
drones

Technical Note

Cattle Detection Using Oblique UAV Images

Jayme Garcia Arnal Barbedo 1,* , Luciano Vieira Koenigkan 1 and Patrícia Menezes Santos 2

1 Embrapa Informatica Agropecuaria, Campinas 13083-886, Brazil; luciano.vieira@embrapa.br
2 Embrapa Pecuaria Sudeste, Sao Carlos 13560-970, Brazil; patricia.santos@embrapa.br
* Correspondence: jayme.barbedo@embrapa.br; Tel.: +55-19-3211-5880

Received: 10 November 2020; Accepted: 3 December 2020; Published: 8 December 2020
����������
�������

Abstract: The evolution in imaging technologies and artificial intelligence algorithms, coupled with
improvements in UAV technology, has enabled the use of unmanned aircraft in a wide range of
applications. The feasibility of this kind of approach for cattle monitoring has been demonstrated
by several studies, but practical use is still challenging due to the particular characteristics of this
application, such as the need to track mobile targets and the extensive areas that need to be covered in
most cases. The objective of this study was to investigate the feasibility of using a tilted angle
to increase the area covered by each image. Deep Convolutional Neural Networks (Xception
architecture) were used to generate the models for animal detection. Three experiments were
carried out: (1) five different sizes for the input images were tested to determine which yields the
highest accuracies; (2) detection accuracies were calculated for different distances between animals
and sensor, in order to determine how distance influences detectability; and (3) animals that were
completely missed by the detection process were individually identified and the cause for those
errors were determined, revealing some potential topics for further research. Experimental results
indicate that oblique images can be successfully used under certain conditions, but some practical
limitations need to be addressed in order to make this approach appealing.
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1. Introduction

The management of beef cattle farms operating under an extensive production system is
challenging, especially considering that many of those farms have large areas with deficient
communications infrastructure and ground access. Under those conditions, thorough visual inspection
of the herd often requires manned flight, which is expensive and has some risks associated [1].
Because of this, horseback ground monitoring is still very common, making it very difficult to cover
the entire farm in a timely manner.

Unmanned aerial vehicles (UAV) are being explored as a time- and cost-effective alternative to
the approaches mentioned above. The idea is to use UAVs to capture a large number of images from
a certain area, and then use algorithms to extract the information of interest. In the case of cattle
monitoring, applications that have been investigated include animal detection and counting [1–5],
specimen recognition [6], measurement of the distance between cow and calf [7], and determination
of feeding behavior [8]. With very few exceptions [9], the information contained in the images
is extracted by means of deep learning models, using one of four main approaches [1]: semantic
segmentation, which associates each pixel in the image to a class; instance segmentation, which detects
and delineates each distinct object of interest [4,5]; object detection, which delineates a box bounding
the objects of interest [10,11]; and heat mapping (probability distributions) using Convolutional Neural
Networks (CNNs), which reveals the position of the animals in the image [12–14]. Different degrees of
success have been achieved, a fact that is more related to the specific experimental setup and to the
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characteristics of the datasets used in the study than to the algorithms themselves [1]. While significant
progress has been achieved, this kind of technology still cannot reach its full potential due to a number
of technical and practical limitations.

One major practical limitation is that most UAVs do not have enough autonomy to cover entire
farms in a single flight [15]. This is a problem because, in the time interval between flights, animals
may move, weather conditions may vary, and the angle of light incidence will change. All those
factors have the potential to increase error rates. There have been some attempts to monitor herds by
carrying out flights at certain time intervals, thus generating enough data for tracking the animals [16].
Although the results using this type of approach are promising, with images captured at the nadir
position (perpendicularly to the ground), the area covered in a single mission tends to be limited. If the
herd is spread over a large area, which is the case on many Brazilian cattle farms, timely monitoring of
the entire population will most likely be unfeasible unless multiple UAVs are used. One possible way
to mitigate this problem would be to capture the images at an angle, but studies employing UAVs for
cattle monitoring almost always use images captured at the nadir position. The only exception found
in the researched literature is the studies by Xu et al. [4,5], but images were captured at low altitudes
and only animals close to the sensor were considered. The main reason for choosing vertical angles is
that this guarantees that all points in an image have approximately the same Ground Sample Distance
(GSD), making it easier to detect the objects of interest.

