ttotal−charge(planB) < Ttotal−charge(planA), because we did not waste time to charge the UAV
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on nodes between the wth node and the (w + o)th node, of which the charging efficiencies
were lower than the (w + o)th node. Thus, Ttotal(planB) < Ttotal(planA). Accordingly, plan A
with path Pk could not be an optimal path. �

Lemma 4.1. Assume we are currently in wth(w > 1) node in Pk. If any Y node before the wth node
along the path Pk can reach the wth node, and node Y has a larger charging efficiency than any other
node along the part of Pk from w to Y, Pk should be pruned.

Remark 4.1. With the linear greedy algorithm in [21], if we pruned all the paths that satisfied
Lemma 4.1, then we would have the following equation to calculate the total charging time on the
(w + 1)th node in Pk:

If max{Z(w + 1)} < ρk(w)
, Tcharge−total(w+1) = Tcharge−total(w) +

Tρmax
charge(max)

ρk(w)

If max{Z(w + 1)} ≥ ρk(w−1)
or w = L− 2, Tcharge−total(w+1)

= Tcharge−total(w) +

(
Tρmax

charge(max)×
dkw→kw+1

dmax
− Rw

)
ρk(w)

(8)

where {Z(w + 1)} represents the set of charging efficiencies of nodes in u Pk(w+1). If we
charged the UAV to full capacity in the wth node, Rw+1 = Tρmax

charge(max) − Tρmax
charge(max) ×

dkw−1→kw
dmax

; otherwise, Rw+1 = 0.
It was shown in [21] that if there existed an optimal solution, the greedy algorithm of

Equation (8) could discover it.
We, hereby, present Algorithm 1 to find an optimal CTA on path Pk:

Algorithm 1: CTA algorithm.

Input: Path Pk, graph G, charging efficiency Z for all the nodes in Vlocal, reachable set U
Output: Minimized total charging time Tcharge−total along Pk and charging time on each node ki,
which is Tcharge(ki)

Variables: w, v
1. For w = 1 : L − 1
2. For v = w-1: 1
3. If the (w + 1)th node is in u Pk(w) and Z Pk(w+1) is larger than any other node

along Pv−(w+1), path Pk is dropped (by Lemma 4.1)
4. Break
5. End//drop nonoptimal paths
6. End
7. If Pk is kept, the next node is the next landing place. Additionally, in this (w + 1)th

node, the UAV is charged and allowed to have enough power to reach the (w + 2)th

node. Update Tcharge−total(w+1) with Equation (8)
8. End//assign charging time according to Equation (8)
9. End
10. Return Tcharge−total(L) and Tcharge(ki)

Algorithm 1 was applied to find the optimal charging time assignment plan in any
statically charging efficiency environment and could be tested by comparing the total
charging time it found with what the other algorithms found. Since the CTA algorithm
took O

(
n2) and time path generation algorithm took O(n2), the total running time was

O
(
n4) if we just processed the CTA algorithm on all the possible paths and then found the

optimal path.
Reference [21] proposed a related algorithm for vehicle refueling policies. In their

study, cars needed to find a reachable refueling place with the lowest price at each stop.
However, in UAV path planning problems, if we wanted to skip a node along a path, it
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would not be necessary to pass this node, and we could just fly straight to the next node.
As a result, in our SPU path planning problem, the path was changed when we decided
to skip a node along the path. In addition, our proposed Algorithm 1 was different from
the linear greedy algorithm in [21]. For example, assume we had two nodes A and B on
path P, and there were some nodes between A and B on path P. In the scenario from [21],
to decide if A could reach B, the total distance along A to B on path P should be smaller
than dmax. However, in our SPU routing problems, A reaching B meant that the cartesian
distance between A and B was smaller than dmax.

4.2. Globally Optimal Routing Algorithm

As discussed above, nonoptimal paths were dropped during the CTA algorithm.
However, it was more efficient to prune these nonoptimal paths during the path generation
process instead of the CTA process. As Lemma 4.1 claims, in each branch generated with
the DFS algorithm, for each new generated node vi along path P, if any node along path P
before vi could reach vi and all the nodes between them had lower charging efficiencies
than vi, path P should be pruned. Therefore, we skipped node vi and found the next
node to generate a new path. If there was no path allowing the UAV to finish the delivery
mission, the system reported a failure.

Another pruning strategy was to use the result of the Dijkstra algorithm as a guide to
evaluate if a generated path could be a candidate for a globally optimal path. Combining
this with the strategy based on the CTA, the complete GOA with a pruning strategy for
SPU is depicted in Figure 6.
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The result of the Dijkstra algorithm represented an upper bound for the total mission
time, and at the beginning of the GOA algorithm processing, the result of the Dijkstra
algorithm was set as the maximal estimated flying time (MEFT), Ttotal(MEFT):Ttotal(MEFT) =
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Ttotal(dijkstra). With this bound in mind, we calculated the total mission time for the current
path, Ttotal(candidate), with the iterative application of Remark 4.1 and general Equation (3).

Algorithm 2 shows the detailed process for GOA with pruning.

Algorithm 2: GOA with pruning.

Input: Graph G, Ttotal(MEFT) = Ttotal(dijkstra), charging efficiency Z for all nodes in Vlocal,
reachable set U
Output: Minimized total mission time Ttotal and the optimal path Poptimal
Variables: L, w, v
1. While all the possible unpruned paths are generated,
2. Process the DFS path to find the algorithm and initialize the current generated path to

Pk =
[
vS, vk1 , vk2 . . . vkL−1

]
, and assume to now be in the wth node in Pk which is

vkj and the next node of Pk is vkj+1 . Additionally, the total mission time arriving node
vkj is Ttotal(candidate).//Path generation

3. For v = w −1: 1,
4. If the (w + 1)th node is in u Pk(w) and Z Pk(w+1) is larger than any other node

along Pv−(w+1), path Pk is pruned and any path starting with Pk is pruned as
well

5. Break//pruning strategy by Lemma 4.1
6. End
7. End
8. If Pk is unpruned by Lemma 4.1, add vkj+1 to Pk and calculate Ttotal(candidate) when vkL

is added
9. If Ttotal(candidate) > Ttotal(MEFT),
10. Pk is pruned and any path starting with Pk is pruned as well
11. Else, if Ttotal(candidate) ≤ Ttotal(MEFT) and vkL = vD
12. Ttotal(MEFT) = Ttotal(candidate) and Poptimal = Pk
13. Else, if Ttotal(candidate) ≤ Ttotal(MEFT) and vkL 6= vD
14. Back to step 1
15. End//find candidate optimal path by comparing
16. End
17. Return Ttotal(MEFT) and Poptimal

Algorithm 2 was applied to find the optimal path for the SPU delivery problem
in the statically charging efficiency environment and could be tested by comparing the
total mission time it found with what other algorithms found. The running time of the
unpruned GOA was O

(
n4). However, since we only processed the CTA on unpruned

paths, we only needed to calculate the total mission time with Equation (8) on these
paths. Consequently, the running time of the pruned GOA could save time exponentially,
according to the experiment in Section 8.1. Additionally, the great improvement by the
GOA in the experiment also showed that it was necessary to carry this out, because we
could significantly save customer time with the GOA. (The GOA could also be applied in
other kinds of UAV path planning problems, where the charging efficiency is static. For
example, in the path planning problem from [2], when the cost coefficient of time and
money was fixed, the charging (cost) efficiency became a fixed value, which was related to
the price of energy in different nodes. In such kinds of problems, the GOA could be applied
and an optimal solution could be obtained as well.)

5. Proposed Routing Algorithms (Dynamically Charging Efficiency)

As described in Section 3.3, the charging efficiency for any landing place varied with
time throughout the day, as shown by Equation (5). Given path Pk =

[
vS, vk1 , vk2 . . . vkj , vD

]
,

the estimated total mission time could be calculated with Equation (6). However, there were
different kinds of variables in Equation (6), such as Tcharge−est(kI)

, ti0 and ti1, which caused
it to be difficult to find a minimized solution of the total mission time. Thus, in this section,
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we further analyzed this minimization problem and proposed SPU path planning algorithms
regarding the dynamically charging efficiency.

