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Abstract: Relating ground photographs to UAV orthomosaics is a key linkage required for accurate
multi-scaled lichen mapping. Conventional methods of multi-scaled lichen mapping, such as random
forest models and convolutional neural networks, heavily rely on pixel DN values for classification.
However, the limited spectral range of ground photos requires additional characteristics to differenti-
ate lichen from spectrally similar objects, such as bright logs. By applying a neural network to tiles
of a UAV orthomosaics, additional characteristics, such as surface texture and spatial patterns, can
be used for inferences. Our methodology used a neural network (UAV LiCNN) trained on ground
photo mosaics to predict lichen in UAV orthomosaic tiles. The UAV LiCNN achieved mean user and
producer accuracies of 85.84% and 92.93%, respectively, in the high lichen class across eight different
orthomosaics. We compared the known lichen percentages found in 77 vegetation microplots with
the predicted lichen percentage calculated from the UAV LiCNN, resulting in a R2 relationship of
0.6910. This research shows that AI models trained on ground photographs effectively classify lichen
in UAV orthomosaics. Limiting factors include the misclassification of spectrally similar objects to
lichen in the RGB bands and dark shadows cast by vegetation.

Keywords: image classification; lichen mapping; orthomosaics; artificial intelligence; UAV

1. Introduction

Recent studies have indicated that the mapping of caribou lichen is vital for sustainable
land management and caribou recovery plans [1–5]. Canadian caribou are threatened by a
changing environment due to declining lichen availability, unregulated hunting, habitat
disturbances, and herd fragmentation due to human-made infrastructure [2–6]. Lichen
is a dominant food source for caribou in the winter, comprising 75% and 25% of their
diets in the winter and summer seasons respectively [5]. Therefore, developing a refined
multi-scale approach to lichen mapping is timely for understanding Canada’s caribou food
availability. The basis data for mapping caribou lichen availability consists of vegetation
microplot ground photographs and UAV orthomosaics.

Digital ground photographs of vegetation microplots can be used to infer localized
knowledge across broader landscapes, such as large-scale vegetation patterns and plant
classifications [7]. These photographs have ultra-high spatial resolution (mm) by nature,
and allow scientists or artificial intelligence to classify plant species in the survey location
with high accuracy [7]. This information can be used to inform classification models
operating at lower resolution over the same area, such as aerial or satellite imagery.

Unmanned Aerial Vehicles (UAVs), also known as Remotely Piloted Aircraft Systems
(RPAS), are capable of collecting photographs with lower spatial resolution (1–5 cm) than
the field photographs over larger regions of interest [8]. The aerial photographs collected by
these systems can be used to generate high-quality landscape orthomosaics, which provide
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a basis for ecological applications of remote sensing, such as classifying vegetation in forests
and wetlands [8–11], precision agriculture [12], and multi-scaled Earth Observation (EO)
approaches to land classification [13–15]. Given the high spatial resolution of UAV data
compared to other remote sensing imagery, image segmentation algorithms and artificial
intelligence (AI) models have been used to segment different tree types, bog ecotypes, and
pomegranate trees with high accuracy [9,16,17]. A weakness of classifications from UAV
imagery is fewer spectral bands compared to other sensors. A study by Alvarez-Taboada
compared classifications of Hakea sericea in WorldView 2 and UAV imagery, with overall ac-
curacies of 80.98% and 75.47%, respectively [13]. Alvarez-Taboada suggested that, although
the UAV classification was conducted at a higher spatial resolution, the higher spectral
range found in WorldView 2 imagery yielded better results [13]. Another weakness of UAV
imagery is the variance in sunlight intensity within UAV photographs [17]. Bhatnagar
suggested that the use of color correction could be a solution to this problem [17]. Alter-
natively, training an AI network exposed to different lighting conditions could provide a
more robust solution.

