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Abstract: Páramos host more than 3500 vascular plant species and are crucial water providers for
millions of people in the northern Andes. Monitoring species distribution at large scales is an urgent
conservation priority in the face of ongoing climatic changes and increasing anthropogenic pressure
on this ecosystem. For the first time in this ecosystem, we explored the potential of unoccupied aerial
vehicles (UAV)-borne red, green, and blue wavelengths (RGB) and hyperspectral imagery for páramo
species classification by collecting both types of images in a 10-ha area, and ground vegetation cover
data from 10 plots within this area. Five plots were used for calibration and the other five for validation.
With the hyperspectral data, we tested our capacity to detect five representative páramo species with
different growth forms using support vector machine (SVM) and random forest (RF) classifiers in
combination with three feature selection methods and two class groups. Using RGB images, we could
classify 21 species with an accuracy greater than 97%. From hyperspectral imaging, the highest
accuracy (89%) was found using models built with RF or SVM classifiers combined with a binary
grouping method and the sequential floating forward selection feature. Our results demonstrate that
páramo species can be accurately mapped using both RGB and hyperspectral imagery.

Keywords: RGB imagery; UAV; hyperspectral; páramo; northern Andes; species classification;
random forest; support vector machine

1. Introduction

Páramos are located across the highlands of Costa Rica and Panamá down to the northern Andes
of Ecuador, Colombia, Venezuela, and Peru [1]. These highly diverse tropical alpine ecosystems
provide various services to some of the main capital cities in Latin America, including clean water
provision and carbon storage [2], and are an essential reservoir of species with high pharmaceutical
potential [3]. Currently, this ecosystem is facing multiple threats that are reducing its surface area.
Some of these threats result from unsustainable land use in mining and agriculture, the introduction
of invasive plant and animal species, and impacts from climate change [4,5], hence the paramount
importance of understanding the vegetation structure, in terms of composition and spatial patterns at
multiple scales to ensure its sustainable management and conservation. However, such understanding
has been hindered by the inaccessibility and cost of performing surveys at extensions larger than a set
of localized plots. While in other ecosystems, remote sensing has shown to be useful for acquiring
data at the species-level, particularly high-resolution imagery (<1 m/pixel) in the tropical lowlands [6]
and temperate ecosystems [7], in the páramo, the practicality of remote sensing has not yet been
thoroughly evaluated.
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The potential of remote sensing lies in the ability to provide continuous data at multiple spatial,
temporal, and spectral scales, thereby acquiring information on multiple properties of the landscape.
Furthermore, it is a tool to inform sampling or as a sampling approach itself in areas where sampling is
extremely difficult. Digital imagery in the red, green, and blue wavelengths (henceforth RGB imagery),
useful in manual species identification, enables spatial patterns analysis and provides valuable data to
inform field sampling design and extend field sampling from already sampled sites to unsampled
sites [8]. This technology, thought to be replaced with the newly available thermal and multispectral
sensors, continues to be actively used in the development of digital surface models (DSM), animal
monitoring (e.g., orangutans and elephants in Malaysia), geological feature assessment (e.g., coastal
features) and low-cost agricultural applications [9]. The development of light-weight hyperspectral
sensors has increased its medical, agricultural, and environmental applications, as it provides more
information on the biochemical structure of surfaces. By measuring reflecting light at hundreds of
spectral bands, it allows the detection of subtle differences in leaf composition (e.g., pigments, nutrients,
water content) and structure (e.g., size, thickness, shape) from the individual plant scale and at varying
degrees of aggregation [10]. Providing detailed information that allows the detection of plant diseases
or lack of nutrients and water, invasive plant species, and differentiation of single plant species [11].
This sensor can be mounted on satellites, planes, and unoccupied aerial vehicles (henceforth UAV),
with a resulting variation in the spatial resolution of the data and, more importantly, the availability
and affordability of each combination sensor(s) vehicle [12] in ecological studies.