5.1. Advanced Routing Problem Analysis (Dynamical Charging Efficiency)

In any known path Pk =
[
vS, vk1 , vk2 . . . vkj , vD

]
in graph G = (Vlocal, Ereachable),

represented in Figure 7, the total mission time was calculated in Equation (6), when the
charging efficiency was dynamic.
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[
vS, vk1 , vk2 . . . vkj , vD

]
.

Since, in Equation (5), we could not compare the real-time charging efficiency of
two different landing places when we did not know the time t the UAV would arrive
at these charging places, the pruning strategy by Lemma 4.1 in Section 4.1 could not be
applied in the SPU path planning problem with dynamically charging efficiency. It was also
difficult to compare the total mission time of two paths unless we found a proper charging
time assignment algorithm for each path, as well as there being too many variables in
Equation (6). Please note that, in Equation (6), the total flying time for a UAV mission,

which was Ttotal−flight = ∑L−2
q=0 Tflight(max) ×

dkq→kq+1
dmax

, was only determined with path Pk;
the total mission time minimization problem, therefore, was only determined by the total

charging time, which was Ttotal−charge = ∑L−2
i=1

Tcharge−est(ki)
(ti1−ti0)∫ ti1

ti0
ρki(t)

·dt
. Hence, if we found the

minimized total charging time with a CTA plan and then compared the total mission time
for all possible paths from node S to node D, the mission time minimization problem could
be solved.

Firstly, Equation (6) needed to be further analyzed to find a more general description
of the total mission time minimization problem. Thus, in this section, we tried to simplify
the variables in Equation (6). We started by studying the relationship between Tcharge−est(ki)

and ti0, ti1. In any intermediate node (nodes except for the start node and destination) ki on
path Pk, the exact charging time Tcharge(ki)

could be calculated with Equation (9):

Tcharge(ki)
=

Tcharge−est(ki)(ti1 − ti0)∫ ti1
ti0

ρki(t)dt
(9)

where
∫ ti1

ti0
ρki(t)

dt

(ti1−ti0)
represents the averaged charging efficiency on node ki between times ti0

and ti1. Moreover, Tcharge(ki)
could also be calculated with Tcharge(ki)

= ti1 − ti0. Thus, we
had the following equation:

Tcharge−est(ki)(ti1 − ti0)∫ ti1
ti0

ρki(t)dt
= ti1 − ti0

∫ ti1

ti0

ρki(t)dt = Tcharge−est(ki)
(10)
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If we wanted to charge the UAV from an empty to full battery state, Tcharge−est(ki)
=

Tρmax
charge(max). (In addition, with dynamically charging efficiency, we always had Tcharge(ki)

>

Tcharge−est(kI)
, since ρki(t) ≤ 1 and

∫ ti1
ti0

ρki(t)
dt

ti1−ti0
< 1).

With Equation (5) and Figure 3, we could find the relations between a1(ki)
and a2(ki)

:

(1) a1(ki)
= 0; with Figure 3, when t=t0 = 0, we had ρki(t) = 0. Thus, (a1(ki )

+

a2(ki )
cos π(t−360)

720 ) = a1(ki )
= ρki(t) = 0;

(2) Assuming the peak charging efficiency for node ki was ρki (peak), we always had
a2(ki)

= ρki (peak). With Figure 3, when t = tpeak = 360, ρki(t) = ρki (peak). Thus,

a2(ki)
cos

π(tpeak−360)
720 ) = ρki (peak), and then we had a2(ki)

= ρki (peak). ρki (peak) could
be estimated with the used data collected in different landing places.

Thus, Equation (10) was changed to Equation (11):∫ ti1

ti0

ρki (peak) cos
π(t− 360)

720
dt = Tcharge−est(ki)

ρki (peak)
720
π

sin
π(ti1 − 360)

720
− ρki (peak)

720
π

sin
π(ti0 − 360)

720
= Tcharge−est(ki)

(11)

If Tcharge−est(ki)
and ti0 were known, we could solve the equation above with

Equation (12):

ti1 =
720
π

sin−1(
π

720ρki (peak)
(Tcharge−est(ki)

+ ρki (peak)
720
π

sin
π(ti0 − 360)

720
)) + 360 (12)

where ti0 could be obtained with Equation (13):

ti0 = t(i−1)1 + Tflight(max) ×
d(ki−1)→(ki)

dmax
(13)

where t(i−1)1 represents the time the UAV left node ki−1 and Tflight(max) ×
d(ki−1)→(ki)

dmax
repre-

sents the total flying time from node ki−1 to node ki . It is obvious that Equation (13) is an
iterative equation, where each ti0 and ti1 in node ki are determined not only by the time the
UAV leaves the previous node ki−1, but also by the estimated charging time Tcharge−est(ki)

for node ki . However, if the Tcharge−est(ki)
for any node ki was known in this problem and

t01 = 0, it was possible to calculate the total mission time with Equations (6), (12) and (13),
since there were no other variables in Equations (12) and (13).

We defined Tcharge−est(ki)
in Section 3.2 to denote the required charging time on node

ki if ρki (t) ≡ 1. There was a constraint in regard to the total estimated charging time

∑L−2
i=1 Tcharge−est(ki)

in this problem. It claimed that the total energy charged during the
mission should be the same as the total energy cost during the mission minus the initial
energy the UAV took when the mission started:

L−2
∑

i=1
Tcharge−est(ki)

=
L−2
∑

i=1
(ρki (peak).

720
π sin π(ti1−360)

720 − ρki (peak).
720
π sin π(ti0−360)

720 )

= Tρmax
charge(max) ×

dtotal−dmax
dmax

(14)

where Tρmax
charge(max) ×

dtotal−dmax
dmax

shows a constant that shows the total energy needed for
charging if a UAV were to fly along path Pk. Array [Tcharge−est(k1)

, Tcharge−est(k2)
,

. . . , Tcharge−est(kL−2)
] represents the estimated charging time sequence in path Pk. Ad-

ditionally, assume all the missions started from t=0, and when the UAVs arrived at the
destination, their batteries were always empty (except in the situation where we did not
need to charge the UAV during the voyage, where Tρmax

charge(max) ×
dtotal−dmax

dmax
≤ 0, where
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∑L−2
i=1 Tcharge−est(ki)

= 0). The total mission time when the UAV left node ki was defined as
Ttotal(i) (i ∈ [0, L− 1]). Ttotal−flight(i) describes the total flying time when the UAV left node
ki and Ttotal−charge(i) describes the total charging time when the UAV left node ki.

Besides Equation (14), we had another constraint which described the range of the
estimated charging time on each node:

max
[(

Tρmax
charge(max)

d(kw)→(kw+1)

dmax
− Rw

)
, 0] ≤ Tcharge−est(kw) ≤ Tρmax

charge(max) (15)

where Rw=∑w
i=1 Tcharge−est(ki)

− Tflight−total(w)−Tflight(max)
Tflight(max)

Tρmax
charge(max) shows the remaining en-

ergy when the UAV arrived at nodes kw in Pk. Rw was in minutes, which meant it repre-
sented how much time we needed to charge the UAV to the current remaining energy if
ρki (t) ≡ 1. To make sure we had enough charged energy to reach node kw+1, Tcharge−est(kw)

needed to be larger than Max[
(

Tρmax
charge(max)

d(kw)→(kw+1)

dmax
− Rw

)
, 0]. Ttotal(w) represents the

total mission time when the UAV arrived at node kw.
Let [X1, X2, . . . , XL−2] denote

[
Tcharge−est(k1)

, Tcharge−est(k2)
, . . . , Tcharge−est(kL−2)

]
,

[Y1, Y2, . . . , YL−2] denote
[
Ttotal(1), Ttotal(2), . . . , Ttotal(L−2)

]
,[ρ1, ρ2, . . . , ρL−2] denote

[ρk1 (peak), ρk2 (peak), . . . , ρkL−2 (peak)] ] and [d1, d2, . . . , dL−1] denote[
d(k0)→(k1)

, d(k1)→(k2)
, . . . , d(kL−2)→(kL−1)

]
. Tcm = Tρmax

charge(max), Dm = dmax, Fm = Tflight(max)

and Fi = Tflight(max)
di

Dm
.