Previous research on lichen mapping has focused on linking the spectral signatures of
lichen to the plant characteristics [15]. With the rise of machine learning in remote sensing,
convolutional neural networks (CNN) have proven to be effective at image segmenta-
tion, object detection, and change detection [18–20]. One of the greatest advantages of
CNNs is that they can leverage spectral, texture, intensity, and spatial patterns to classify
pixels [17,18]. The versatility of such AI models can be used to classify landcovers in hy-
perspectral imagery containing 144 spectral bands with greater accuracies than traditional
hypergraph learning methods [21].

U-Net, a CNN originally intended for biomedical image segmentation, effectively
leverages complicated image patterns to provide accurate pixel classification results [22].
The combination of high-resolution features in the contracting path with the up-sampled
layers allows for a more precise output [22]. Research by Abrams et al. demonstrated that
U-net can be effective at segmenting images of forest canopies, with an F1 score of 0.94 [23].
Modified U-Net models have shown slight performance improvements over the U-Net
model in the ecological image segmentation of canopy images and butterflies [23,24].

Another benefit of AI models is the implementation of data augmentations to in-
crease the robustness of the predictions and reduce the risk of overfitting [22,24]. Data
augmentations, such as random flipping, random zooming, random translation, random
noise, and random brightness, can greatly increase the size of the dataset and improve
the CNN performance [18,20,23–25]. Data augmentations are commonly used in pixel
classification applications of images with smaller dimensions such as ground photographs,
since they can be applied to each photograph when training the AI model [26]. However,
most satellite imagery and UAV orthomosaics have prohibitively large dimensions for data
augmentation unless the imagery is divided into smaller tiles. Thus, data augmentations
are infrequently used EO.

Multi-scaled approaches to classifying landcovers is a section of EO which can benefit
from AI with data augmentations. These approaches to land classification allow EO
researchers to scale methodologies from the ground to satellite levels, and have been used to
detect invasive plant species, tree mortality, and lichen [1,13–15,27]. A study conducted by
Jozdani et al. demonstrated that AI models trained on coarse UAV datasets can accurately
classify lichen in WorldView 2 imagery [15]. This is described as an effective way to transfer
the spectral inferences of lichen from high-resolution datasets to lower-resolution datasets.
The spectral range of ground photographs poses a challenge to pixel-based classification
methods, as there are many spectrally similar objects to lichen in the red, green, and blue
bands, such as bright logs and sand. AI models, such as the Lichen Convolutional Neural
Network (LiCNN) proposed by Lovitt et al., consider the pixel DN and spatial patterns
to classify pixels and improve field data validation for EO-based studies [26]. LiCNN is
highly accurate at classifying lichen in ground photographs, with an accuracy of 0.92 and
an IoU coefficient of 0.82 [26]. We build upon this study by assessing the viability of a
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multi-scaled approach using an AI model trained on ground photographs to classify lichen
within UAV orthomosaics. This will be achieved (1) using a digital photoset of 86 field
vegetation microplots to train our newly developed UAV Lichen Convolutional Neural
Network (UAV LiCNN), (2) by applying the UAV LiCNN in a workflow for predicting
percent lichen coverage in 8 UAV orthomosaics that were produced from data collected
across Québec and Labrador in 2019, and (3) by describing the accuracy and limitations of
this work. Our proposed methodology will enable researchers to classify lichen in UAV
orthomosaics under comparable conditions, which can be used for community maps or for
EO up-scaling efforts.

2. Materials and Methods
2.1. Datasets

The data used in this study were a series of 8 UAV orthomosaics and 86 ground pho-
tographs collected between 24 July and 31 July 2019, at study sites located betweenChurchill
Falls, Labrador (NL) and the Manicouagan-Uaapishka (QC) area. The 2019 field campaign
reached 11 sites. However, we limited our study UAV orthomosaics to eight sites: A6, B7,
C1, C6, C8, D2, D9, and D15. These sites were included in this study due to their varying
landscape and higher orthomosaic quality. Sites C7, D3, and D16 were excluded from this
study due to the inconsistent illumination in D3 and lack of field data for D16. In addition,
C7 did not have 2 cm resolution imagery available like the other sites. Of the 86 ground
photographs used for training, 77 were present in the UAV orthomosaics, while 9 ground
photographs were included in the training dataset from the excluded sites.