Ecological studies have benefited from UAV-borne remote sensing technology, and its potential
is thought to have revolutionized ecology and conservation [13], especially in developing countries
where research and cost-effective monitoring schemes are urgently needed. However, high ecosystem
complexity results in painstaking and costly fieldwork campaigns. UAV-borne RGB and hyperspectral
studies have been mostly performed in lowland ecosystems, but recently, increased attention has been
placed in highland ecosystems, mainly in Europe, at the alpine grasslands [14]. In the tropical alpine
regions of Latin America, the páramo, for example, UAV-borne RGB and multispectral imagery have
rarely been used [15,16], and there are no studies using UAV-borne hyperspectral imagery investigating
species detection and classification. One possible explanation might be that extracting ecologically
meaningful information from hyperspectral data can be complex (i.e., time, computer processing)
because it depends on environmental variables that affect the amount of light reflected on the sensor.
Likewise, vegetation properties like species diversity and plant size and structure can affect species
detection. Tropical alpine ecosystems are characterized by conditions that can hinder our ability to
use this new technology; such as high humidity and cloudiness, rough topography, and tremendous
diversity of diminutive plant species (around 3500 species), many endemic to the páramo (60% of
all species) [1]. Consequently, the combination of spectral band selection and species classification
methods to deal with the effect of environmental factors and the high amount of information per pixel
(i.e., pixel problem) [17] has a significant effect on the applicability of the hyperspectral images in
this setting.

Among the most commonly used species classification methods using hyperspectral data are
random forests (RF), support vector machine (SVM) and artificial neural networks (ANN). RF, based
on the construction of many decision trees with random subsamples of the training data that are then
combined using individual tree votes [18], has successfully been used in land cover and plant species
classification [19]. While using SVM, based on a multidimensional feature space where classes are
divided using the largest possible separation by applying a kernel function to the training data [20],
has resulted in high accuracies, especially in cases of small sample size, and a high number of spectral
bands [21]. Moreover, ANN has mostly been used for land cover classification [22]. Raczko and
Zagajewski (2017) [23] have compared these three methods for tree species classification and found
higher overall accuracy using ANN, but more stability in the overall accuracy using RF and SVM
when the sample size is small. A large number of bands increases ANN computational time for model
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training and testing compared to RF and SVM. Thus, we decided to focus on RF and SVM as our
hyperspectral data has a large number of spectral bands and small sample sizes.

In this study, the first one in the páramo ecosystem, we evaluated the potential of RGB and
hyperspectral sensors mounted on UAVs for manual (RGB imagery) and supervised (hyperspectral
data) species classification. We quantified the accuracy of species detection from RGB imagery using
direct observation. From hyperspectral imagery, we identified the reflectance values and evaluated
the potential of hyperspectral data to classify individual species using SVM and RF [23–25]. All the
analyses were performed at the Matarredonda páramo located in the Cruz Verde-Sumapaz páramo
system, at the eastern range of the Colombian Andes (Figure 1).

Drones 2020, 4, x FOR PEER REVIEW 3 of 18 

data) species classification. We quantified the accuracy of species detection from RGB imagery using 
direct observation. From hyperspectral imagery, we identified the reflectance values and evaluated 
the potential of hyperspectral data to classify individual species using SVM and RF [23–25]. All the 
analyses were performed at the Matarredonda páramo located in the Cruz Verde-Sumapaz páramo 
system, at the eastern range of the Colombian Andes (Figure 1). 

 
Figure 1. Map of the study area (10 ha) with vegetation plot locations. Páramo de Matarredonda 
located in the eastern range of the Colombian Andes. 

2. Materials and Methods. 

We explored the potential of RGB and hyperspectral high-resolution UAV-borne data for species 
classification. To this end, we first evaluated the accuracy in species identification from direct 
observation of high-resolution RGB images and from the results (Figure 2B), selected the species to 
be use for the automated classification using hyperspectral data (Figure 2C). Secondly, for 
hyperspectral imagery, we tested various approaches to build species classification models to assess 
the potential of hyperspectral images and identify the most appropriate modeling protocol that 
ensured reliability and replicability (Figure 2D). 

