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Abstract: Many coastal shark species are known to use estuaries of the coastal southeastern
United States for essential purposes like foraging, reproducing, and protection from predation.
Temperate estuarine landscapes, such as the Rachel Carson Reserve (RCR) in Beaufort, NC, are dynamic
habitat mosaics that experience fluctuations in physical and chemical oceanographic properties on
various temporal and spatial scales. These patterns in abiotic conditions play an important role in
determining species movement. The goal of this study was to understand the impact of environmental
conditions around the RCR on shark density within the high-abundance summer season. Unoccupied
Aircraft System (UAS) surveys of coastal habitats within the reserve were used to quantify shark density
across varying environmental conditions. A combination of correlation analyses and Generalized
Linear Modelling (GLM) revealed that density differs substantially across study sites and increases
with rising water temperatures, conclusions that are supported by previous work in similar habitats.
Additionally, density appears to increase moving towards dawn and dusk, potentially supporting
crepuscular activity in coastal estuarine areas. By describing shark density dynamics in the RCR,
this study provides new information on this population and presents a novel framework for studying
elasmobranchs in temperate estuaries.
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1. Introduction

Estuarine and coastal ecosystems of the southeastern United States are rich in both species’
diversity and abundance [1]. Often considered biodiversity hotspots, these areas are home to high
concentrations of organisms compared to open ocean habitats [1]. Salt marshes and oyster reefs
characteristic of southeastern coastlines support the maintenance of commercial and recreational
fisheries by providing reproductive space, nursery grounds, and plentiful foraging habitat for fish.
Sandy beaches and coastal dunes serve as a recreational space for tourism and offer habitat to fish,
shellfish, and birds [2]. Although coastal areas only account for 4% of earth’s total land surface
area, they are inhabited by more than 30% of the world’s human population [3]. Considering that
these areas are twice as densely populated as their inland counterparts, marine coastal zones and
the resident species are particularly vulnerable to anthropogenic effects, including increased direct
human interactions with marine wildlife [3]. Resultant global losses in the estuarine and coastal
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ecosystem area have threatened the viability of fisheries, diminished the nursery habitat for mobile
species, and jeopardized coastal communities through erosion [2]. In some locations, nearshore fishing,
development, and recreational activities have led to habitat degradation and loss, excess nutrients
and changes in water quality, and species introductions [4]. As coastal development and shore-based
activities increase in North Carolina, it is crucial to understand the spatial and temporal scales with
which species utilize these ecosystems.

Sharks, which often act as high trophic-level predators in coastal communities, are a critical
component of nearshore ecosystems [5]. Directly, sharks influence estuarine food webs through
the consumption of prey. Indirectly, the presence of sharks in the ecosystem can modulate the
dispersal and behavior of prey seeking to avoid predation [6] which can subsequently alter the
wider dynamics of estuarine ecosystems [7]. Though variable by location and trophic structure,
the impact of shark presence on prey can substantially affect the distribution and behavior of lower
trophic-level organisms [5], which has been shown in similar systems to influence community dynamics
and population structure [5,7]. Shark presence may vary in coastal habitats because, unlike many
sessile and small-ranging organisms, the mobile nature of sharks allows them to periodically inhabit
these areas for critical purposes and take advantage of optimal habitat conditions [5]. Many shark
species cycle between open ocean and nearshore environments, relying heavily on the protections
and productivity afforded by coastal habitats [8]. These nearshore areas may provide a nursery and
foraging habitat for sharks, and some shark species demonstrate fidelity to smaller estuarine areas [8].

To understand the spatial dynamics of these predators in nearshore coastal environments, it must be
recognized that estuarine coastal areas have high oceanographic variability [9]. Major changes in flow,
turbidity, temperature, depth, and bottom topography occur on the scale of hours, weeks, or years [5].
Tidal changes, rainfall, and both seasonal and periodic weather patterns (e.g., storms and hurricanes)
make these shallow ecosystems susceptible to considerable environmental fluctuation on varied
temporal scales [5]. The patchy distribution of mobile predators, like sharks, often reflects changes in
these physical and chemical oceanographic factors [5,9].

Though the importance of top predators is well known, the spatiotemporal movements of shark
populations across nearshore coastal environments is poorly understood [5]. However, in the past
decade, increased efforts have been made to understand the impact of physical environmental drivers
on shark presence in shallow estuarine ecosystems. Several studies in the eastern United States’ coastal
zone have demonstrated important changes in shark presence with seasonal changes in environmental
conditions [8,10–13]. For example, in the Pamlico Sound of North Carolina, Bangley et al. (2018) used
seasonal environmental data to predict the spatial habitats of different shark species in the sound [8].

These previous studies of coastal shark population dynamics traditionally have relied on the fishing
or capture of sharks [8,10–14]. Gillnet and longline surveys have provided important information on
shark abundance, but these studies generally result in some level of mortality and, therefore, may cause
unnecessary harm to the ecosystem at large. For example, a review of capture and post-release
mortality [15] cited a study in which a gillnet survey of spiny dogfish (S. acanthias) had a 17.5%
mortality rate [16] and a study in which blacktip sharks (C. limbatus) and bonnethead sharks (S. tiburo)
had a capture mortality between 58–62% [17]. Additionally, capture data only allow researchers
to observe individual sharks at one point in time, providing minimal information on their wider
distribution and behavior. As an alternative, tagging and biologging methodologies have been used to
understand nearshore shark movement in similar habitats across a variety of species [18]. These studies
provide detailed data on the behavior and habitat use of several individuals but are limited in sample
size given the expense of tag technology. Also, the catch-and-release methods used to tag individuals
may be unnecessarily invasive and can result in indirect mortality or long-term negative effects [19,20].