Then, the minimization problem for the total charging time along path Pk could be
described as:

min
[X1, X2, ..., XL−2] ∈[0,Tcm]

YL−1, s.t. YL−1 = YL−2 + FL−1; YL−2

=
(

720
π sin−1( π

720ρL−2
(xL−2

+ ρL−2
720
π sin π(YL−3+FL−2−360)

720 )) + 360
) (16)

where for any Xi and Xj, ∑L−2
i=1 Xi = Tcm

∑L−1
i=1 di−Dm

Dm
and Max

[(
Tcm

dj
Dm
− Rj

)
, 0
]
≤ Xj ≤

Tcm.
This was a multivariable minimization problem with an iterative expression. Hence, it

was quite difficult to find a globally optimal solution for the total mission time minimization
problem with dynamic charging efficiency in any Pk path (in [3], such a path planning
problem was proved to be an NP-hard problem). Even if we simplified the problem by
assigning [Y1, Y2, . . . , YL−2] to be integers, the problem became an integer factorization
problem, which could not be solved in polynomial time. Thus, in Section 5.2, we found a
locally optimal solution for Equation (16) instead; then, we proposed a dynamically greedy
algorithm to solve the mission time minimization problem.

5.2. Locally Optimal CTA

If we only focused on one single iteration of Equation (16), the problem would become
much simpler (the total time for one iteration of Equation (16) could be presented as
Yw =

(
720
π sin−1( π

720ρw
(Xw + ρw

720
π sin π(Yw−1+Fw−360)

720 )) + 360
)

; in such a problem, the
iterative expression was removed). In other words, we considered a locally optimal problem
to assign the charging time among two adjacent nodes ki and ki+1 in path Pk. Assume that
when the UAV arrived at node ki, it stored Ri energy, while when it left node ki, it stored
R′i energy. Let Ri

′
max denote the maximum value that R′i could be, and let Ri

′
min denote the

minimum value that R′i could be (Ri
′
min = Tcm

dj+1
Dm

when Ri < Tcm
dj+1
Dm

while Ri
′
min = Ri

when Ri ≥ Tcm
dj+1
Dm

). Let ti1(min) denote the time that the UAV achieves Ri
′
min stored energy

on node ki, ti1 denote the actual time the UAV leaves node ki and ti1(max) denote the time
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that the UAV achieves Ri
′
max stored energy on node ki. Let Ttotal(i,(i+1)) denote the time

that the UAV achieves the required additional energy Ri
′
store = Ri

′
max − Ri

′
min on node ki+1,

where Ri
′
max ∈

[
0, Tρmax

charge(max)

)
and Ri

′
min ∈ [0, Ri

′
max].

To calculate the total mission time Ttotal(i,(i+1)) for this local CTA problem, we used
ti1 as the variable instead of Xi, because it described the locally optimal problem more
precisely. Equation (17) shows the way to calculate Ttotal(i,(i+1)) with ti1 (obtained by using
Equations (11) and (16)):

R′i − Ri
′
min = ρi

720
π

sin
π(ti1 − 360)

720
− ρi

720
π

sin
π
(

ti1(min) − 360
)

720

Ttotal(i,(i+1)) = 720
π sin−1( π

720ρi+1
(Ri
′
store )−

ρi
ρi+1

sin π(ti1−360)
720

− ρi
ρi+1

sin
π(ti1(min)−360)

720 + sin π(ti1+Fi+1−360)
720 ) + 360

(17)

where Ri
′
store −

(
R′i − Ri

′
min
)

represents the estimated charging time on node ki+1.
Therefore, the locally mission time minimization problem could be described with the

following formula using variable ti1:

min
ti1∈[ti1(min),ti1(max) ]

Ttotal(i,(i+1)), s.t. Ttotal(i,(i+1)) =
720
π sin−1( π

720ρi+1
(Ri
′
stone)

− ρi
ρi+1

sin π(ti1−360)
720 − ρi

ρi+1
sin

π(ti1(min)−360)
720

+ sin π(ti1+Fi+1−360)
720 ) + 360

(18)

where max
[
0,
(

Tcm
Fi
Fm
−Ri

)]
≤ ρi

720
π sin π(ti1−360)

720 − ρi
720
π sin

π(ti1(min)−360)
720

≤ (Ri
′
max −Ri

′
min). ti1(max) =

(
720
π sin−1( π

720ρi
((Ri

′
max −Ri) + ρi

720
π sin π(ti0−360)

720 )) + 360
)
=(

720
π sin−1( π

720ρi
((Ri

′
max −Ri

′
min) + ρi

720
π sin

π(ti1(min)−360)
720 )) + 360

)
. (When Ri < Tcm

Fi
Fmax

,

ti1(min) > ti0, otherwise, ti1(min) = ti0,).
After processing a derivation on Equation (17), we had:

Ttotal(i,(i+1))
dti1

=
cos

π(ti1+Fi+1−360)
720 − ρi

ρi+1
cos

π(ti1−360)
720

cos( π
720ρi+1

Xi−
ρi

ρi+1
sin

π(ti1−360)
720 − ρi

ρi+1
sin

π(ti1(min)−360)
720 +sin

π(ti1+Fi+1−360)
720 )

(19)

In Equation (19), we were able to find that three singular points could possibly be the
candidate ti1 to minimize the total charging time between nodes ki and ki+1: ti1(min), ti1(max)
and the singular point calculated with the following equation with ti1 as the variable:

ρi
ρi+1

cos
π(ti1 − 360)

720
− cos

π(ti1 + Fi+1 − 360)
720

= 0 (20)

The singular point calculated with Equation (20) was:

ti1(sin gular) =
720
π

tan−1
cos
(
π(Fi+1)

720 − ρi
ρi+1

)
sin π(Fi+1)

720

+ 360 (21)

Conclusion 5.1. In the locally optimal problem described in Equation (18), when the solution
of Equation (21) ti1(singular) was in [ti1(min), ti1(max)], Ttotal(i,(i+1)) had three candidate extreme
points, which were ti1(singular), ti1(min) and ti1(max); when the solution of Equation (21) was not in
[ti1(min), ti1(max)], Ttotal(i,(i+1)) had two extreme points, which were ti1(min) and ti1(max).
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However, we could not make sure which of the candidate extreme points resulted in
Ttotal(i,(i+1)) being minimized by the formulas above. Thus, we needed to divide the prob-
lem into different situations from 5.1 to 5.3, and further analyze the locally optimal problem.

5.2.1. Situation 5.1 ρi > ρi+1

x1 = ti1(min) is the time the UAV needed to charge to have enough energy to reach
node ki+1; x2 = ti1 is the exact time that the UAV left node ki; x3 = x2 + Fi+1 is the time
the UAV arrived at node ki+1; x4 is the time the UAV charged for to have enough energy
for the stored energy of Ri

′
store to be achieved after a charging process on node ki+1 and

x4 = Ttotal(i,(i+1)). Thus, using Equation (11), the estimated charging time for the UAV to
charge itself from Ri

′
min stored energy to R′i energy on node ki could be calculated with the

following equation:

R′i − Ri
′
min =

∫ x2

x1

ρki(t)dt (22)

Additionally, the estimated charging time for the UAV to charge itself with enough
stored energy to Ri

′
max on node ki+1 could be calculated with Equation (23):

Ri
′
store −

(
R′i − Ri

′
min
)
=
(
Ri
′
max − Ri

′
min
)
−
(
R′i − Ri

′
min
)
=
(
Ri
′
max − R′i

)
=
∫ x4

x3

ρki+1(t)dt (23)

where Ri
′
store −

(
R′i − Ri

′
min
)

represents how much energy was still needed to charge on
node ki+1 to achieve the estimated stored energy Ri

′
store.

Combining Equations (22) and (23), we had:

Ri
′
store =

(
Ri
′
max − Ri

′
min
)
=
∫ x2

x1

ρki(t)dt +
∫ x4

x3

ρki+1(t)dt (24)

Assume in plan A that the UAV leaves node ki at time x2, and then plan B where the
UAV leaves node ki at time x2

∗. In plan B, x3
∗ = x2

∗ + Fi+1 is the time the UAV arrives
at node ki+1 and x4

∗ is the time the UAV takes to charge to have enough stored energy of
Ri
′
store. x2

∗ − x2 = x3
∗ − x3, since we had x3 = x2 + Fi+1 and x3

∗ = x2
∗ + Fi+1.