Indeed, the use of images captured at an angle (oblique images) brings many challenges: the GSD
varies considerably throughout the image, occlusions become more severe, the difficulty of detecting
and measuring objects increases the farther they are from the camera, and geometric and color
distortions become more prominent in distant objects, among others. On the other hand, the area
covered in a single image can be much larger, having the potential to greatly reduce the number of
flights/UAVs needed for proper coverage. The objective of this study was to investigate the difficulties
and advantages associated to oblique images, as well as to determine under which conditions this
type of image is advantageous in comparison with those captured orthogonally. All experiments were
carried out in the context of animal detection, which is an intermediate step toward animal counting.
To the best of the authors’ knowledge, this is the first study exploring the viability of using oblique
images for cattle monitoring. Experiments were carried out using the Xception CNN architecture,
which has yielded very accurate results in previous studies [1,3].

2. Material and Methods

2.1. Dataset

Images were captured at an altitude of 30 m with respect to the take-off position, using a DJI
Mavic 2 Pro equipped with a 20-MPixel camera. Camera settings were all kept on automatic, except
exposition, which used the presets “sunny” and “overcast” depending on weather conditions. Angles
between sensor view and the orthogonal axis varied between 10◦ and 75◦. Distances between animals
and sensor varied from 30 m to more than 500 m. All images were captured between 10 a.m. and 3 p.m.
Animals from both Canchim and Nelore breeds were present during flights. The color of the animals
in the images ranged from white to light beige, with some darker coating occurring in some animals.

The imaged areas are located at Canchim farm, S ao Carlos, Brazil (21◦58’28” S, 47◦50’59” W).
Several different experiments involving livestock are carried out at this farm, making it possible
to build a dataset representing many of the situations found in practice, ranging from unimpeded
line of sights to busy environments with varying degrees of occlusion (Figure 1). Flight missions
and the coordinates of each image capture were planned to cover areas with different characteristics.
Because images were captured in different directions, many of the nearly 300 images captured did
not contain animals and were discarded. The remaining sixty images were divided into image blocks
using regular grids ranging from 14- to 224-pixel spacing, both horizontally and vertically. As a result,
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five datasets were generated (Table 1) and used to determined the ideal degree of granularity for
animal detection in oblique images.

Figure 1. Examples of image blocks (224 × 224 pixels) extracted from the original images captured in
the field.

Table 1. Datasets used in the experiments. The criteria used to select the samples in the “cattle” and
“non-cattle” sets are described in the Experimental Setup Section.

Size # Images in Each Cattle and Non-Cattle Classes

224 × 224 276
112 × 112 856
56 × 56 1754
28 × 28 3530
14 × 14 8984

2.2. Experimental Setup

Blocks from the divided images were visually classified as “cattle” and “non-cattle” by an expert.
A image block was classified as cattle if at least part of an animal could be unequivocally identified by
the human expert. The process is thus inherently subjective, but more objective approaches were too
time consuming for practical adoption. It is worth noting that blocks containing only a small portion
of an animal have little impact on the detection process (even if misidentified), which limits potential
problems caused by inconsistencies associated to the visual selection process.

As expected, the number of “non-cattle” samples was much larger than the number of “cattle”
samples. To avoid severely imbalanced classes, which can cause biased results [17], “non-cattle”
samples were randomly selected from the complete set to match the number of cattle samples (Table 1).