Non-invasive techniques like aerial surveys via manned aircraft have been employed to assess the
distribution of large-bodied elasmobranchs [21,22]. However, these analyses require both experienced
pilots and onboard observers and usually require observers to count individuals in real time. To provide
reviewable evidence of elasmobranch sightings, video data techniques, such as Baited Remote
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Underwater Video (BRUV) systems, have been deployed to understand coastal shark spatial distribution
and abundance [23–25]. While this method improves upon real-time observations by providing a
permanent record of elasmobranch abundance, they are limited by a small field of view and often
require many deployments across a study site to understand animal distribution [23–25]. Additionally,
BRUV data may not reflect the natural distribution or density of these organisms given that the video
system is baited and target species are potentially artificially attracted to the field of view.

Alternatively, Unoccupied Aircraft Systems (UAS), or drones, have the potential to collect
behavioral and distributional data across large spatial and temporal scales while minimizing disturbance
to animals. The availability of small, consumer-grade UAS has increased greatly in the recent decade,
leading to a rise in the application of UAS for studying marine fauna in coastal environments [26].
Many UAS studies of marine organisms focus on marine mammals, which regularly come to the
surface to breathe [27–29], but increased quality of UAS imagery now allows for the exploration of
sub-surface organisms [26,30,31]. For example, Kiszka et al. (2016) used a consumer-grade UAS to
determine the density of blacktip reef sharks (C. melanopterus) and pink whiprays (H. fai) in Moorea,
French Polynesia, to determine the density of organisms. Additionally, Hensel et al. (2018) used a
strip-transect methodology with UAS to understand the abundance of sharks, rays, and sea turtles in
developed versus undeveloped areas of Great Abaco Island, The Bahamas. Some studies have used
fixed-wing UAS to assess the density of small sharks in temperate estuaries (e.g., Benavides et al., 2020).
Despite these examples, the abilities and limitations of drones to study sub-surface organisms in
temperate waters have not been extensively explored.

The present study investigated the influence of intra-seasonal fluctuations in abiotic conditions
on the presence of sharks. Patterns of density in a temperate estuary, assessed via UAS video data,
were analyzed in relation to changes in environmental factors. Specifically, an environmental suite of
variables relating to weather (temperature, wind speed, pressure), tide (tidal height, tidal phase), time
(time of day, time relative to dawn/dusk, day count), and space (sampling location) were tested for
effects on shark density. The hypothesized direction of each of these relationships (Table 1), informed
by previous work in similar environments [8,10–14], was tested. This study describes changes in
shark density in relation to environmental conditions at the resolution of hours to days, allowing for
a better understanding of coastal shark habitat use as it relates to small-scale environmental variation.
Moreover, the novel application of UAS to assess coastal shark population dynamics in temperate
waters provides a breakthrough in methodology for observing shark populations and a non-invasive
alternative to gillnet- and longline-based research.

Table 1. Hypothesized impact of environmental conditions on shark density. For continuous variables,
expected relationship direction is shown (+: positive relationship predicted, −: negative relationship
predicted, NA: no relationship predicted). For categorical variables, the relative density across levels is
predicted (e.g., greater density is expected to be associated with high tides than low tides). Expected
relationships are postulated based on previous research and biological and physiological knowledge of
coastal shark species.

Variable Expected Relationship with Shark Density

Tidal Height +
Tidal Phase High: +, Ebb: −, Low: −, Flood: +

Water Temperature +
Wind Speed −

Barometric Pressure +
Time of Day Dawn: NA, Dusk: NA

Time (minutes elapsed from dawn/dusk) −

Day Count −

Location Bird Shoal: +, Carrot Island: −
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2. Materials and Methods

2.1. Study Area

Surveys of coastal sharks were conducted along the coastline (<10 m from shore) of the Rachel
Carson Reserve (RCR) in Beaufort, North Carolina. The RCR is part of the North Carolina National
Estuarine Reserve System, a network of ten protected sites along the North Carolina coast reserved for
education, research, and stewardship managed by a federal-state partnership between the National
Oceanic and Atmospheric Administration (NOAA) and the North Carolina Division of Coastal
Management [32]. The RCR is comprised of four islands, covering over 2000 acres of area [32].
Bird Shoal and Carrot Island were selected as the two study sites, each representing different coastal
habitats in the reserve (Figure 1). Bird Shoal represents sandy beach habitat, and Carrot Island
represents both a salt marsh and oyster reef habitat. The close proximities of these sites to an inlet,
which opens from the estuary to the open ocean, means that the sites were characterized by estuarine
waters and impacted by inlet dynamics. However, the two sites were located at different distances to
the inlet, so the intensity of inlet dynamics, including influxes of freshwater and the physical forces of
tides, differed between the two sites. Surveys by UAS across each site covered approximately 1 km of
coastline length.Drones 2020, 4, x 5 of 19 
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Figure 1. Field sites at the Rachel Carson Reserve (RCR) in Beaufort, North Carolina, represent different
coastal habitats and distances to an inlet to open water. Bird shoal is characterized by sandy beach
habitat and a closer proximity to the inlet, while Carrot Island consists of salt marsh and oyster reef
habitat and is located farther from the inlet.