Remark 5.1. In Figure 8, if ρi > ρi+1, x2 < 360 and x3 < 360, and ti1(singular) ∈ [ti1(min), ti1(max)].
We assumed in plan A that x2 = ti2(singular). Then, in plan B, when 360 ≥ x2

∗ ≥ ti1(singular), we
could conclude that x4

∗ < x4.
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Proof of Remark 5.1. (ρi cos π(x−360)
720 )

dx
= πρi

720 sin π(x−360)
720 , (ρi+1 cos

π(x+Fi+1−360)
720 )

dx
=

πρi+1
720

sin π(x+Fi+1−360)
720 , x + Fi+1 < 360 and ρi > ρi+1. Then, (ρi cos π(x−360)

720 )
dx

>
(ρi+1 cos

π(x+Fi+1−360)
720 )

dx
could be concluded easily. In Figure 8, assume that x2

∗ is quite close to x2; then, x3
∗ is

quite close to x3
∗ as well. To make x4

dx2
= 0, we had x4 = x4

∗. Then, to make x4 = x4
∗,

the bar area formed by four points (x2,0), (x2
∗, 0), (x2, ρki(x2)

), (x2
∗, ρki(x2

∗)), which can

be represented as
∫ x2

∗

x2
ρki(t)dt and the bar area formed by four points (x3,0), (x3

∗, 0), (x3,

ρki+1(x3)
), (x3

∗, ρki+1(x3
∗)), which can be represented as

∫ x3
∗

x3
ρki+1(t)dt, should have the same

area. Thus, if x2 = ti1(sin gular), we had
∫ x2

∗

x2
ρki(t)dt =

∫ x3
∗

x3
ρki+1(t)dt when x2

∗ was quite
close to x2. It is obvious that only when ρki(x2)

= ρki+1(x3)
did x2 = ti1(sin gular) hold. Hence,

if x2 = ti1(sin gular), ρki(x2)
= ρki+1(x3)

. �

The following equation shows the relationship between plan A and plan B:∫ x2
x1

ρki(t)dt+
∫ x4

x3
ρki+1(t)dt

=
∫ x2

x1
ρki(t)dt +

∫ x2
*

x2
ρki(t)dt + (

∫ x4
x3

ρki+1(t)dt

−
∫ x3

*

x3
ρki+1(t)dt) +

∫ x4
*

x4
ρki+1(t)dt

(25)

With Equation (25), we could conclude that if
∫ x2

∗

x2
ρki(t)dt >

∫ x3
∗

x3
ρki+1(t)dt, then

x4
∗ < x4.

Then, if we compared
∫ x2

∗

x2
ρki(t)dt and

∫ x3
∗

x3
ρki+1(t)dt, since ρki(x2)

= ρki+1(x3)
and

(ρi cos
π(x2

∗−360)
720 )

dx2
∗ >

(ρi+1 cos
π(x2

∗+Fi−360)
720 )

dx2
∗ , we could conclude that

∫ x2
∗

x2
ρki(t)dt >

∫ x3
∗

x3
ρki+1(t)dt

when (x2
∗ − x2) was not a quite small value.

Remark 5.2. If ρi > ρi+1, x2 < 360 and x3 < 360, and ti1(singular) ∈ [ti1(min), ti1(max)]. Assume
thatx2 = ti1(singular) and x2

∗ < x2; similarly,
∫ x2

x2
∗ ρki(t)dt >

∫ x3
x3
∗ ρki+1(t)dt. Thus, x4

∗ < x4.
(The proof is like Remark 5.1.)

Remark 5.3. If ρi > ρi+1, x2 < 360 and x3 < 360, and ti1(singular) ∈ [ti1(min), ti1(max)],
Ttotal(i,(i+1)) is a convex function in range [ti1(min), ti1(max)] due to Remarks 5.1 and 5.2. Thus,
Ttotal(i,(i+1)) should be compared when ti1 = ti1(min) and ti1 = ti1(max) and find the result with the
minimum total charging time.

Proof of Remark 5.3. If ρi > ρi+1, x2 < 360 and x3 < 360, when x2 = ti1(sin gular) and
ti1(sin gular) ∈ [ti1(min), ti1(max)], we always had x4

∗ < x4. Thus, the result of x4
∗ obtained a

maximum value in plan A. Using Remarks 5.1 and 5.2, x4
∗

dx2
∗ > 0, when x2

∗ < x2; x4
∗

dx2
∗ < 0,

when x2
∗ > x2. (x4

∗ had only one singular point, where x4
∗

dx2
∗ = 0, and it decreased either

when x2
∗ < x2 or x2

∗ > x2). �

Remark 5.4. If ρi > ρi+1, x2 < 360 and x3 < 360, and ti1(singular) /∈ [ti1(min), ti1(max)],
ti1(singular) must be less than ti1(min) or larger than ti1(max). If ti1(singular) > ti1(max), as-

sume x2 = ti1(max), since (ρi cos π(x−360)
720 )

dx
>

(ρi+1 cos
π(x+Fi+1−360)

720 )
dx

, ρki(x2)
< ρki+1(x3)

. Addi-
tionally, since ti1(singular) /∈ [ti1(min), ti1(max)], x4

∗ is a monotonic function by x2
∗. Then,

also by (ρi cos π(x−360)
720 )

dx
>

(ρi+1 cos
π(x+Fi+1−360)

720 )
dx

, ti1 = ti1(min) obtains a minimum x4
∗. More-

over, if ti1(singular) < ti1(min), assume x2 = ti1(min), since (ρi cos π(x−360)
720 )

dx
>

(ρi+1 cos
π(x+Fi−360)

720 )
dx

,
ρki(x2)

> ρki+1(x3)
. Additionally, since ti1(singular) /∈ [ti1(min), ti1(max)], x4

∗ is a monotonic func-
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tion by x2
∗. Then, also by (ρi cos π(x−360)

720 )
dx

>
(ρi+1 cos

π(x+Fi+1−360)
720 )

dx
, x2
∗ = ti1 = ti1(max) obtains a

minimum x4
∗.

Proof of Remark 5.4. Additionally, in Figure 8, if we assumed ti1(sin gular) > ti1(max) and x2 =

ti1(max), then we had x2
∗ < x2, ρki(x2)

< ρki+1(x3)
and (ρi cos π(x−360)

720 )
dx

>
(ρi+1 cos

π(x+Fi+1−360)
720 )

dx
.

Thus,
∫ x2

x2
∗ ρki(t)dt <

∫ x3
x3
∗ ρki+1(t)dt; then, we had

∫ x2
x1

ρki(t)dt +
∫ x4

x3
ρki+1(t)dt <

∫ x2
∗

x1
ρki(t)dt +∫ x4

x3
∗ ρki+1(t)dt (if we still charged the UAV on node ki+1 till x4 and we changed the time the

UAV left node ki from x2 to x2
∗, x2

∗ < x2, the stored energy could extend Ri
′
store. Thus, it

would take less time than x4 to charge the UAV to Ri
′
store). Hence, x4

∗ < x4. Since x4
∗ is

a monotonic function by x2
∗, x4

∗ obtains a minimized value on x2
∗ = ti1(min). Similarly, if

ti1(sin gular) < ti1(min), when x2
∗ = ti1 = ti1(max), x4

∗ would obtain a minimized value. �

Remark 5.5. Similarly to Figure 8, if ρi > ρi+1, x3 ≥ 360, x2 < 360, we would have a
similar conclusion to Remarks 5.3 and 5.4: when ρi > ρi+1, if ti1(singular) ∈ [ti1(min), ti1(max)],
the result of should be compared when ti1 = ti1(min) and ti1 = ti1(max), and the result with
the minimum total charging time should be found, while if ti1(singular) /∈ [ti1(min), ti1(max)],
when ti1(singular) > ti1(max) ti1 = ti1(min) has the minimum total charging time, and when
ti1(singular) < ti1(min), ti1 = ti1(max) has the minimum total charging time. (It can be easily proved
with the same steps as those in Remarks 5.1.–5.4).

Remark 5.6. In situation 5.1, if x2 > 360, ti1(singular) could not be larger than 360 when ρi > ρi+1.
Thus, it is obvious ti1 = ti1(max) was the solution of Equation (17) under this situation.
Proof of Remark 5.6 ρki(x2)

> ρki+1(x2)
, ρki+1(x2)

> ρki+1(x3)
, thus ρki(x2)

> ρki+1(x3)
, similarly,

ρki(x2
∗) > ρki+1(x3

∗). Thus,
∫ x2

∗

x2
ρki(t)dt >

∫ x3
∗

x3
ρki+1(t)dt. Hence,x4

∗ < x4, and the more we
charged the UAV on node ki, the less total charging time we obtained.