Figure 1. Map of the study area (10 ha) with vegetation plot locations. Páramo de Matarredonda
located in the eastern range of the Colombian Andes.

2. Materials and Methods

We explored the potential of RGB and hyperspectral high-resolution UAV-borne data for species
classification. To this end, we first evaluated the accuracy in species identification from direct
observation of high-resolution RGB images and from the results (Figure 2B), selected the species to be
use for the automated classification using hyperspectral data (Figure 2C). Secondly, for hyperspectral
imagery, we tested various approaches to build species classification models to assess the potential of
hyperspectral images and identify the most appropriate modeling protocol that ensured reliability and
replicability (Figure 2D).
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Figure 2. Workflow for species manual detection using red, green, and blue wavelengths (RGB) (B)
and automated classification using Hyperspectral data, including preprocessing (C) and automated
classification (D). Boxes in dashed lines (A) correspond to input data.

2.1. Study Site

The study site is located at Parque Ecológico Matarredonda (4◦33′38.1” N and 74◦0′7.3” W) in the
eastern range of the Colombian Andes, which is part of the Cruz Verde-Sumapaz páramo complex
(Figure 1). Elevation ranges from 3100 up to 3600 m.a.s.l. The mean annual precipitation is 1178 mm;
the mean temperature is 8.8 ºC, and the mean relative humidity is 88% [26]. Matarredonda comprises
690 ha of páramo ecosystem connected to the Cruz Verde-Sumapaz complex and surrounded by a matrix
of forest, roads, and agriculture. In this páramo, vegetation is characterized by short and small growth
forms composed by rosettes, shrubs, graminoids, forbs, and mosses. The Cruz Verde-Sumapaz complex
has 1857 identified plant species. According to previous surveys, Matarredonda has approximately
30 vascular plant species [27]. However, our annual census has counted more than 97 species, including
two the emblematic species in the genus Espeletia, Espeletia argentea, and Espeletia grandiflora [28].
Three soil orders have been found in Matarredonda; inceptisols, histosols and entisols that evidence
high humidity levels and organic concentration and reveal past agricultural land use [29].
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2.2. Spectral and Field Data

RGB and hyperspectral data for a 10 ha polygon were taken. RGB data were collected with a
camera FC6310 (8.8 mm) mounted on a DJ Phantom Pro drone set at a flying altitude of 79.5 m, which
resulted in a set of 94 images with 1 cm pixel resolution. Hyperspectral data were collected with
sensor 1003A-20502: Hyperspec Nano VNIR (400–1000 nm with a band width of 2.2 nm), with lenses
1004A-21444: F/1.4, 400–1000 nm, compact barrel, C-Mount, 17 mm, Global Positioning System (GPS),
Inertial Motion Unit (IMU), and fiber-optic downwelling irradiance sensor (fodis unit) mounted on the
UAS-ART Unmounted Aerial Vehicle (UAV) DJI Matrice 600 Pro. The flying altitude was 118 m and
resulted in a total of 4 strips (henceforth images A, B, C, and D in Table 1) of 272 spectral bands with
3 cm pixel resolution covering an area of ~1738 m2 each image.

Table 1. Summary of individuals mapped and validated in the field with its corresponding spectral
data for each of the hyperspectral images analyzed (A, B, C and D).

Species Image Individuals Pixels

Calamagrostis effusa

A 11 1365

B 8 1576

C 13 940

D 16 2791

Espeletia argentea

A 0 0

B 11 1369

C 24 2351

D 19 2067

Espeletia grandiflora

A 29 7605

B 0 0

C 23 2960

D 13 3286

Sphagnum sp.