2.2. UAS Imagery and Collection

Aerial surveys, resulting in video data, were conducted using a DJI Phantom 4 Quadcopter
(n = 68) or DJI Mavic Pro Quadcopter (n = 9). Phantom quadcopters were equipped with a 1-inch
20-megapixel CMOS sensor and weighed approximately 3 lbs. Mavic Pro quadcopters were equipped
with 12.35-megapixel sensors and weighed less than 2 lbs. Batteries used to power the UAS were
lithium-ion polymer batteries. One battery was used per transect and allowed for 20–30 min of flight
time flying at 3 m/s.

Flight paths were developed by manually flying the aircraft across a transect area using a
flight controller. GPS waypoints (latitude, longitude) were dropped along the transect to develop
a flight plan. Subsequent flights were flown over the same area, tracking the GPS points using the
DJI Go 4 app, a flight-assistance application integrated with the DJI flight controller. Videos were
collected by the 12.35-megapixel (Mavic Pro) or 20-megapixel (Phantom) aircraft camera at between
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2720 × 1536–4096 × 2160 pixels, and a video speed of between 23–59 frames per second. Ground
sampling distance was approximately 0.5–0.8cm per pixel depending on changes in UAS altitude and
video resolution. Onboard SD cards recorded video information and were offloaded to computers
during post-processing. UAS information (altitude, latitude, longitude) was recorded locally on the
aircraft at a sampling rate of one observation per millisecond. Flight logs were downloaded during the
post-processing phase.

Flights were conducted after sunrise and before sunset over the course of 17 days, from July 24th,
2019, to August 9th, 2019. A total of 77 UAS transects were conducted parallel to the shoreline.
During each transect, approximately 1 km of coastline was covered (Figure 2). The camera field of view
was approximately 30 m (perpendicular to the shoreline) by 15 m (parallel to the shoreline). Aircraft
performance was sometimes limited by high winds and rain, preventing sampling during these times.
Flights were conducted in compliance with the Federal Aviation Administration 14 CFR Part 107
regulations, and UAS operations were prevented in cases in which persons not involved in the UAS
operation were occupying the study area. Aircrafts were launched and retrieved from a flat surface at
the Duke Marine Lab for flights of Bird Shoal and ground-based launches were performed for flights
of Carrot Island. Specialized launching equipment was not required. UAS details are provided in
accordance with Barnas et al. 2020 [33].
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Figure 2. Field operations using Unoccupied Aircraft Systems (UAS) to observe coastal shark density
along transects parallel to shore. (A) Study design schematic. (B) True example video frame at Bird
Shoal (enlarged for visualization purposes).

2.3. Video Observation

Two independent reviewers identified individual sharks from each video transect, following
observation methods of previous UAS-based studies of shark abundance [30,31]. Reviewers were
trained to identify sharks by viewing example imagery and video clips. Videos were played at true
speed in QuickTime Media Player. Videos were paused at each sighting to record the time stamp at
which an individual entered the video frame to the nearest second. It was observed that the speed of
the drone always outpaced the swimming speed of the sharks, so each sighted shark was assumed to
be a new individual and double counts were not considered to impact the data. Discrepancies between
the two individual counts were settled through a third review. For the third review, the lead author
analyzed the transect video within a ten-second window around the reported time stamp of the sighting
in question. Unlike the initial two observations, the third review allowed for replaying the video
segment to reconcile the count discrepancy with greater certainty. An availability correction factor,
used to correct for potential organisms present in the study area but not visible in the imagery [22],
was not applied. Because all transects had maximum water depths <2 m, full detection was likely and
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environmental variables (e.g., water clarity, turbidity) were not assumed to impact shark availability
for visual detection.

2.4. Environmental Data

Environmental data were collected from a NOAA buoy station at the Duke Marine Lab, proximate
to both study sites (see Figure 1). For each transect, several variables were recorded (Table 2).
Environmental variables were associated with each transect using time-date information. Original
data is available in the Supplementary Information (S2, S3, S4).

Table 2. Environmental variables used to understand changes in shark density. Associated data
sources, sampling intervals, and details are provided. NOAA: National Oceanic and Atmospheric
Administration. NA: Not applicable.