Model training was carried out using 80% of the samples, with the remaining 20% of the samples
being used in the tests; validation was not adopted because the parameters used in the training were
determined in previous studies [1,3]. The deep Convolutional Neural Network (CNN) used in this
study was the Xception [18]. The following training parameters were used: fixed learning rate of 0.0001,
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10 epochs, mini-batch size of 128 and sigmoid activation function. The model used was pretrained
on the Imagenet dataset [19], and all layers were frozen with the exception of the five last ones.
Training was performed in a workstation equipped with two RTX-2080 Ti GPUs. This architecture was
chosen because it yielded high accuracies with a relatively small number of parameters in previous
studies [3]. Three different experiments were devised to investigate various aspects of the problem:

The first experiment aimed at determining the ideal dimensions of the images to be used as inputs.
Five different dimensions were tested: 224 × 224, 112 × 112, 56 × 56, 28 × 28, and 14 × 14 pixels.
By default, the minimum image size accepted as input by the Xception model is 71 × 71 pixels, thus in
the latter three cases the image blocks were upsampled to these dimensions. This does not alter the
amount of information contained in the images, which are simply reassembled to match the input
requirements. The metrics used for the assessment of detection quality were the following:

Accuracy = (TP + TN)/(TP + TN + FP + FN), (1)

Precision = TP/(TP + FP), (2)

Recall = TP/(TP + FN), (3)

F1_Score = 2 ∗ (Recall ∗ Precision)/(Recall + Precision), (4)

where TP, TN, FP, and FN are the number of true positives, true negatives, false positives, and false
negatives, respectively. Confusion matrices were also adopted to help visualize the results.

The second experiment aimed at determining how the distance between animals and sensor
affected the detection. The distance between animals and sensor was estimated by firstly determining
the length of a typical animal (in pixels) located directly below the UAV (30 m), and then using a direct
proportion to derive the distance of farther animals. This is obviously a rough estimate, given that
the sizes and positions of the animals vary, but it is accurate enough for the specific purposes of this
study. Geometrical calculations were not adopted because of a small number of instances in which
the distance estimates were very poor. Samples were initially divided into four groups (Table 2),
namely 30–50, 50–100, 100–250, and more than 250 m, and detection accuracies were computed in each
case. The latter group was later dropped because, at distances greater than 250 m, animal detection
is unreliable even visually. Thus, the experiments carried out in this study only considered animals
closer than 250 m from the sensor. All five image block dimensions were considered in this experiment.
Only the “recall” metric was used here, because it is unfeasible to estimate distances for all “non-cattle”
image blocks without a proper reference, so “precision” cannot be calculated.

Table 2. Distribution of animals and image blocks containing animals in each distance class.
Although the number of animals is fairly evenly distributed among classes, the number of image
blocks containing animals is much larger at closer distances. Animals located more than 250 m from
the sensor could not be reliably detected and were not considered.

Distance % Total Number of Animals % Total Number of Blocks with Animals

30–50 m 37 65
50–100 m 20 18

100–250 m 43 17
over 250 m - -

The third experiment aimed at determining the proportion of animals that are completely missed
by the detection process. Animals close to the sensor usually appear in multiple image blocks
(especially when block dimensions are small), while at greater distances a single image block can
contain multiple animals. This implies that close animals can be successfully detected even if some
misclassifications occur, while animals located farther from the sensor may be completely missed by
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just a single misclassification. The number of animals completely missed was determined for each
block-dimension/animal-distance combination.

All experiments were carried out using a 10-fold cross-validation, with training and test sets being
randomly generated in each repetition.

3. Results

Table 3 shows the results obtained using different image block sizes. Only minor differences
were observed between the three largest block sizes, with a significant drop in accuracy when smaller
blocks were considered. Table 4 presents the accuracies obtained when the three distance classes were
considered, showing that detection tends to become less effective as animals are farther away from the
sensor. Figure 2 shows the confusion matrices calculated for each of the five block sizes, confirming
that error rates were higher for the two smallest block sizes.

Table 3. Results obtained for each image block size. Each cell shows the maximum (top, in red),
average (middle, in black) and minimum (bottom, in blue) values through the ten repetitions (10-fold
cross-validation).