Operation 5.1. When ρi > ρi+1, if ti1(singular) ∈ [ti1(min), ti1(max)], we compared

Ttotal(i,(i+1))

∣∣∣ti1 = ti1(min) and Ttotal(i,(i+1))

∣∣∣ti1 = ti1(max) and chose the CTA plan with a smaller
Ttotal(i,(i+1)). If ti1(singular) > ti1(max), we chose ti1 = ti1(min) to minimize Ttotal(i,(i+1)), while if
ti1(singular) < ti1(min), we chose ti1 = ti1(max) to minimize Ttotal(i,(i+1)).

5.2.2. Situation 5.2 ρi = ρi+1

Remark 5.7. When ρi = ρi+1, if ti1(singular) ∈ [ti1(min), ti1(max)], 360− ti1(singular) =
Fi+1

2
. Assume x2 = ti1(singular), when x2

∗ < x2, we had x4
∗ < x4. When x2

∗ > x2, we also had
x4
∗ < x4. Thus, Ttotal(i,(i+1)) is a convex function in range [ti1(min), ti1(max)], the same as situation

5.1. Hence, if we compared Ttotal(i,(i+1))

∣∣∣ti1 = ti1(min) and Ttotal(i,(i+1))

∣∣∣ti1 = ti1(max), we found
the minimized Ttotal(i,(i+1)). (The proof is like Remarks 5.1.–5.3).

Remark 5.8. When ρi = ρi+1, if ti1(singular) /∈ [ti1(min), ti1(max)], and if ti1(max) < ti1(singular),

Ttotal(i,(i+1))

∣∣∣ti1 = ti1(min) resulted in a minimized value of Ttotal(i,(i+1)); if ti1(min) > ti1(singular),

Ttotal(i,(i+1))

∣∣∣ti1 = ti1(max) resulted in a minimized value of Ttotal(i,(i+1)). (The proof is like Remark
5.4.)

Operation 5.2. When ρi = ρi+1, if ti1(singular) ∈ [ti1(min), ti1(max)], we compared

Ttotal(i,(i+1))

∣∣∣ti1 = ti1(min) and Ttotal(i,(i+1))

∣∣∣ti1 = ti1(max) and chose the CTA plan with a smaller
Ttotal(i,(i+1)). If ti1(singular) > ti1(max), we chose ti1 = ti1(min) to minimize Ttotal(i,(i+1)), while if
ti1(singular) < ti1(min), we chose ti1 = ti1(max) to minimize Ttotal(i,(i+1)).
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5.2.3. Situation 5.3 ρi < ρi+1

Remark 5.9. Like Remark 5.6, if ρi < ρi+1 and x3 < 360, then ti1(singular) /∈ [ti1(min), ti1(max)].

Since
∫ x2

∗

x2
ρki(t)dt <

∫ x3
∗

x3
ρki+1(t)dt, ti1 = ti1(min) resulted in a minimized total charging time

Ttotal(i,(i+1)).

Remark 5.10. If ρi < ρi+1 and x2 > 360, assume x2 = ti1(singular), ti1(singular) ∈ [ti1(min), ti1(max)],
Ttotal(i,(i+1)) is a convex function in range [ti1(min), ti1(max)]. Thus, if we compared

Ttotal(i,(i+1))

∣∣∣ti1 = ti1(min) and Ttotal(i,(i+1))

∣∣∣ti1 = ti1(max), we found the minimized Ttotal(i,(i+1)).

If ti1(max) < ti1(singular), Ttotal(i,(i+1))

∣∣∣ti1 = ti1(min) resulted in a minimized value of Ttotal(i,(i+1)); if

ti1(min) > ti1(singular), Ttotal(i,(i+1))

∣∣∣ti1 = ti1(max) resulted in a minimized value of Ttotal(i,(i+1)).

Remark 5.11. In remark 5.10, if x2 < 360 and x3 > 360, we obtained the same conclusion
as Remark 5.10. In conclusion, when x3 > 360, if ti1(singular) ∈ [ti1(min), ti1(max)], and if we

compared Ttotal(i,(i+1))

∣∣∣ti1 = ti1(min) and Ttotal(i,(i+1))

∣∣∣ti1 = ti1(max), we could find the minimized

Ttotal(i,(i+1)). If ti1(max) < ti1(singular), Ttotal(i,(i+1))

∣∣∣ti1 = ti1(min) resulted in a minimized value

of Ttotal(i,(i+1)); if ti1(min) > ti1(singular), Ttotal(i,(i+1))

∣∣∣ti1 = ti1(max) resulted in a minimized
value of Ttotal(i,(i+1)).

Operation 5.3. When ρi < ρi+1, if ti1(singular) ∈ [ti1(min), ti1(max)], we compared

Ttotal(i,(i+1))

∣∣∣ti1 = ti1(min) and Ttotal(i,(i+1))

∣∣∣ti1 = ti1(max) and chose the CTA plan with a smaller
Ttotal(i,(i+1)). If ti1(singular) > ti1(max), we chose ti1 = ti1(min) to minimize Ttotal(i,(i+1)), while if
ti1(singular) < ti1(min), we chose ti1 = ti1(max) to minimize Ttotal(i,(i+1)).

Operation 5.4. In different situations, if ti1(singular) ∈ [ti1(min), ti1(max)], we compared

Ttotal(i,(i+1))

∣∣∣ti1 = ti1(min) and Ttotal(i,(i+1))

∣∣∣ti1 = ti1(max) and chose the CTA plan with a smaller
Ttotal(i,(i+1)). If ti1(singular) > ti1(max), we chose ti1 = ti1(min) to minimize Ttotal(i,(i+1)), while if
ti1(singular) < ti1(min), we chose ti1 = ti1(max) to minimize Ttotal(i,(i+1)).

5.3. Dynamically Greedy CTA Algorithm

Section 5.2 shows all the situations we were met with in the locally optimal CTA
problem described by Equation (18). ti1(min) could be calculated in any known path P.
However, ti1(max) was not determined in the locally optimal problem. If we applied the
CTA algorithm to this problem and used the peak charging efficiency in each node as the
statically charging efficiency, we could predict a proper ti1(max).[

Tcharge−est(k1)
, Tcharge−est(k2)

, . . . , Tcharge−est(kL−2)

]
(shown in Figure 9) could de-

scribe different charging time assignment plans obtained in this problem, as follows in the
image shown.
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Figure 9. Charging time assignment example using Algorithm 1.

The grey bar means we only charged enough power on the current node to reach
the next node, while the black bar means we charged the UAV to a full battery state.
If we only modified the two adjacent CTAs Tcharge−est(ki)

and Tcharge−est(ki+1)
, and kept

Tcharge−est(ki)
+ Tcharge−est(ki+1)

unchanged, the CTA problem among node ki and ki+1
became a locally optimal problem, as discussed in Section 5.2. Combining Algorithm 1 and
Operation 5.4, we proposed a dynamically greedy CTA(DG-CTA) algorithm as an advanced
greedy algorithm. The DG-CTA algorithm focuses on CTA problems with dynamically
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charging efficiency. Please note that if the two adjacent nodes were both assigned charging
times to charge the UAV to a full battery state, or both to charge the UAV only enough
power to reach the next node, we could not apply any changes, since there was only one
CTA plan for the current Tcharge−est(ki)

+ Tcharge−est(ki+1)
.

Algorithm 3 shows the DG-CTA algorithm which improved Algorithm 1 regarding its
dynamically charging efficiency. Assume ti1′ is the new operated time that the UAV left
node ki at.

Algorithm 3: DG-CTA algorithm.