Variable Source Recording Interval Data Details

Tidal Height (m)

NOAA Tide & Currents,
Tides/Water Levels

Station ID: 8656483, Duke
Marine Lab, Beaufort, NC

6 min Water level relative to Mean Lower Low Water
(MLLW)

Tidal Phase

NOAA Tide & Currents,
Tides/Water Levels

Station ID: 8656483, Duke
Marine Lab, Beaufort, NC

1 min

Defined as:
High: within ± 1 h of reported high tide
Low: within ± 1 h of reported low tide

Ebb: Water level decreasing, from high to
low tide

Flood: Water level increasing, from low to
high tide

Water temperature (◦C)

NOAA Tide & Currents,
Meteorological Observations

Station ID: 8656483, Duke
Marine Lab, Beaufort, NC

6 min

Wind speed (m/s)

NOAA Tide & Currents,
Meteorological Observations

Station ID: 8656483, Duke
Marine Lab, Beaufort, NC

6 min

Pressure (hPa)

NOAA Tide & Currents,
Meteorological Observations

Station ID: 8656483, Duke
Marine Lab, Beaufort, NC

6 min

Time of Day UAS Aircraft Log: Time NA
Defined as:

Dawn: Transects following sunrise
Dusk: Transects preceding sunset

Time relative to
dawn/dusk (minutes) UAS Aircraft Log: Time 1 min

Calculated as:
time elapsed since sunrise (Dawn transects)
time remaining until sunset (Dusk transects)

Location UAS Aircraft Log: GPS NA Bird Shoal (34.708503, −76.677384) Carrot
Island (34.704096, −76.620851) (See Figure 1)

Day Count UAS Aircraft Log: Date NA

Defined as days elapsed from the start of
sampling (dayCount = 1) to the end of

sampling (dayCount = 17). To highlight
temporal trends.

Area covered by the transect varied slightly due to minor differences in transect strip length and
flight altitude, which impacts strip width through field of view. In order to account for these differences
in strip length and strip width of the transect, the area covered per transect was calculated. Strip length,
defined as the distance traveled parallel to the coastline, was calculated from UAS log data. Strip
width, defined as the field of view perpendicular to the coastline, was derived from the focal length of
the UAS camera, flight altitude, and size of the sensor through Equation (1) from photogrammetry
software Pix4D [34]:

S = (Sw × H)/F (1)

where S is the strip width (m), Sw is UAS sensor width (mm), H is the height of the UAS flight (m),
and F is the focal length of the UAS sensor (mm). Area covered by the UAS in a given transect was
calculated by the Equation (2):

A = (S × 0.001) × (SL × 0.001) (2)
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where A represents transect area (km2), and S and SL are the length (m) and width (m) of the strip
transect, respectively. Area is used to standardize abundance counts in correlation analyses and is
included as an offset to abundance counts in the generalized linear model.

2.5. Statistical Analyses

2.5.1. Correlation Analyses

Correlation analyses were performed to assess relationships within environmental variables
(predictors). Relatedness within predictors was explored to identify potential autocorrelation amongst
environmental characteristics as well as the significance of date-driven trends. Because the transect
observations were taken throughout time, date-driven trends (e.g., warming of air temperature from
late July into early August) may have been represented in several variables selected for analyses.
These relationships are explored through correlation plots and described by Pearson’s correlation
coefficient (r) and significance (p, α = 0.05) for each variable pair. In the case of strongly correlated
predictors, some variables were chosen for removal from further modeling.

Correlation analyses were also conducted to determine the strength of predictor relationships with
observed shark density. For this section of the analysis, shark abundance counts were standardized
over the transect area using Equations (1) and (2) (Section 2.4). To assess relationships with shark
density (sharks/km2), Pearson’s correlation coefficient (r) and significance of the linear relationship
(p, α = 0.05) were computed for numeric predictors, a Mann–Whitney U Test was performed for
two-level categorical predictors Location and Time of Day, and a Kruskal–Wallis rank sum test was
performed for four-level categorical variable tidal phase. While simple correlation analyses provided
initial insights into the data, the dataset contains a large number of zero-count transects ((n = 19)
that may have obscured relationships using simple correlations. Moreover, simple correlations may
miss logarithmic and other non-linear relationships between environmental variables and density.
To further clarify these relationships, a generalized linear modeling structure was implemented.

2.5.2. Generalized Linear Model (GLM)

To parse apart the influence of individual variables on shark density, a generalized linear model
(GLM) with a negative binomial error distribution and logarithmic link was constructed to estimate the
relationship between the environmental conditions of each transect and the count of sharks observed.
Several distributions were considered to explore changes in shark abundance. A Poisson distribution
was examined, but a negative binomial distribution was ultimately chosen in order to accommodate
potential overdispersion [35]. A zero-inflated negative binomial was tested to address apparent
zero-inflation in the data, but was deemed unnecessary given that the incidence of structural zeroes,
or zeros related to the ecological system rather than random zeros from sampling variability [36],
was estimated to be small (<5%). Similarly, a “hurdle” model that combined a Bernoulli process with
a truncated negative binomial was used to test zero deflation but did not demonstrate improvement
over the ordinary negative binomial.

Traditionally, the negative binomial describes the process of drawing binary variables with success
probability p until a given number of failures, r, occur. Substituting p = µ/(µ + Φ) and r = Φ allows us
to reparameterize the distribution according to its mean µ, which is more useful for modeling purposes.
The variance of this alternate paramaterization is equal to µ + µ2/Φ, so that Φ dictates the amount
of overdispersion. The distribution converges toward a Poisson for large values of Φ. The model is
described by Equations (3) and (4):

Y ∼ NegBin(µ, φ) (3)

log(µ) = Xβ+ Zu + log(A) (4)

where we model µ using a mixed effects approach, with fixed coefficients B for the environmental
predictors and a random intercept u assigned to each sampling session (Equation (3)). We considered
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these random intercepts necessary to capture the dependence between consecutive flights during
a single sampling session, when there was likely correlation between counts beyond what could
be explained by the measured environmental factors. Here, Z is a design matrix assigning each
observation to a session. All continuous predictors were normalized before fitting. The logarithm of
the area surveyed (A) for each transect is included as an offset, since there was slight variation in the
area covered in each transect.