The ground photographs were collected at nadir or near-nadir using a Sony Cyber-
shot DSC-HX1 at 9.10 MP (3445 × 2592 px). Each ground photo contains a bright orange
50 cm × 50 cm PVC vegetation microplot centered in the photograph. The distribution of
the 11 vegetation microplots throughout each study site followed the Ecological Land Clas-
sification systems developed by the Government of Newfoundland and Labrador [28,29].
Each digital photograph was manually cropped to the interior of the vegetation microplot
and saved in Tiff format.

In addition to the 86 ground photographs, corresponding prediction masks from the
eCognition Digital Photo Classifier (DPC), as outlined by Lovitt et al., were used to create
percent lichen ground cover masks (Figure 1) [26]. The DPC masks included three classes:
lichen, not lichen, and border. We manually corrected for misclassifications within the
masks using GIMP image editing software, and considered the adjusted output to be the
true masks for the ground photographs. The ground photo mask pairs were used in the
training of the UAV LiCNN.
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Figure 1. The ground photo (a) and DPC mask (b) for Site D15 microplot 9. The classes for the mask
on the right are green for lichen, yellow for not lichen, and purple for border.
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Two UAVs were used during the 2019 field campaign: a DJI Inspire 1 with a Sentera
Double 4K (RGB-NDRE) camera, and a DJI Mavic 2 Pro with its stock RGB camera and
an additional NDRE Sentera camera. Only the RGB orthomosaics were used since the
ground photographs were captured in RGB. The choice of the UAVs used was dependent
on the on-site accessibility: sites near roads were sampled using the Inspire 1, while sites
further from roads were sampled with the more compact Mavic 2 Pro. Both UAVs were
controlled by the Litchi app using a flight mission based on waypoints, adjusted for each
camera properties to achieve 2 cm image resolution over an area of about 17 ha. One
photograph per second was acquired with the double 4 K camera on the Inspire 1, and
one frame per second was extracted from the 4 K video of the Mavic 2 Pro RGB camera,
following the methodology described by Leblanc and Fernandes et al. [30,31]. Three ground
control points positioned near the microplot area were used for each flight to improve the
geolocation. The photographs or video frames were processed with Pix4Dmapper 4.4.12 to
produce RGB orthomosaics.

2.1.1. UAV Image Preparation

The UAV datasets were acquired using two different cameras, capturing images under
variable lighting conditions. To ensure color and brightness consistency across the UAV
orthomosaics, we performed manual histogram matching in Adobe Photoshop 2019. After
the histogram adjustments, we added black pixels to the right and bottom of each image
to ensure each orthomosaic resolution was divisible by 240. This step was necessary to
ensure that full tiles (240 × 240 px) could be created from each UAV orthomosaic. Once
the orthomosaics were resized, a region of interest polygon was created around the edges
of the UAV images using ArcMap v10.8. Roads were delineated manually because they
shared similar spectral properties with lichen in visible wavelengths. The region of interest
polygon was used to clip the orthomosaic for accuracy assessment, and the road polygons
were used for masking roads in the prediction output.

2.1.2. Neural Network Preparation

The ground photograph mask/image pairs were divided into training (66), test (10),
and validation (10) datasets. We resized the images in each dataset to 1000 × 1000 px, and
cropped 100 pixels off each edge, resulting in an 800 × 800 px image (Figure 2). Cropping
the edge pixels reduced the tiling artifacts when using the neural network on drone tiles.
Respective masks to the ground photographs were resized and cropped using similar
parameters. Then, we downsized the ground photographs in each dataset to 80 × 80 px
using bilinear resampling to closely resemble the lower resolution of the UAV image.