Input: Path Pk, graph G, peak charging efficiency ρi for all the nodes in Vlocal
Output: Total charging time along Pk and the arrival time/leaving time for each node
Perform Algorithm 1 and find all stayed nodes in path Pk as a new path Pk′ (L—length (P′k)),
while all the possible unpruned paths are generated
1. For i = 1:L-2,
2. If ρ′i < ρ′i+1, //Situation 5.2.3 is solved with Operation 5.4

3. If ti1(sin gular)′ ∈
[
t′i1(min), t′i1(max)

]
and

Ttotal(i,(i+1))′
∣∣∣t′i1 = t′i1(min) > Ttotal(i,(i+1))′

∣∣∣ti1′ = ti1(min)′ >
4. ti1′ = ti1(max)′.
5. Else, if ti1(sin gular)′ < t′i1(min)ti1′ = ti1(max)′.
6. ti1′ = ti1(max)′
7. Else, if t′i1(sin gular) > ti1(max)′
8. ti1′ = ti1(min)′
9. End
10. Else, if ρ′i > ρi+1′, //Situation 5.2.3 is solved with Operation 5.4
11. If ti1(sin gular)′ ∈ [ti1(min)′, t′i1(max) and

Ttotal(i,(i+1))′
∣∣∣t′i1 = t′i1(min)< Ttotal(i,(i+1))′

∣∣∣ti1′ = ti1(max)′
12. t′i1 = t′i1(min)
13. Else, if ti1(sin gular)′ < t′i1(min)
14. t′i1 = ti1(max)′
15. Else, if t′i1(sin gular) > ti1(max)′
16. ti1′ = ti1(min)′
17. End
18. Else //Situation 5.2.2 is solved with Operation 5.4
19. If ti1(sin gular)′ ∈ [ti1(min)′, ti1(max)′ and

Ttotal(i,(i+1))′
∣∣∣ti1′ = ti1(min)′ > Ttotal(i,(i+1))′

∣∣∣ti1′ = ti1(max)′
20. ti1′ = ti1(max)′
21. Else, if ti1(sin gular)′ < t′i1(min)
22. t′i1 = ti1(max)′
23. Else, if t′i1(sin gular) > ti1(max)′
24. ti1′ = ti1(min)′
25. End
26. End
27. Return

[
t′10, t′20, . . . , t′

(L−2)0

]
,
[
t′11, t′21, . . . , t′

(L−2)1

]
Algorithm 3 was applied to find the optimal charging time assignment plan in any

dynamically charging efficiency environment and could be tested by comparing the total
charging time it found with what the other algorithms found. Algorithm 3 was in O(n).
However, since the result of Algorithm 1 was required in Algorithm 3, the actual running
time of Algorithm 3 was in O

(
n2).

5.4. Heuristic Algorithm Based on DG-CTA

Although Algorithm 3 did not take too much time compared with the discrete enumer-
ate algorithm (which enumerated the minute assignment plan for the CTA and could not be
solved in polynomial time), the traversal of paths using the DFS algorithm combined with
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the CTA algorithms was still time-consuming, because Lemma 4.1 could not be applied
in this scheme. To further reduce the total running time of the algorithm, we proposed
a heuristic algorithm for the SPU path planning problem with dynamically charging ef-
ficiency. The purpose of this heuristic algorithm was to quickly find candidate optimal
paths with smaller distances and larger averaged charging efficiencies in the early path
generation process. The first NOPmax paths with the smallest cost among all possible paths
were chosen to be put in the candidate path set. The best path we found with the heuristic
algorithm was the one with a minimum total mission time among all the paths in the
candidate path set.

The cost function of the heuristic algorithm was:

h(a) = 2(γ1Ttotal−flight(est) + γ2Tρmax
charge(max)

Ttotal−flight(est) − Tflight(max)

ρa(k)Tflight(max)
) (26)

where ρa(k) is the averaged charging efficiency on path Pk. γ1 and γ2 are the weight factors
for the heuristic cost function and γ1 + γ2 = 1.

Algorithm 4 shows the detail of this heuristic algorithm:

Algorithm 4: DG-CTA-based heuristic path planning algorithm.

Input: Path Pk, graph G, peak charging efficiency ρki(peak) for all nodes in Vlocal
Ttotal(MEFT) = Ttotal(Dijkstra), NOPmax which represents the number of candidate paths
Output: Minimized total mission time Ttotal and optimal path Poptimal
Variables: a, Pk, i
1. Run DFS path generation algorithm on path Pk, calculate the cost for each path using

Equation (26)
2. Sort all possible paths by the cost and find the first NOPmax paths as the candidate path set
3. //Build the candidate path set
4. For i = 1 : NOPmax
5. Calculate Ttotal(a) for ith path in the candidate path set using Algorithm 3
6. If Ttotal(a) > Ttotal(MEFT),
7. Pk is pruned.
8. Else,
9. Ttotal(MEFT) = Ttotal(a) and Poptimal = Pk
10. End
11. End
12. End//calculate mission time for paths
13. Return Ttotal(MEFT) and Poptimal

Algorithm 4 was applied to find the optimal path for the SPU delivery problem in
the dynamically charging efficiency environment, and could be tested by comparing the
total mission time it found with what other algorithms found. Since Equation (26) required
a running time in O(n), the cost and path generation process required a running time of
O
(
n3). Thus, let the sorting process take O

(
n2), so the total time cost for the candidate path

set building process is in O
(
n3). To find the path with a minimized mission time, it required

a running time of O
(
NOPmax × n2). Since NOPmax was a constant in this problem, the

total running time of Algorithm 4 was in O
(
n3). As shown in Section 8.2, the performance

of our proposed algorithm was much better than any other existing algorithms (Algorithms
3 and 4 can only be used in solar-powered UAV systems, since the optimization analysis in
this section was performed on a solar-powered UAV path planning model).

6. UAV Delivery Mission Arrangement for Urban City

Finally, with the single SPU path planning problem solved, we optimized the problem
described in Equation (7). In our study, the city map was divided into different local city
maps based on the service area of the stores. Thus, we did not find nearby UAVs as [2] was
able to.
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However, in practical UAV delivery systems, the landing places on a city map may
not always be available for the following reasons:

1. The landing spaces may be fully occupied.
2. The landing space may not be open at certain times.
3. Bad weather may be forecasted.

To manage more than one UAV delivery mission, we needed to consider the factors
above. Aiming at the first reason, we needed to give the UAV missions different ranks to
determine which UAV was chosen to take the limited space in each crowded landing place.
Alongside the problems above, we also needed to update the city map and rerun the path
planning algorithm in special cases.

6.1. UAV Mission Arrangement Protocol to Solve Space Limitation

We proposed a rank-based protocol in our SPU delivery system to solve the space
limitation problem in landing places. Before introducing the algorithms and protocols, we
needed to initialize the landing places’ occupation status SO(city) = {SO1, SO2, . . . , SOn}
and the UAV mission rank status SM(city) = {SM1, SM2, . . . , SMm}. n is the num-
ber of nodes in the local city map and m is the number of missions for the current
daytime. SOi ≤ LSO, where LSO is the maximum number of UAVs that could stay
in a landing place (the existing technique from [21] allowed UAVs to recognize dif-
ferent landing points where different specific landing points were drawn in different
shapes or colors). The SO(city) is a real-time function sequence, such as SO(city) =
{SO1(t), SO2(t), . . . , SOn(t)}. SOi(t) = 0 means that there were no UAV missions that
decided to land on it. SMj represents the current rank of mission j. Assuming we had an ini-
tialized estimated arriving time for all missions of TMP(initial) = {TMP1, TMP2, . . . , TMPm},
and at the end of each stop of any UAV, we updated a new estimated arriving time to be
TMP(realtime) =

{
TMP(realtime)1, TMP(realtime)2, . . . , TMP(realtime)m

}
, SMi(initial) = TMP1. The

rank of the mission was calculated using Equation (27):

SMi(update) = τ1TMP1 + τ2

(
TMP1 − TMP(realtime)1

)
(27)

where τ1 and τ2 are parameters which balanced the contributions for ranks with the
estimated total mission time and the customers’ additional waiting time, τ1 + τ2 = 1.
Missions with a higher rank had higher weight to charge on a crowded landing place.

Then, we proposed the following delivery mission arrangement protocol to deal with
the space limitation problem in landing places:

Delivery mission arrangement protocol:

1. First, we applied Algorithm 4 to each mission and built a database of SO(city) =
{SO1(t), SO2(t), . . . , SOn(t)}, TMP(initial) = {TMP1, TMP2, . . . , TMPm} and the path
information PMP(initial) = {PMP1, PMP2, . . . , PMPm}.