We applied a Bayesian approach to estimate the parameters B, Φ, and Z. We chose wide, weakly
informative priors for B (B ~ Normal (0, 10)) as well as Φ (Φ ~ Gamma (0.01, 0.01)). We drew the
random effects (u) from a zero-centered normal distribution (u ~ Normal (0, σ2)), with a moderately
informative hierarchical prior set on the variance (σ ~ Exponential (1)).

Best subset selection was performed across all possible subsets of the seven predictors. Models
were evaluated and compared using leave-one-group-out cross validation (LOGO-CV). This approach is
similar to K-fold cross-validation [37], but observations were grouped to sampling sessions (consisting
of 1–4 transects in sequence) and each session was held out from the fitting process and then predicted
on. The evaluation criterion was the estimated log predictive density (ELPD) accumulated across the
out-of-sample points. While the goal of the study is not to maximize predictiveness, using out-of-sample
predictive power is an effective way to simplify our model and avoid spurious relationships.

In many cases, the computation required for both best subset selection and “brute-force” ELPD
estimates (as opposed to an approximation) is prohibitively expensive. It was feasible, however, for our
dataset of 77 transects with 29 unique sampling sessions. The model was fit using the RStan package in
R (v.4.0.2) [38,39]. Given a hierarchical model structure, the Stan language implements the Hamiltonian
Monte Carlo algorithm to draw samples from a target distribution [38]. The script used for model
generation is available in the Supplementary Information (S5, S6). For each model in consideration,
we ran four chains initialized with random values from the prior distributions. Each chain ran for 2000
iterations, 1000 of which were used for warm-up. Based on the potential scale reduction statistic (R̂),
there was no evidence of non-convergence.

3. Results

A total of 381 sharks were sighted over the course of 77 transects. Observer counts of sharks had
high levels of agreement (difference = 0.60 ± 0.66 individuals) and demonstrated identical sightings
in 53 transects. A third review reconciled count differences of one (n = 21) or two (n = 3) sharks,
the majority of which confirmed the presence of an individual missed by one observer (82% of count
discrepancies). The resultant median density across all transects was 74.8 sharks/km2 (median = 74.8,
IQR = (13.9, 298)). The distribution of shark density was right skewed, impacted by zero-shark transects
(n = 19). The original dataset used for analysis is available in Supplementary Information (S1).

3.1. Species Identification

This study examined coastal shark dynamics at large as opposed to a targeted species-specific
population analysis. Due to limits of the UAS imagery resolution and sparse literature on the aerial
identification of sharks, this UAS-based methodology did not allow for positive species identification.
However, several shark species matching the body size and shape observed from the UAS that are
known to frequent the area were blacktip, blacknose, Atlantic sharpnose, spiny dogfish, smooth
dogfish, bonnethead, bull, and sandbar sharks [40]. Several of these species, though, were unlikely
to be represented in the survey: bull sharks are thought to prefer estuaries near river mouths [8].
Spiny dogfish and Sandbar sharks have been shown to be rare in nearby estuaries during the summer
months [8], and Bonnethead sharks observed in exploratory UAS studies prior to the sampling
transects showed a distinctive spade-like head that was not observed during the sampling session.
Several Blacktip sharks were observed during the sampling transects, identifiable by dark black tips on
the pectoral and dorsal fins, but the majority of sharks in this study lacked this feature. For these reasons,
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it was likely that the majority of sharks observed in this study were Atlantic Sharpnose, Smooth
Dogfish, or Blacknose sharks.

3.2. Correlation Analyses

Bivariate combinations of environmental variables were plotted and analyzed to understand
relationships between predictors of shark density (Figure 3). Six of the 15 continuous variable pairs
were significantly correlated (p < 0.05) with each other. The variables water temperature, pressure,
and wind speed demonstrated highly significant correlations with day elapsed (r = 0.75, −0.65, −0.45
(respectively), p < 0.001). To avoid highly correlated predictors variables, day elapsed was dropped
from statistical modeling. Also, the distribution of samples across tidal phase categories demonstrates
an uneven number of samples across tidal phase categories (Tidal Phase x Tidal Phase matrix cell,
Figure 3). With more samples during ebb tides (n = 48) than flood, high, and low tides combined
(n = 29), tidal phase was dropped from the modeling analysis.
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Figure 3. Correlation matrix of environmental variables demonstrates significant correlations between
several variable pairs. Pearson’s correlation coefficient was used to assess relationships. *: p < 0.05,
***: p < 0.001.