We reclassified the masks, with the lichen class equaling a pixel value of 100 (repre-
senting 100%) and all other classes receiving values of 0. We used bilinear resampling from
resizing the mask to 80 × 80 px to create pixel values between 0 and 100, which were used
to determine the percent coverage classes. The pixels in the mask represent the percentage
of lichen contained within each down-sampled image pixel, not the percentage chance that
the pixel is lichen. Our class breaks were modified from similar research by Nordberg, who
classified lichen in Landsat 5 data using four classes: unclassified (0–20%), low (20–50%),
moderate (51–80%), and high (80–100%) [32]. We encountered less than 50% accuracy in
classifying ground photo mosaics when using more than three classes, notably due to the
confusion between medium lichen classes. We decided to reduce the number of classes to
three, consisting of none to low (0–33%), medium (33–66%), and high (66–100%) lichen.

To determine the optimal size of the training data, the smaller scale of ground pho-
tographs compared to the orthomosaics was considered. To reduce the processing time
of large orthomosaics, nine ground photographs were mosaicked into a square. A list of
random nonrepeating numbers was used to organize 80 × 80 px ground photographs
and respective masks into a square mosaic of nine photographs, resulting in datasets of
composite 240 × 240 px images. This process was completed separately for the training,
testing, and validation ground photo datasets. To ensure a sufficient number of randomized
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mosaics were created for each dataset, 2000 mosaics were created for the training dataset be-
cause of the larger number of possible combinations. In total, 200 mosaics were created for
the testing and validation datasets due to the smaller dataset of ground photographs and
limited combinations. To simulate different lighting and photo conditions in the validation
and test dataset, we applied random contrast, random brightness, and random saturation
augmentations to these mosaics. Once the mosaics were created with the augmentations,
the dataset was fixed, and no further data augmentations were applied to the validation
and test datasets.
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Figure 2. Creation of the training mosaics. Ground photographs were resized, cropped, and resized
to 80 × 80 px before being stitched into mosaics. Input masks were resized, cropped, and resized
to 80 × 80 px before being separated into three classes. The reclassified masks, with red as high
lichen, blue as medium lichen, and green as none to low lichen, were then stitched into mosaics
representative of the respective ground photo mosaics.

2.2. Neural Network Training

After preparing the training data, the datasets were loaded into a Tensorflow 2.4.1
environment. Similar data augmentations that were completed in the creation of the
validation and test datasets were applied to the training datasets as the image composites
were loaded. Leveraging random cropping data augmentations, the UAV LiCNN randomly
crops training inputs to four ground photographs in a training mosaic and resizes them
back 240 × 240 px (Figure 3). This process simulated a resolution of approximately 1.5 cm
in our training data. Combining the cropping and resize outputs with the original training
mosaics increased the robustness of the UAV LiCNN, yielding better segmentation results.
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Figure 3. Crop and resize data augmentations. A diagram outlining the crop and resize data
augmentations in the UAV LiCNN training.

We selected a modified U-Net model as the basis for our neural network after testing
other CNN models and U-Net. These models struggled with training, resulting in output
masks with all pixels classified as none to low lichen, or outputs with inaccurate results. We
realized that potentially the blank mask outputs with the U-Net could have been caused
by the amount of down-sampling from multiple max pooling functions. The UAV LiCNN
addressed these concerns, as it is a shallower neural network than U-Net, having only
two max pooling functions instead of four and less convolutional layers. Figure 4 is a
graphical representation of the UAV LiCNN architecture, created using a visual grammar
tool [33]. The UAV LiCNN had an input shape of 240 × 240 px with three channels. The
final convolutional layer used a ‘sigmoid’ activation function, while all other convolutional
layers used ‘relu’ activation functions. The dropout layers in the model were set to 0.3 to
prevent model overfitting. The UAV LiCNN model (Supplementary Materials) used the
Adam optimizer with a learning rate of 0.001 and was compiled with a modified dice loss
function, which was the sum of the dice loss plus categorical cross entropy. Introducing
an early stopping function allowed the UAV LiCNN to save the model weights after the
validation loss did not decrease for two epochs. We trained the UAV LiCNN for 16 epochs,
with a batch size of 16 for 500 steps per epoch and 50 validation steps. Our trained model
with the lowest validation loss took approximately 24 min to complete on an Nvidia
RTX 3070.
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2.3. Neural Network Prediction and Post Processing