2. For any occupation function of SOi(t), if in any SOi(t) we had SOi(t) > C, C was the
capacity of the landing place. Then, we needed to arrange the missions that would
arrive at the node i. We then had to find missions C that had the highest weight and
kept their fight mission plan unchanged. Assume SOi(t) = K.

3. For missions with lower weights, other than the first C missions, we ordered them by
their mission weights. Choosing missions from a higher weight to lower weight, we
reran Algorithm 4 and pruned the current path PMPj, then found other paths until a
path did not pass node I, or when during the landing time of a newly generated path,
node i was not fully occupied.

4. Once the path plan for mission j was updated, we updated SMj, SOi(t), TMP(realtime)j.
If no possible path could be found for mission j, TMP1 = TMP1 + 720 (minutes), and it
was delayed to the next day.

5. We returned back to step three and changed the mission path plan for the next mission.
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6. After we ensured SOi(t) ≤ C at all times of day, we went back to step two and
changed the mission path plans for the mission in the next node.

With the rank of the mission introduced, the spaces for landing places could be well
scheduled without any conflicts.

6.2. Local City Maps Updating Protocol

The algorithms we proposed before was aimed at local city maps, which are different
from the integrated city map. While initializing the integrated city map and the local city
maps, we considered each partitioned region (local city map) to be the same as the service
region for stores by their delivery companies. However, in the following cases, we needed
to update the region partition for stores in a city:

1. Some nodes in a local city map could not be reached by the store in charge of
that region.

2. It always took less time to reach a node from other stores than the store serving the
node’s region.

3. Some nodes were not available, and the owners reported the situations.

Hence, we proposed the following strategy as a protocol to update the local city map:

1. When a mission could not be completed because a landing place could not be reached,
we calculated whether stores from the adjacent service regions could reach that
landing place, and then updated the local city map of the current store and the store
that could reach that node with a minimized time.

2. A simulation program wan run to calculate the mission time for each node to fulfil
the delivery from a store in the current local city map and other adjacent local city
maps. Suppose that node a is currently in a region with service covered by store A,
and store B has a shortest mission time to reach the node compared with all other
adjacent stores; in that case, this node should be removed from the local city map for
store A and added to the local city map for store B.

3. When any unavailability of landing places was reported, the local city map temporar-
ily removed it and added it back when it was available again.

6.3. Real-Time Rerouting Protocol

In our proposed SPU delivery system, when a bad weather prediction report was
received, the missions related to the corresponding region needed to be rerouted to avoid
accidents or to reduce the total mission time.

A bad weather report included the following three conditions:

1. The cloudy level exceeds the threshold of the UAV charging process taking a much
longer time.

2. It is raining in this region and the UAVs are not able to fly.
3. The wind speed level exceeds the threshold that UAVs can fly safely with payloads.

When these bad weather reports were received, the related UAVs were rerouted. The
landing places these UAVs currently stayed on or the next landing places they would have
arrived at could be the start node of a new routing problem. In emergency cases, we applied
Algorithm 4 with a smaller NOPmax to quickly reroute the UAVs.

With the proposed protocols in this section, the delivery missions in the city map were
well organized and the problems we were met with in the system could be solved.

7. SPU Delivery Feasibility Study

Before we started the experiments to test the path planning algorithms proposed in this
study, the feasibility of solar-powered UAV delivery work needed to be discussed. Since
the subject of this paper was the path planning algorithms proposed for solar-powered
UAV delivery systems, we did not expand on how to implement solar-powered UAVs for
delivery, we just showed the prototype and proof that it is feasible in modern techniques.
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As we discussed before, we chose a transformable solar-powered UAV [22] with solar
panels because of the following reasons: (1) it is not possible to build runways for fixed-
wing UAVs to take off or land on in crowded cities [24] and (2) it is not practical to use
solar-powered UAVs with the solar panel expanded [25] to perform delivery works, since
the large area taken over by solar panels must highly reduce the flying speed and safety.

However, the transformable solar-powered UAV from [22] was not practical, since
it was not proven to be safe if such types of solar-powered UAVs with payloads were
processing a transformation in the sky. In addition, it is difficult for a transformable
solar-powered UAV in the fixed-wing state to adjust its flying direction. As a result, this
kind of UAV is not quite practical for UAV delivery missions, since the purpose of our
solar-powered UAV system was to deliver accurately and on time. Hence, we preferred a
new type of transformable solar-powered UAV that only harvested solar energy during
the landing time with the solar panel expanded. Additionally, when lifting-off and flying
in the sky, the solar panel should be folded to guarantee the speed and safety of the
flight. This new prototype of solar-powered UAVs was called transformable delivery
solar-powered UAVs (TDSPUs). As a result, the energy consuming model of TDSPUs was
like that of normal quadcopters [26], and the energy harvesting model was like that of the
solar-powered quadcopter from [27].

At the beginning of the feasibility study of TDSPUs, we needed to make sure solar-
powered UAVs could take payloads. From [27], we knew that 88 pieces of SunPower
C60 solar cells, each with dimensions of 12.5× 12.5 cm2, required an area of 13.75 m2 and
provided 293.92 W of power in standard test conditions. Such solar panels required a
payload of 1.2 kg and an extra 1.13 kg due to the construction constraints.

When looking at the most advanced quadcopter designed to carry payloads this
year [28], the total mass of the quadcopter was 10.3 kg, and the payload was 5 kg. With
the solar panels installed, the additional payload of this quadcopter was still more than
2.5 kg. Despite innovations in solar panel efficiency in recent years, it would be feasible for
TDSPUs to take payloads with a maximum mass of 2.5 kg.

Secondly, we needed to find a proper flight duration for TDSPUs, so that we could
perform experiments to test our proposed algorithms. The flight duration of the quadcopter
needed to be reduced due to the change of structure, and the full payload it took. Thus, let
us assume it was reduced from 55 min to 25 min.

Then, based on [28], the advanced quadcopter used a lithium polymer battery, which
has a capacity of 2× 21, 000 mAh = 42, 000 mAh. Assume that the battery charging ef-
ficiency is 90%, the MPPT efficiency is also 90% (in [29], the battery charging efficiency
and MPPT efficiency for lithium polymer batteries charged by SunPower C60 solar cells
were both 90%, whereas the other two efficiency parameters in [29] were only used
for fixed-wing types of UAVs, so we did not consider them here), so the power har-
vested by the battery from the 88 pieces of SunPower C60 solar cells can be calculated as
293.92 × 90% × 90% = 238.08 W and the battery voltage is 22.2 V. Then, the total energy
that could be generated from this battery was 42× 22.2× 3600 = 3, 356, 640 J. Then, the esti-
mated charging time to charge the UAV from 0 to a full battery state was
Tρmax

charge(max) = 3, 356, 640÷ 238.08 = 234.99 min.
Finally, to improve the safety of the delivery mission, we assumed that the UAVs had

a speed of 1m/s [4], so that dmax = 1× 25× 60 = 1.5 km. Then, we showed an instance of
how a UAV finished a delivery mission during the daytime.

Assume our SPU system could assign a UAV with a mission from node one to node
four, and the UAV is able to harvest solar power on node two and node three. The distance
between these nodes was: d1→2 = 1; d2→3 = 0.6; d3→4 = 1.2. The UAV started its mission
at 6:00 am and charged itself on landing places as much as the system assigned.

At time t10 = t0 +
1

1.5 × 25 = 16.67 , the UAV would arrive at node two. Then, assume
the peak charging efficiency on node two was 0.6, and the system assigned the UAV to charge
on node two to obtain only enough energy to reach the next node. Using Equation (12),
t11 = 720

π sin−1
(

π
720×0.6

(
234.99× 0.1

1.5 + 0.6× 720
π sin π(16.67−360)

720

))
+ 360 = 111.76. Then,
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with Equation (13), t20 = t11 +
0.6
1.5 × 25 = 121.76. Assume the peak charging efficiency in node

three was 0.9, still using Equation (12), t21 = 720
π sin−1(

π
720×0.9

(
234.99× 1.2

1.5 + 0.9× 720
π sin π(121.76−360)

720

))
+ 360 = 371.29. Then, finally, the time

the UAV arrives at the destination node four is t30 = t21 +
1.2
1.5 × 25 = 391.29. In other words,

the UAV could finish its mission at 12:31 pm.
As a result, TDSPUs were feasible under today’s techniques to finish delivery mis-

sions. Additionally, we believe that with the development of UAV technology and solar
panel technology, such kinds of solar-powered UAVs are likely to become more and more
utilitarian in our daily lives.