Block Size Accuracy Precision Recall F1 Score

0.87 0.92 0.87 0.87
224 × 224 0.85 0.85 0.85 0.85

0.81 0.79 0.81 0.82

0.87 0.87 0.95 0.87
112 × 112 0.85 0.84 0.87 0.85

0.83 0.80 0.82 0.83

0.85 0.84 0.90 0.86
56 × 56 0.84 0.82 0.88 0.85

0.84 0.81 0.87 0.84

0.85 0.82 0.91 0.85
28 × 28 0.83 0.80 0.89 0.84

0.81 0.77 0.88 0.83

0.71 0.70 0.78 0.71
14 × 14 0.67 0.65 0.76 0.70

0.65 0.63 0.73 0.69

Figure 2. Average confusion matrices crossing actual (rows) and estimated (columns) counts, given in
percentages: cell (1,1) corresponds to the rate of true positives, cell (1,2) is the rate of false negatives,
cell (2,1) is the rate of false positives, and cell (2,2) is the rate of true negatives. C and NC refer to the
Cattle and Non-Cattle classes, respectively.
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Table 4. Recall values for each image block and distance class.

Distance (m) 224 × 224 112 × 112 56 × 56 28 × 28 14 × 14

30–50 0.88 0.89 0.9 0.89 0.72
50–100 0.82 0.86 0.86 0.89 0.72

100–250 0.76 0.8 0.84 0.87 0.75

Table 5 shows the proportion of animals completely missed by the detection process for each
block-dimension/animal-distance pair.

Table 5. Proportion (%) of animals completely missed for each image block and distance class.

Distance (m) 224 × 224 112 × 112 56 × 56 28 ×28 14 × 14

30–50 0 0 0 0 0
50–100 6 2 0 0 11

100–250 25 18 11 5 17

4. Discussion

Global metrics such as accuracy and F1 score were somewhat similar for all image block
sizes considered, with the exception of 14 × 14 pixels. It was observed that the latter carried too
little information and was too sensitive to small spurious elements to provide reliable estimates.
Thus, unless otherwise stated, all remarks made in this section ignore the 14 × 14 case.

While global metrics were relatively homogeneous, “precision” and “recall” showed some clear
patterns. As more focused (smaller) image blocks are used, distant animals tend to become more
prominent in each sample, making the detection more likely (recall increases). On the other hand,
small spurious elements also become more prominent, increasing the likelihood of misdetections
(precision drops). That is exactly what was observed. This tradeoff between precision and recall
explains why global metrics remained approximately the same across all block sizes.

It is also interesting to notice that recall values varied only slightly in the case of close
animals, as these are prominent even when larger image blocks are considered. For distant animals,
however, recall was considerably larger when smaller image blocks were adopted. Although there
were no similar experiments regarding precision values, given the almost linear tradeoff between these
and recall values, it is safe to assume that precision values are directly proportional to the image block
size and inversely proportional to the distance considered.

While accuracies and F1 scores were similar for all block sizes (except 14 × 14), the severity
of the errors were not. In the case of small block sizes, false negatives (“cattle” blocks classified as
“non-cattle”) are not as damaging because there is a higher probability that each animal is represented
by multiple blocks. This is particularly true in the case of distant animals—there was an instance
in which a single missed 224 × 224 block contained seven animals. If the objective is to estimate
the number of animals, such a misclassification would be very impactful. Indeed, the experiments
indicated that the number of missed animals was considerably lower for small image blocks.

The conclusions drawn from the experimental results seem to indicate that smaller image blocks
are advantageous for detecting animals located far from the sensor, as long as they carry enough
information to train the model. It is important to notice, however, that architectures other than that used
in the experiments (Xception) can have a lower or higher sensitivity to the numerous factors that affect
the results (contrast between animals and background, angle of incident light, etc.). Thus, additional
experiments are recommended if a different model is to be employed. It is also worth pointing out that
all animals in the images had light colors ranging from white to pale yellow or gray. Again, if other
breeds are to be considered, new experiments need to be carried out.
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Experimental results show that it is feasible to employ oblique images for detection of animals
located up to 250 m from the sensor. However, there are a few practical issues that need to be taken
into consideration.