The UAV LiCNN prediction script was designed to efficiently create tiles from an UAV
orthomosaic, detect the percentage of lichen coverage, and output a stitched mosaic with
the prediction result. The script divided the orthomosaic into tiles which have dimensions
of 240 × 240 px. Tiles that contain pixels with DN values greater than zero were passed
through the prediction model. Once all viable tiles have predicted values, the script stitched
the prediction tiles to create a prediction mosaic. Figure 5 outlines the processing steps as
applied to the UAV orthomosaic for Site C8. The dimensions of the Site C8 Orthomosaic
are 17,667 × 20,700 px, and it took approximately 11 min to process. Larger orthomosaics,
such as Site D9, with 26,882 × 27,435 px dimensions, took approximately 16 min to process.
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orthomosaics are broken up into tiles, passed through a trained neural network model. Then, the prediction tiles are stitched
together to make an output mosaic.

3. Results

To quantify the accuracy of the UAV LiCNN, we tested how accurate the UAV LiCNN
was at classifying ground photo mosaics from the test dataset. In addition, prediction
mosaics using the UAV LiCNN were created from the orthomosaics of the eight sites.
We determined that these eight orthomosaics were representative of different landscapes
visited over the field campaign and had different characteristics of lichen coverage such as
forests and open fields. All eight orthomosaics had varying lighting characteristics, and the
mosaic composites were of the highest quality. Using these prediction mosaics and the site
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orthomosaics, a manual point accuracy assessment and a comparison between true lichen
percentage from the vegetation microplot training masks with the UAV LiCNN microplot
prediction values were conducted.

3.1. UAV LiCNN Ground Photo Mosaic Test Results

The test dataset consisting of 200 ground photo mosaics was used to evaluate the
accuracy of the UAV LiCNN. The mosaics were created by rearranging 10 ground pho-
tographs and masks which were not included in the training or validation datasets. The
mean loss function, a measurement of model performance, was 0.4936 and ranged from
0.4119 to 0.7076. To assess how similar the predicted output was with the test data, we
calculated the mean intersection over union (IoU) coefficients. For a single image, the IoU
coefficient measures the intersection of the predicted mask with the actual mask divided
by the union of the predicted and actual mask, averaged over all class values. Thus, an IoU
coefficient of 1 indicates a perfect match between the predicted mask and true mask, while
0 indicates no match. The IoU coefficient for the test set is the average of the IoU coefficient
over the individual images. The IoU coefficient provides an accurate measure of model
performance when one or more of the classes are imbalanced. We calculated a mean IoU
coefficient of 0.7050 with a standard deviation of 0.0157 (Table 1). The mean accuracy was
87.40%, with a standard deviation of 1.25%.

Table 1. UAV LiCNN ground photo mosaic results when applied to the test dataset.

Loss Accuracy IoU Coefficient

Sample Size 200 200 200
Mean 0.4936 87.40% 0.7050

Standard Deviation 0.0570 1.25% 0.0157
Min 0.4119 83.56% 0.6736
Max 0.7076 89.37% 0.7365

3.2. Manual Point Accuracy Assessment

After processing the eight prediction mosaics using the UAV LiCNN, a manual point
accuracy assessment was conducted. For each prediction orthomosaic, we generated
900 sample points using the random stratified method in ArcMap v10.8, where points were
randomly distributed within each class and each class had a number of points proportional
to its area. The points were manually checked to determine if they accurately represented
the three classes. Site C1 is a recently disturbed site containing no lichen due to a recent
burn in 2013. This site was included to determine whether the UAV LiCNN is effective
at avoiding misclassifications where there are bright logs. Since it has no lichen, it was
considered an outlier and excluded from the kappa calculations, overall average accuracies,
and overall average kappa.