Before model construction, individual relationships between environmental variables and shark
density were assessed (Figure 4). Wind speed (p < 0.05), pressure (p < 0.01), water temperature
(p < 0.01), time relative to dawn/dusk (p < 0.01), day count (p < 0.001), and location (p < 0.001) all
demonstrated significant relationships with shark density. Wind speed and pressure showed negative
relationships with density while water temperature and day count appeared to be positively correlated
with density. Within each session (a series of 1–4 transects performed after sunrise or before sunset
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on a given day), time relative to dawn/dusk demonstrated a negative relationship with proportional
density. In other words, transects closer to dawn and dusk (less time elapsed from sunrise/sunset) were
associated with the greatest shark density while transects farther from dawn and dusk were associated
with progressively lower shark densities, comparatively. Analyzing the categorical variables, it can
be seen that significantly greater shark density was observed at Bird Shoal relative to Carrot Island
(Mann–Whitney U test). The variables considered for predictive analysis using a GLM were wind
speed, pressure, water temperature, tidal height, time relative to dawn/dusk, location, and time of day.
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Figure 4. Relationships of environmental variables with shark density. Environmental data were
derived from a local buoy (Table 2) and variables were correlated with standardized shark density
(sharks/km2) or, for time relative to dawn/dusk, proportional density (proportion of sharks observed of
total observed during that sampling session). Correlations were calculated using Pearson’s correlation
coefficient for continuous variables, an independent Mann–Whitney U test for two-level categorical
variables (Location, Time of Day), and a Kruskal–Wallis rank sum test for four-level categorical variables
(Tidal Phase). *: p < 0.05, **: p < 0.01, ***: p < 0.001.

3.3. Model

While all subsets of the chosen environmental predictors were considered for the GLM,
out-of-sample predictive accuracy, as measured by expected log predictive density (ELPD),
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was maximized when using the following four variables to predict count: wind speed,
water temperature, time relative to dawn and dusk, and location. In addition to the highest ELPD,
our final model had a root mean square error (RMSE) of 4.38 and a median absolute error (MAE) of
2.13 for out-of-sample observations using predicted counts based on the posterior means of all the
estimated parameters (Figure 5).
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Figure 5. Predicted shark abundance demonstrates close agreement with actual (true) shark abundance.
Out-of-sample predicted abundance counts were generated using the posterior means of all estimated
parameters in the final Generalized Linear Model (GLM).

The model was most confident in the direction of the parameters for time relative to dawn/dusk
and location, as the entire 95% credible intervals for both of those coefficients were below zero (Figure 6).
The direction of the effect of wind speed and water temperature were not as unambiguous, but their
80% and 50% credible intervals, respectively, also did not include zero.

As a result of the logarithmic link between the linear predictor and the expected value of
the negative binomial, the effect of parameters on the count is non-linear (Table 3). However,
using an example of eight sharks (median of n = 44 counts at Birds Shoal), the final model implies
the following associations: (1) Wind Speed: An increase of 1 m/s in windspeed would decrease the
expected shark count to 6.82, (2) Water Temperature: An increase of 1◦ in water temperature would
increase the expected shark count to 9.32, (3) Time Relative to Dawn/Dusk: An additional 10 min after
dawn (or before dusk) would decrease the expected shark count to 6.96, and (4) Location: Moving
locations to Carrot Island would decrease the expected shark count to 0.62.

These effect sizes are moderate, implying that much of the variation in shark abundance cannot
be explained by the covariates alone. As a result, the scale of the random intercepts is relatively large.
The standard deviation of random intercepts (σ) was estimated to be 0.69 (95% CI: 0.42–1.04), with a
range in the posterior means of −0.73 to 0.95. To illustrate the impact of these parameters, consider
session 12, which had an estimated random intercept of 0.48, the 14th largest of all 29 intercepts in
terms of absolute value. The in-sample predicted counts for the two transects from session 12 were
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8.96 and 10.98, compared to the actual counts of 12 and 9, respectively. Without the boost from the
random intercept, those predicted counts would be 5.56 and 6.81.
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Table 3. Parameter estimates for the five fixed effects in the selected GLM.

Covariate Parameter Mean Median Standard
Deviation

2.5th
Percentile

97.5th
Percentile

Intercept B1 0.754 0.759 0.191 0.366 1.111
Wind Speed B2 −0.218 −0.218 0.149 −0.517 0.074

Water Temperature B3 0.118 0.121 0.165 −0.214 0.435
Time Relative to

Dawn/Dusk B4 −0.256 −0.256 0.073 −0.401 −0.114

Location (Carrot Island) B5 −2.564 −2.554 0.375 −3.310 −1.861

The ability of these parameters to account for some of the remaining variance in the counts allowed
for large values of Φ (posterior mean of 79.02, 95% CI: 11.64–264.01) in the posterior, indicating only
limited levels of overdispersion and implying that Poisson regression would likely also be an adequate
choice in this study. However, even large values of Φ can only diminish overdispersion so much for
high counts (i.e., 20 sharks or more), and we think the added flexibility of the negative binomial makes
it a wise choice for future research. Moreover, without the use of a random effect to explain some of
the variability, Φ would be much lower.