A 17 6888

B 11 1877

C 23 2679

D 11 2068

Puya gouditiana

A 14 4226

B 12 2017

C 23 4426

D 15 5055

TOTAL 4 293 55,546

Field data were collected from 10 previously established, permanent plots (1 m × 1 m each), part of
an ongoing vegetation experiment, where each plant on the plot has been identified to the species or
genus level, and their position has been registered (projection system WGS 84). An additional field
campaign was performed to add a 100 m2 vegetation ground survey around the plots, to include more
individuals per species of the 40 species that we manually identified on the RGB imagery based on the
1 m2 plot vegetation data.

RGB data were georeferenced and orthorectified using GRASS GIS software. Hyperspectral data
were processed using the Hyperspec III software (Headwall Photonics Inc. Fitchburg, MA, USA)
that synchronizes the image cubes with the GPS/IMU data to allow orthorectification. In succession,
we transformed the raw image cube digital numbers (DN) to radiance and reflectance values using the
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real-time solar radiance collected in the fodis unit in the SpectralView software (Headwall Photonics
Inc. Fitchburg, MA, USA).

2.3. RGB Imagery Analysis—Manual Detection

To evaluate the RGB images’ applicability to identify páramo species, we used a manual training and
testing approach. At the training 1 m2 plots, we used the ground locations to join the point location to its
crown shape in the RGB image. However, since the plot’s area was too small to include more than a couple
of individuals per species, we performed another ground survey in the 100 m2 around each plot, collecting
the XY location of individuals of the species already matched in the 1x1 m plot. This step increased the
training and testing area to 100 m2 which was used to develop the identification key and perform the tests.

At the 100 m2 training areas, characteristics such as growth form (e.g., rosette, grass, shrub),
color and size, were used to develop an identification key for each species in the RGB image correctly
matched the ground XY location data. The key consisted of a page with a collection of cropped images
of the focal species and a written classification of its size, color, and growth form. The key was then
used to help 2 trained observers consistently map species in the field, dropping a point with the species
ID on a newly created vector file. Then, the identification in the test vector file was revised, comparing
ground data points collected with the GPS, and evaluating the results using a confusion matrix and
accuracy statistics (Figure 2B). All the analyses were performed using QGIS software [30].

2.4. Hyperspectral Data Analysis—Automated Classification

For the hyperspectral data, we used five of the species correctly identified from the RGB imagery
to select at least five individuals per species in each plot and each of the images to perform the
classification. Table 1 summarizes the datasets used for each species and image.

The hyperspectral data contained 262 spectral bands (400–1000 nm—band width 2.2 nm). Feature
selection is commonly used for this type of data to select spectral bands with the highest prediction
ability [18]. We used three feature selection methods: (1) all spectral bands, (2) the spectral bands
with the highest importance based on the RF mean decrease in Gini values, and (3) features selected
using the sequential floating forward selection (SFFS). For method (2), the spectral bands with the
highest importance were identified based on the random forest mean decrease in Gini values, which
calculates the importance of each spectral band as a measurement of the purity of class samples gain in
each individual RF tree split. For method (3), the bands with the highest spectral separability were
identified using SFFS, based on a Gaussian mixture model (GMM) classifier, that selects bands through
back and forward iteration until it identifies the bands with the highest spectral separability base on
the Jeffries-Matusita distance [18].

To investigate the effect of an approach using a single focal species vs. an approach with multiple
focal species, we tested two class-grouping methods: (1) binary training data were divided into focal
species class and non-focal species class and, (2) multiple training data were divided into 4 to 5 classes
corresponding to each of the focal species present in the image.

The RF classifier is a robust method, especially dealing with complex highly-colinear variables,
such as hyperspectral bands, where it has been used to identify various types of landcover, from invasive
plant species to crop types [31–35]. In this study, the RF classifier was used with two purposes, to assess
the importance of the variables via the Gini index and to perform the image classification. The SVM
classifier is a non-parametric free classifier [36] that has been used successfully in hyperspectral image
classification [6,18] (Figure 2D).