Although occlusions are a problem in orthogonal images, in the case of oblique images obstacles
such as trees, tall grass and sheds can obstruct a considerably larger portion of the field of view.
The actual percentage of the area that can be properly scanned can vary considerably depending
on the type of vegetation and where potential obstacles are located with respect to the camera.
The configuration of the vegetation canopies also plays a major role, as in some cases it is better
to keep major obstacles close to the camera, so the area occluded is roughly the same as the area of
the canopy itself, while in other cases a better field of view can be obtained if those obstacles are
farther from the camera (e.g., if branches and leaves are high above ground). In the case of this study,
most of the obstacles were trees typical from the Cerrado region, which tend to have low leaf density,
although there were also a few trees with dense canopies (Figure 1). Because obstacle characteristics
can vary wildly from site to site, in most cases, the ideal positioning for the sensor will be specific to
each area. This problem is much less prominent in farms without large obstructed areas, making it
easier to explore the benefits of oblique images. Occlusions caused by the animals themselves were
also observed in a few instances, especially at farther distances. This can also be a major source of
misestimates in large groups of animals.

With mobile targets, the objects of interest may not be at the same positions when new images are
captured. This is true independently of the type of image used, but in the case of oblique images there
is the additional challenge of trying to determine the borders of the region covered in a given image in
order to avoid overlap when a new image is considered. In areas with high cattle population density,
it may be nearly impossible to determine which animals have already been counted, especially if those
are concentrated near the 250 m limit of detection.

Separating clustered animals is arguably the most challenging task when counting animals using
orthogonal images [1,3]. With oblique images, the problem becomes even more difficult. With tilted
angles, clustering tends to intensify and the degree of overlap between animals tends to grow sharply.
The problem becomes even more difficult considering that distant animals are depicted by fewer pixels,
causing animal shapes to become less discernible. As a result, cluster separation may quickly become
unfeasible, even visually. It is worth pointing out that the potential impact of clustered animals on the
accuracy of a counting estimate was not investigated in this study, but it was thoroughly investigated
by Barbedo et al. [1]. Many of the conclusions of that study hold here, but since the separation of
animals far from the sensor probably pose a significantly more difficult challenge, this is an issue that
should be investigated in depth in the near future.

Many of the most recent research on cattle detection and counting adopt object detection models
such as Mask R-CNN [4,5], YOLO [11], and DisCount Net [13], rather than using classification models
such as the one adopted in this study. Object detection models were not employed in this study for
three reasons: (1) data annotation is challenging, especially when animals are far away and grouped;
(2) this type of approach is sensitive to animal pose, which means that a large dataset containing a
wide variety of poses is needed to properly capture practical variability; and (3) they usually have
difficulties detecting objects that appear small in the images, which is the case for distant animals.
Nevertheless, this is an approach worth investigating in the future, as it can provide more useful data
toward a counting estimate.

Discriminating between livestock species has been explored in some studies [5], but since most
farms in Brazil are dedicated exclusively to cattle, this issue was not investigated.

The practical difficulties mentioned above can severely limit the appeal of using images captured
at a tilted angles for cattle monitoring. It is worth pointing out, however, that the applicability of this
approach can be greatly improved by simple measures such as including some markers that can be
easily identified in the images, helping to delimit the region considered in each image. With this, it may
become possible to devise strategies to minimize other problems, such as decreasing the distance at
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which successive images are captured and selecting positions that minimize the impact of obstacles.
Another action that can improve the results obtained by this kind of approach is to explore the prior
knowledge about topography and obstacles to determine the best spots for capturing the images.
These are issues worth exploring in future studies, together with an investigation to determine if the
potential benefits brought by oblique images are enough to justify the additional effort needed to
enable their use.