The manual point accuracy assessment showed that the UAV LiCNN effectively clas-
sified pixels, with an average total accuracy of 95.94%. Interrater reliability, an agreement
measurement between the expected and observed accuracy, was calculated with an average
kappa 80.79%, showing a strong level of agreement [34]. User accuracy, the probability
that a predicted value is correct, and producer accuracy, the probability that a value in a
class was correctly classified, were calculated for the three classes. The UAV LiCNN is
accurate at classifying high lichen pixels, with an average producer and user accuracy of
92.93% and 85.84%, respectively (Table 2). Part of the reason for the lower user accuracy
can be attributed to the misclassified logs and other ground covers which were not truly
lichen. The medium lichen class had an average producer accuracy of 55.88% and a higher
user accuracy of 86.04%. The primary reason for the lower producer error in this class can
be attributed to the large portion of the low-class pixels truly being medium-class lichen.
The low class had the highest average accuracy across all sites, with an average user and
producer accuracy of 96.74% and 98.75%, respectively. Figure 6 displays the confusion
matrices for Site C6 and Site D15, along with a close-up and map of the orthomosaic
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composite. Sites C6 and D15 were selected for Figure 6 because they had varying terrain,
lighting, and different amounts of lichen. In addition, these orthomosaics highlighted
issues with classifying lichen in shadows and lichen near logs.

Table 2. Summary table outlining the average manual point accuracies per class across seven UAV
orthomosaics.

Class Mean User Accuracy Mean Producer Accuracy

Low 96.74% 98.75%
Medium 86.04% 55.88%

High 85.84% 92.93%Drones 2021, 5, x FOR PEER REVIEW 10 of 17 
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3.3. UAV LiCNN Microplot Prediction and Ground Truth Comparison

The purpose of this accuracy assessment was to determine if there was agreement
between the validated lichen percentage of the vegetation microplots and the UAV LiCNN
plot prediction values. The lower resolution and motion blurring in the UAV orthomosaic
resulted in a significant number of mixed pixels between the orange vegetation microplot
frame and the surroundings. Figure 7 highlights the blurring of the vegetation microplot,
displaying Site D15 microplot 9 in the UAV orthomosaic and the ground photo. The
blurring of the orange pixels displayed in the UAV orthomosaic was caused by the lower
resolution (2 cm) than the ground photograph and the motion of the UAV in flight. All
orange pixels were avoided when tracing the vegetation microplots for this accuracy
assessment. However, this inherently caused significant distortions between the true
vegetation microplot lichen % and what could be detected in the orthomosaics.
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Figure 7. Comparison of Site D15 microplot 9 in the UAV orthomosaic (a) with the ground photo (b).

This accuracy assessment consisted of the 77 vegetation microplots which were visible
in the UAV orthomosaics and had respective ground photographs. Vegetation microplots
obstructed by trees in the UAV orthomosaic were excluded from this assessment. When
comparing the validation data and the UAV LiCNN values, it seems as though the UAV
LiCNN underpredicted the lichen in the vegetation microplots. Due to the shape of the
data in the scatterplot and our perceived relationship between the values, we decided that
a logarithmic regression would best fit the natural pattern in the data given. We achieved
an R2 of 0.6910 using a two-parameter logarithmic regression. Figure 8 is a graphical
comparison of average lichen percentage in the 77 vegetation microplot with the UAV
LiCNN predicted values and the logarithmic regression.
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4. Discussion