8. Experimental Results

The experiments in this section were performed on MATLAB. We simulated the
process of UAV delivery missions on a local city map built with landing places and stores.
For each delivery mission, we recorded the total time cost for any single delivery mission
using our proposed algorithms and other existing algorithms. The parameters were chosen
from Section 7.

8.1. Simulation of Proposed Algorithms (Statically Charging Efficiency)

As discussed in Section 2, previous studies about UAV delivery path planning prob-
lems could be classified as Dijkstra-based algorithms and heuristic algorithms. Since it
is difficult to determine the parameters in previously proposed heuristic algorithms for
SPU path planning problems in a dynamically charging efficiency environment, we only
compared our proposed algorithms with Dijkstra-based UAV path planning algorithms.

The GOA was compared with the following two kinds of Dijkstra-based UAV path
planning algorithms according to the total mission time:

1. Distance-based Dijkstra algorithm which did not apply our optimal CTA
algorithm (D-Dij)

(Distance-based Dijkstra means the cost function in the Dijkstra algorithm only con-
cerns flying time, which was mentioned in [8]. A Dijkstra algorithm that did not apply
the optimal CTA algorithm meant that the UAVs always charged themselves to a full
battery state. In addition, to make the comparison fairer, if the UAV arrived at a node that
could reach the destination on path P, the UAV only charged enough power to reach the
destination instead of to a full battery state. This operation exhausted the UAV’s battery
when it arrived at the destination, just like what we assumed in Section 4).

2. Weight-based Dijkstra algorithm which did not apply the optimal CTA
algorithm (W-Dij)

(Weight-based Dijkstra means the cost function in the Dijkstra algorithm was calcu-
lated through the summation of the flying time to reach the next node and the charging
time on the next node to compensate for the energy consumed during this flight [8].)

Each time running a case, we generated an H×H km2 local city map. The density of
landing places varied from 40 to 60 and 80 per 49 km2, with a uniform distribution.

Assuming that Ttotal(GOA) represents the averaged total mission time for the pruned
GOA (Algorithm 2), and Ttotal(Dij) represents the Dijkstra algorithm applied in [2], the
percentage of time saved by the GOA algorithm was:

EfGOA =
Ttotal(Dij) − Ttotal(GOA)

Ttotal(Dij)
(28)

The following diagrams describe when H was fixed, the minimum charging efficiency
(MCE) in the local city map ranged from 0.1 to 0.9 (nine points total) and the percentage
of time saved by the GOA algorithm compared with different kinds of Dijkstra algo-
rithms. The improvement was measured using Equation (28), and we only showed the
maximum improvement.
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Based on Figure 10, we could conclude that our GOA algorithm showed a remarkable
improvement compared with the Dijkstra algorithms. As the MCE increased, the improve-
ment by the GOA compared with D-Dij dropped linearly, while the improvement by the
GOA compared with W-Dij would not decrease so quickly when the MCE moved closer
to one.
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These great improvements happened in special cases, where the following situa-
tions occurred:

1. None of the paths found by the Dijkstra algorithm were the optimal path.
2. The CTA plan by the Dijkstra algorithm was not optimal.
3. The variance of charging efficiency along the candidate optimal paths was large.

The improvement by the CTA algorithm contributed more to the experiment results
for special cases. In some paths, if we used the CTA plan of the Dijkstra algorithms,
UAVs would always charge themselves to a full battery state. However, if the charging
efficiency of landing places in the early trip was low, and the charging efficiency of landing
places in the later trip was high, our CTA algorithm charged the UAV less early in the
trip, and then charged more time later in the trip; then, the total charging efficiency for
the mission was improved. If the charging efficiencies for nodes on such paths had a
large difference, the optimal CTA plan chosen by our CTA algorithm could obtain a large
percentage of improvements when compared with the Dijkstra-based CTA plans. The
different path planning results between the GOA and Dijkstra algorithms also contributed
to the improvement, since the paths found by the Dijkstra algorithms were sometimes
not the optimal path (proved in Section 4). As a result, in the situation that nodes in the
candidate optimal paths had large differences (or, in other words, the variance of charging
efficiency along the candidate optimal paths was large), the GOA could achieve great
improvements when compared with the Dijkstra algorithms. For example, in Figure 10a, the
GOA (Algorithm 2) could save 80% mission time compared with Dijkstra-based algorithms
when the MCE was 0.1 on a local city map. Let Trunning(pruned) represent the total running
time for the GOA with pruning, and Trunning(unpruned) represent the GOA without pruning;
therefore, the ratio of Trunning(unpruned) to Trunning(pruned) would be:

ERpruning =
Trunning(unpruned)

Trunning(pruned)
(29)

Then, the ERpruning using the GOA with pruning compared with the unpruned GOA
is shown in the following diagram:
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The result from Figure 11 shows that the pruning strategy could exponentially reduce
the running time of the GOA when the number of nodes in the local city map increased.
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8.2. Simulations of Proposed Algorithms (Dynamically Charging Efficiency)

For the experiment in the dynamically charging efficiency scheme, our proposed
DG-CTA algorithm was compared with the CTA plan proposed by the Dijkstra algorithms
(always charging the UAV to a full battery state) and the CTA algorithm using Algorithm 1,
which we proposed in Section 4. Since this was a comparison between CTA algorithms, the
paths needed to be fixed. We chose every ten paths that had the minimized total Dijkstra
distance in each topology and applied different CTA algorithms.

The heuristic algorithm combined with the DG-CTA algorithm was compared with
W-Dij in this experiment as well.

These special cases from Figure 12 described by the red curve happened when Algorithm
1 had an opposite local CTA plan to Algorithm 3. For example, if the charging efficiency in
the first landing place was a little higher than the second node, then Algorithm 1 assigned
the UAV to charge to a full battery state. However, since it was early in the morning, the
charging efficiency on all the nodes was low. Then, our DG-CTA algorithm assigned the
UAV to charge only long enough to have enough energy to reach the next node, because the
charging efficiency increased dramatically in the morning, and it was more efficient to charge
on the next node. As a result, based on Operation 5.4, in the case of when the UAVs arrived
at nodes with higher charging efficiencies in the morning or the late afternoon, the DG-CTA
algorithm had different results compared with Algorithm 1; then, the improvement by the
DG-CTA was obvious.

Described by the blue curve, the special cases where the DG-CTA had a great improve-
ment compared with the weighted Dijkstra-based CTA plans happened when the DG-CTA
had a remarkable improvement compared with Algorithm 1 and the variances of charging
efficiency along the paths were large.

The special cases described by the green curve that our heuristic algorithm had a
great improvement compared with the weighted Dijkstra algorithm happened when the
DG-CTA algorithm already had a great improvement and there was a better path chosen
by the heuristic algorithm compared with the Dijkstra algorithms.

In conclusion, although our DG-CTA-based heuristic algorithm was not the globally
optimal solution, it could still achieve a large amount of improvement compared with
existing CTA algorithms. Moreover, our proposed heuristic algorithm could achieve a
great improvement compared to the existing Dijkstra algorithm in dynamically charging
efficiency schemes with an acceptable running time. For example, in Figure 12a, Algorithm
4 could save 70% of the mission time compared with the Dijkstra-based algorithms when
the MCE was 0.1 on a local city map.
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9. Conclusions

In this paper, a solar-powered UAV delivery system was proposed to extend the
endurance of UAVs for delivery missions. To find the globally optimal solution to the UAV
path planning problem in the statically charging efficiency scheme, we proposed a very
efficient pruning-based globally optimal algorithm. When considering the routing solution
according to the dynamically charging efficiency environment, we also proposed a DG-CTA-
based heuristic algorithm. Finally, we designed mission arrangement protocols to manage
the UAV delivery missions and solve system-level issues in the SPU delivery system.
Simulation results showed that our proposed algorithms had significant improvements
compared with previous algorithms when applied in the SPU schemes.

For future research, it is suggested that solar-powered UAVs should be able to auto-
matically find the landing places during voyages by themselves. In addition, we plan to
study the path planning problem and the system model in UAV delivery systems with
more dense landing places deployed.
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