5. Conclusions

This article explores the possibility of using tilted angles to increase the area covered by a single
image captured using UAVs. Experimental results indicate that this approach can be advantageous
if challenges related to view obstructions and the determination of the exact borders of the region
considered in the image can be properly addressed. Future investigations should include a cost–benefit
analysis to estimate the potential benefits of oblique images against the measures needed to minimize
practical hurdles.

This study dealt only with the problem of animal detection, which is only the first step of more
complex tasks, such as animal counting and detection of anomalies. These have several technical
challenges (separation of clustered animals, animal tracking, etc. [1,3]) which are exacerbated when
dealing with oblique images. Future research should also tackle these challenges in order to enable
technologies capable of providing the answers needed by decision makers.

Author Contributions: Conceptualization, J.G.A.B. and L.V.K.; methodology, J.G.A.B., L.V.K. and P.M.S.; software,
J.G.A.B. and L.V.K.; validation, J.G.A.B., L.V.K. and P.M.S.; formal analysis, J.G.A.B.; investigation, J.G.A.B.
and L.V.K.; resources, J.G.A.B., L.V.K. and P.M.S.; data curation, J.G.A.B. and L.V.K.; writing—original draft
preparation, J.G.A.B.; writing—review and editing, J.G.A.B., L.V.K. and P.M.S.; visualization, J.G.A.B. and L.V.K.;
supervision, J.G.A.B.; project administration, J.G.A.B.; funding acquisition, J.G.A.B. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Fapesp under grant number 2018/12845-9, and Embrapa under grant
number 22.16.05.021.00.00.

Acknowledgments: The authors would also like to thank Nvidia for donating the GPU used in the experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Barbedo, J.G.A.; Koenigkan, L.V.; Santos, P.M.; Ribeiro, A.R.B. Counting Cattle in UAV Images—Dealing
with Clustered Animals and Animal/Background Contrast Changes. Sensors 2020, 20, 2126. [CrossRef]
[PubMed]

2. Goolsby, J.A.; Jung, J.; Landivar, J.; McCutcheon, W.; Lacewell, R.; Duhaime, R.; Baca, D.; Puhger, R.;
Hasel, H.; Varner, K.; et al. Evaluation of Unmanned Aerial Vehicles (UAVs) for detection of cattle in the
Cattle Fever Tick Permanent Quarantine Zone. Subtrop. Agric. Environ. 2016, 67, 24–27.

3. Barbedo, J.G.A.; Koenigkan, L.V.; Santos, T.T.; Santos, P.M. A Study on the Detection of Cattle in UAV Images
Using Deep Learning. Sensors 2019, 19, 5436. [CrossRef] [PubMed]

4. Xu, B.; Wang, W.; Falzon, G.; Kwan, P.; Guo, L.; Chen, G.; Tait, A.; Schneider, D. Automated cattle counting
using Mask R-CNN in quadcopter vision system. Comput. Electron. Agric. 2020, 171, 105300. [CrossRef]

5. Xu, B.; Wang, W.; Falzon, G.; Kwan, P.; Guo, L.; Sun, Z.; Li, C. Livestock classification and counting in
quadcopter aerial images using Mask R-CNN. Int. J. Remote Sens. 2020, 41, 1–22. [CrossRef]

6. Andrew, W.; Gao, J.; Mullan, S.; Campbell, N.; Dowsey, A.W.; Burghardt, T. Visual Identification of Individual
Holstein-Friesian Cattle via Deep Metric Learning. arXiv 2020, arXiv:2006.09205.