In this study, we described a new methodology for classifying lichen in UAV ortho-
imagery using ground photo image composites and a neural network. Our results from
testing this methodology on eight UAV orthomosaics representing different ground and
lighting conditions showed an overall accuracy of 95.94%. The UAV LiCNN tended
to underestimate lichen ground cover in the ‘medium’ class but was highly accurate
in estimating low and high coverages. Sticks avoided in the ground photo composites
were similar to the logs avoided in the UAV predicted layers. Through testing the UAV
LiCNN on a variety of orthomosaics consisting of different landscapes and lighting, we see
potential for using this method to classify other types of vegetation or lichen in different
regions. The UAV LiCNN performs best on the UAV orthomosaics where there are large
lichen patches and few objects having similar RGB values, such as sand or bright logs. A
limiting factor to scaling lichen mapping, as highlighted by Jozdani et al., is the lack of
diversity in the small training data compared to the larger imagery [15]. Due to the larger
extent of the UAV orthomosaics compared to the ground photographs, there are more
opportunities for misclassifications of land covers that were not included during neural
network training.

The UAV LiCNN seemed to overestimate high lichen in spectrally similar objects, such
as the misclassifications of lichen as sand in Site B7, and bright logs in Site C1 and Site D15.
None of the training data contained sand, and few of the ground photographs contained
bright sticks. Lichen can be found in open clearings and interspersed between trees.
Whereas some of the vegetation microplot training photographs had shadows in them,
they were not of the same intensity as some of the shadows in Sites C6 and D2. Therefore,
we believe that future improvements in UAV HDR cameras or shadow correction could
improve classification results.

Another limitation to this study stems from the use of only three spectral bands when
using RGB images. In some cases, RGB sensors can be sufficient, such as wetland ecotypes
segmentation and wetland delineation [11,17]. However, RGB sensors can fail to provide
the necessary data when target objects are spectrally similar to non-target objects across the
visible wavelengths, for example, in the case between lichen and bright logs. Lichen reflects
more near-infrared radiation (NIR) than non-living features such as sand or logs, and
this could be useful for improving differentiation [1]. Whereas UAVs with the NIR band
are common for vegetation surveys, high-resolution multispectral handheld cameras that
include all three visible bands and the NIR band for ground photographs are uncommon
and expensive. Since mosaicking is required for UAV datasets, having the RGB and NIR
bands on different cameras is not as much of an issue as individual microplot photographs
would be if they came from two different cameras. Thus, implementing a multispectral
UAV LiCNN with NIR could be costly.

5. Conclusions

This study demonstrated that a neural network trained on ground photos could
classify lichen cover percentages in UAV orthomosaics with high accuracy. Given true
masks and high-resolution photographs of vegetation microplots, an UAV LiCNN would
be an effective method of classifying lichen in UAV orthomosaics. This AI model is
efficient to train and apply to larger orthomosaics. Our results suggest that spectral, surface
texture, and spatial patterns detected in ground photographs can be recognized in UAV
orthomosaics by the UAV LiCNN, enhancing the classification capabilities of spectrally
similar pixels to lichen. In our work, the UAV LiCNN was able to detect high lichen cover
(66–100%), with high user and producer accuracies of 85.84% and 92.93%, respectively. In
addition, the vegetation microplot accuracy assessment showed that there was agreement
between the true vegetation microplot lichen percentage and the UAV LiCNN predicted
lichen percentage (R2 of 0.6910). We expect that using RGB and NIR ground photographs
and UAV orthoimages could help improve the differentiation between lichen and other
bright surfaces. Greater diversity in vegetation microplot photographs can also increase
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the robustness of classification results over larger UAV images. In addition, a methodology
for correcting tree shadows in UAV orthomosaics would improve the segmentation results
of lichen.

The UAV LiCNN and our methodology can enable researchers to classify lichen under
comparable conditions in UAV orthomosaics with high accuracy. This can be used for
community maps or for EO up-scaling efforts. The limitations of this methodology include
potential misclassifications of lichen as other bright surfaces, and dark shadows covering
lichen patches. Further research can improve upon our existing methodology for mapping
lichen in UAV orthomosaics.

Supplementary Materials: The latest version of the UAV LiCNN model and additional processing
scripts can be accessed through GitHub: https://github.com/CCRS-UAVLiCNN/UAV_LiCNN/,
accessed on 15 September 2021.
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