4. Discussion

The results of the present study indicate that the density of sharks is driven by a combination of
fine-scale physical forcing elements in the local coastal ecosystem at the RCR. These relationships are
discussed in detail below. These results also indicate that UAS can be used effectively in temperate
estuaries to study the distribution and density of estuarine sharks, representing a cost effective and
non-invasive approach available to researchers.
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Weather—Water temperature was found to be positively correlated with shark density (r = 0.32,
p < 0.01, Figure 4). This is supported by the GLM parameters, which predicts that, at an abundance of
8 sharks, a 1◦ increase in water temperature would increase the predicted count by 1.32 individuals.
This supports the original hypothesis that more sharks would be observed in warmer waters (Table 1)
given that, on an annual scale, more sharks are observed in these areas in summer months and associated
warmer waters [41]. Also, other studies investigating the impact of long-term temperature trends on
similar species in coastal estuarine landscapes support this positive relationship [8,12–14]. Warmer
waters may be used for thermoregulation as a result of physiological constraints or in response to the
temperature ranges and associated distribution of prey in these ecosystems. However, this relationship
may be driven partially by the linear increase in water temperature over the sampling session, shown by
the strong correlation between water temperature and day count (r = 0.75, p < 0.001, Figure 3). Because
temperature is associated with seasonality, and with higher temperatures in summer months and
cooler temperatures in winter months, this may indicate that shark abundance is seasonally influenced.
Though this has been recognized on a large scale [42], this result may provide increased resolution
of small-scale variability in abundance on the scale of weeks, not just seasonally over the course of
a year. Because this study did not capture peak water temperatures, the peak of shark abundance
in these estuaries may be even higher than observed from transects in early August. Though this
study indicates that shark abundance increases linearly over time from late July into early August
(time series (day): r = 0.50, p < 0.001), future studies should investigate the possibility that shark
abundance in the estuaries’ peaks in late August or even early September.

Wind speed was significantly negatively correlated with shark density, and at high wind speeds,
lower shark density was observed (r =−0.27, p < 0.05, Figure 4). This significant negative correlation with
shark abundance indicates that wind speed may impact shark presence in the estuary. This relationship
is supported by the GLM results, which predict that with an abundance of 8 sharks in a given transect,
a 1 m/s increase in wind speed would decrease the expected count by 1.18 individuals. This supports
the original prediction that, in high winds, fewer sharks would be present (Table 1) as winds impact
shallow water environments through the generation of surface currents [43]. These surface currents
may present increased difficulty of locomotion through the estuary with the risk of stranding. However,
it should be noted that UAS were not operational at high wind speeds (>6 m/s), and so this trend is
not representative of the full range of wind speed values at the study sites. An additional potential
drawback to using a UAS-based methodology is that wind speed has been cited as a factor impacting
shark detection probability by UAS in temperate estuaries [44]. However, the conditions of this study
make it highly unlikely that environmental variation would lead to changes in detection. In contrast to
Benavides et al. (2020), which tested the abilities of UAS to detect bonnethead sharks in temperate
estuaries, this study used video data, rather than still images, to detect moving objects, which added
to their visibility. Moreover, transects were flown at a lower altitude than Benavides et al. (2020),
resulting in an increased resolution at ground sampling distance (GSD) of 0.5–0.8 cm/pixel compared
to the GSD of ~2 cm/pixel used by Benavides et al. (2020). The results of lower shark abundance in
the estuary at high wind speeds may be due to avoidance of strong surface currents that might limit
mobility within the estuary. For this reason, it is possible that sharks use deeper water environments
that are less impacted by wind-induced surface currents when wind speeds are high. An extension
of this study would be to analyze the magnitude and direction of surface currents as well as other
estuarine currents in association with shark abundance.

Pressure was significantly correlated with shark density (r = −0.34, p < 0.01, Figure 5), but was not
selected as a strong predictor of abundance in the GLM. Fewer sharks were anticipated in the estuary at
low barometric pressure because decreases in barometric pressure, associated with storms, have been
linked to shark movement out of estuarine habitats. However, these movements may be species-specific
and the magnitude of pressure change required to induce movement has not been well quantified [42].
While barometric pressure has been shown to influence shark movement, studies that support
these conclusions are widely focused on severe changes in pressure (e.g., before a hurricane) [42,45].
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The significant correlation of pressure and shark density may provide evidence that elasmobranchs
respond to fine-scale changes in pressure, although the significant correlation of pressure with water
temperature may be driving the individual relationship and explain the absence of pressure in GLM
variable selection (Figure 3).

Tides—Tidal height was not significantly correlated with shark density in the correlation analyses
(p > 0.05, Figure 4). After GLM variable selection, tidal height was dropped from the final model.
It was expected that increased density might be observed with higher tides (Table 1) based on physical
forcing into the estuary and increased relative water depth. Though shark movement in response to
tides has been shown to vary [8], a study of juvenile sandbar sharks in the southeastern United States
demonstrated movement in the direction of tidal flow [8]. The data do not support this hypothesis.
However, although tidal phase (pointing to tidal direction) was excluded from this analysis given
that some phases were sparsely represented, future research should target varied tidal stages to
understand the impact of tidal direction on shark movement. This would provide greater insights
into estuarine habitat utilization given that movement of sharks in the direction of tides in similar
nearshore environments of the southeastern United States coast has been cited in previous studies.

Time—Within sampling sessions (repeated samples following dawn or preceding dusk), time
relative to dawn and dusk was significantly correlated with proportional shark density. There appeared
to be a trend of decreasing activity moving into the day with higher observed density close to sunrise
and sunset (Figure 4). This is supported by the results of the GLM, which indicate that, at an abundance
of 8 sharks, increasing time by 10 min after dawn (or before dusk) would decrease the expected shark
count by 1.04 individuals. This supports the initial expectation that shark density would decrease with
time elapsed from dawn or dusk due to the crepuscular activity of many elasmobranchs [42]. This is
similar to other studies that indicate elasmobranchs exhibit crepuscular behavior, with more activity
closer to sunrise and sunset [42,46,47]. In order to understand the influence of time relative to sunrise
and sunset on shark abundance, additional transects should be done within a given sampling session.