7. Mufford, J.T.; Hill, D.J.; Flood, N.J.; Church, J.S. Use of unmanned aerial vehicles (UAVs) and
photogrammetric image analysis to quantify spatial proximity in beef cattle. J. Unmanned Veh. Syst.
2019, 7, 194–206. [CrossRef]

8. Nyamuryekung’e, S.; Cibils, A.; Estell, R.; Gonzalez, A. Use of an Unmanned Aerial Vehicle—Mounted
Video Camera to Assess Feeding Behavior of Raramuri Criollo Cows. Rangel. Ecol. Manag. 2016, 69, 386–389.
[CrossRef]

http://dx.doi.org/10.3390/s20072126
http://www.ncbi.nlm.nih.gov/pubmed/32290316
http://dx.doi.org/10.3390/s19245436
http://www.ncbi.nlm.nih.gov/pubmed/31835487
http://dx.doi.org/10.1016/j.compag.2020.105300
http://dx.doi.org/10.1080/01431161.2020.1734245
http://dx.doi.org/10.1139/juvs-2018-0025
http://dx.doi.org/10.1016/j.rama.2016.04.005


Drones 2020, 4, 75 9 of 9

9. Longmore, S.; Collins, R.; Pfeifer, S.; Fox, S.; Mulero-Pázmány, M.; Bezombes, F.; Goodwin, A.; Juan Ovelar,
M.; Knapen, J.; Wich, S. Adapting astronomical source detection software to help detect animals in thermal
images obtained by unmanned aerial systems. Int. J. Remote Sens. 2017, 38, 2623–2638. [CrossRef]

10. Andrew, W.; Greatwood, C.; Burghardt, T. Aerial Animal Biometrics: Individual Friesian Cattle Recovery and
Visual Identification via an Autonomous UAV with Onboard Deep Inference. arXiv 2019, arXiv:1907.05310v1.

11. Shao, W.; Kawakami, R.; Yoshihashi, R.; You, S.; Kawase, H.; Naemura, T. Cattle detection and counting in
UAV images based on convolutional neural networks. Int. J. Remote Sens. 2020, 41, 31–52. [CrossRef]

12. Chamoso, P.; Raveane, W.; Parra, V.; González, A. UAVs Applied to the Counting and Monitoring of Animals.
Advances in Intelligent Systems and Computing. Adv. Intell. Syst. Comput. 2014, 291, 71–80.

13. Rahnemoonfar, M.; Dobbs, D.; Yari, M.; Starek, M. DisCountNet: Discriminating and Counting Network for
Real-Time Counting and Localization of Sparse Objects in High-Resolution UAV Imagery. Remote Sens. 2019,
11, 1128. [CrossRef]

14. Rivas, A.; Chamoso, P.; González-Briones, A.; Corchado, J. Detection of Cattle Using Drones and
Convolutional Neural Networks. Sensors 2018, 18, 2048. [CrossRef] [PubMed]

15. Barbedo, J.G.A.; Koenigkan, L.V. Perspectives on the use of unmanned aerial systems to monitor cattle.
Outlook Agric. 2018, 47, 214–222. [CrossRef]

16. Sun, Y.; Yi, S.; Hou, F.; Luo, D.; Hu, J.; Zhou, Z. Quantifying the Dynamics of Livestock Distribution
by Unmanned Aerial Vehicles (UAVs): A Case Study of Yak Grazing at the Household Scale.
Rangel. Ecol. Manag. 2020, 73, 642–648. [CrossRef]

17. Buda, M.; Maki, A.; Mazurowski, M.A. A systematic study of the class imbalance problem in convolutional
neural networks. Neural Netw. 2018, 106, 249–259. [CrossRef] [PubMed]

18. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. arXiv 2017, arXiv:1610.02357v3.
19. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image

Database. In CVPR09; IEEE: Miami, FL, USA, 2009.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/01431161.2017.1280639
http://dx.doi.org/10.1080/01431161.2019.1624858
http://dx.doi.org/10.3390/rs11091128
http://dx.doi.org/10.3390/s18072048
http://www.ncbi.nlm.nih.gov/pubmed/29954080
http://dx.doi.org/10.1177/0030727018781876
http://dx.doi.org/10.1016/j.rama.2020.05.004
http://dx.doi.org/10.1016/j.neunet.2018.07.011
http://www.ncbi.nlm.nih.gov/pubmed/30092410
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Material and Methods
	Dataset
	Experimental Setup

	Results
	Discussion
	Conclusions
	References