Between dawn and dusk transects, there appeared to be no significant difference in density
(Mann–Whitney U Test, p > 0.05), supporting the prediction of no relationship between dawn and dusk
sampling sessions (Table 1). Sharks were expected to be similarly observed between dawn and dusk
sessions as crepuscular behavior indicates increasing activity near both sunrise and sunset, but does not
distinguish between them.

Although day of the study period was found to be significantly positively correlated with density
(Figure 4), it was strongly correlated with environmental variable water temperature (Figure 3) and
dropped from further analysis in the GLM. In contrast to the results, day of the study period (day count)
was anticipated to be negatively correlated with abundance given that sharks in this area are thought
to reach peak abundance in July, before or near the beginning of the study period. A study of shark
activity in Pamlico Sound, an estuarine area slightly north of the study site in the present study, shows
that common shark species in this area appear to peak in abundance in July and move out of the
estuary in greater numbers in August [8]. It is possible that the correlation of day count with several
other variables in the analysis (Figure 3) may have obscured our ability to isolate the true trend of
density throughout time (on the scale of days).

Location—The significant difference between shark abundance at the two study sites (Figure 4,
Mann–Whitney U Test, p < 0.001) indicates that shark abundance may be impacted by site characteristics.
This is supported by the GLM, which predicts that at a transect abundance of 8 sharks, changing
locations from Bird Shoal to Carrot Island would decrease the expected abundance by 7.38 individuals.
These data support the original hypothesis that higher shark density would be observed at Bird Shoal
(Table 1). The direction and high magnitude of site location’s influence on abundance may be attributed
to several factors. One important difference between locations is the distance of each site to the
inlet, which opens to the ocean. Bird Shoal, which was characterized by significantly higher shark
abundance, is located closer to the inlet (approx. 1.5 km, straight-line distance) whereas Carrot Island
is located farther away (approx. 4 km) (Figure 1). Given previous studies investigating the impact of
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inlet proximity on shark abundance [8,33], higher density was expected at the sampling site closer
to the inlet as areas with access to open water may be preferred for organisms navigating between
open water and estuarine habitats. The idea that abundance may vary based on distance to an inlet is
supported by several other studies of coastal sharks found in these nearshore estuarine environments.
A study in the Pamlico sound, a similar estuarine area slightly north of the study sites in this analysis,
found that shark presence was strongly associated with distance to an inlet and that inlet distance may
be one of the main drivers of these sharks’ presence in these areas [8]. Other studies supporting this
conclusion include an analysis of estuaries in the Florida panhandle where there was increased shark
abundance at inlets to the Gulf of Mexico [13] and Texas estuaries where sharks were observed almost
exclusively near inlets [14]. The result of this study, along with the results from these previous studies,
indicate that sharks may select estuarine areas near inlets to have better access to open water.

There are other characteristics of the study sites that may also be driving shark abundance
differences between Bird Shoal and Carrot Island. Bird Shoal has a mostly sandy beach habitat,
whereas Carrot Island is mostly oyster reef and salt marsh habitat. However, inlet proximity is also
linked to salinity, with salinity tending to decrease with greater distance from the inlet [8]. Given salinity
gradients observed at a similar site [8], it is possible that the two study sites differ in salinity, with the
site closer to open water (Bird Shoal) having higher saline content and the site farther from open ocean
(Carrot Island) having lower saline content. One limitation of this study is that these site-specific
attributes cannot be decoupled. For future studies, the addition of study sites at varying distances from
the inlet but with similar coastal habitats would allow for a greater understanding of the impact of
inlet distance while controlling for habitat type. Alternatively, having more study sites across a range
of coastal habitats with similar distances to the inlet would be helpful for parsing out habitat type
preferences. Using this demonstrated drone methodology could allow for rapid, broader surveying
of these coastal habitats with limited disturbance to the study species. Furthermore, future studies
could be enhanced by employing new video-based machine learning techniques to identify sharks as
opposed to manual counts [48]. With a clear species identification, biological inferences about habitat
preference and salinity ranges could be made in response to these types of studies. To address the
species identification limitations of this study, a combined methodology is proposed for future work
synthesizing high-resolution sub-surface data, such as baited remote underwater videos (BRUVs)
known to successfully observe sharks [49], and aerial data to identify individual species while also
observing population-wide dynamics.

5. Conclusions

This study provides new information about shark density dynamics within the RCR, an area
frequented by tourists and locals for recreation. This study suggests that coastal shark density in the
temperate estuarine landscapes of Beaufort, NC, may increase at times closer to dawn and dusk and in
locations potentially closer to an open ocean inlet as well as conditions of warm water temperatures
and low wind speeds. Future studies should explore the predictive capacity of these variables to
understand shark activity in other estuaries across a wide range of conditions. These analyses lay the
groundwork for future studies assessing shark abundance responses to fine-scale variation in abiotic
conditions and provide a novel methodological framework using UAS to assess shark abundance in
coastal estuaries.
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