A dataset was built extracting pixel values for each spectral band of each individual plant in the
sample. The dataset was divided into two random sample partitions using the createDataPartition
command in the R package caret [37] that divides the dataset into two groups of pixel values while
preserving its class distribution; in this case, the number of pixels per species. The resulting datasets
consisted of a training sample from 40% of the total data and a testing sample with the remaining 60%.
Additionally, to test the effect of the data partition used (per pixel partition vs. per sample partition),
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we divided the data for images C and D, which have the highest number of individuals sampled,
into training and testing samples. The training data for C and D consisted of 40% of the individuals
randomly selected and the testing sample had the remaining 60% of the individuals.

The classification models were compared using the same training and test samples. To assess model
performance and perform parameter tuning, we evaluated two approaches. The random cross-validation
approach does not include spatial autocorrelation, and the spatial validation approach includes the effect
of spatially autocorrelated spectral bands in the dataset. For cross-validation, a subsample of the data
was left out to test the trained model’s performance using the rest of the training data. This process
was repeated ten times, and the average of all the tests was used to estimate model performance [38].
For spatial validation, model performance was evaluated using spatial blocks, that is, equally sized
polygons dividing the image. Model performance was repeatedly (ten times) tested using the data from
all the spatial blocks but one, and the average of all the tests was used to estimate model performance [39].

Finally, the accuracy of all the combinations of selection and classification approaches was assessed
using the testing dataset, to calculate overall accuracy (OA), Kappa accuracy (KA), specificity (SP),
and sensitivity (SE) for each species. All the analyses were performed using the R software [40]. For the
implementation in R of the caret package, we used the raster [41] and randomForest [42] packages,
and for the feature selection process we used kernlab [43], varSel [44] and sf [45].

3. Results

3.1. Manual Species Identification Using RGB Imagery

From the 97 species registered in the ground survey, 40 species were identified in the aerial images.
From the identified species, we selected the ones from which at least five individuals in the training
areas were correctly identified, to include variation in the species typology (shape, color, texture),
which resulted in 21 species that were then searched for in the test plots. For these 21 species, accuracy
was above 97%, while omission error ranged between 1.49 and 87.5. For 12 of those species, omission
error was above 10% and up to 87%, showing that these species were difficult to see in the images
(false absences). However, if they were spotted, they could be correctly identified with at least 97%
accuracy (Table 2, Figure 3). The species with the highest accuracies, precision values, and lowest
commission errors corresponded to large rosettes (E. grandiflora, E. argentea, and P. goudotiana), dense
clumps (Sphagnum sp.), and common in the study area (C. effusa and H. goyanesis). These species were
selected to perform the automated classification using hyperspectral imagery (Figure 2B).
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Figure 3. Aerial photographs of 10 plant species in Matarredonda that may be suitable for drone
mapping. Accuracies for all species are above 98%. Values correspond to the percentage of omission
errors for the five testing plots.
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Table 2. RGB-image-based manual identification accuracy for 21 páramo species. Species are sorted in
ascending order according to the percentages of omission errors. Values are in percentages (%).

Species Growth Form Precision Accuracy Specificity Sensitivity Commission Omission

Calamagrostis effusa grass 95.65 98.81 98.89 98.51 1.11 1.49
Espeletia argentea rosette 98.63 99.02 99.57 97.30 0.43 2.70

Hypericum juniperinum shrub 78.95 98.37 98.63 93.75 1.37 6.25
Puya goudotiana rosette 97.50 98.69 99.62 92.86 0.38 7.14

Arcytophyllum nitidum shrub 81.25 98.69 98.97 92.86 1.03 7.14
Hypericum goyanessi shrub 90.00 97.81 98.57 92.31 1.43 7.69
Espeletia grandiflora rosette 92.31 99.35 99.66 92.31 0.34 7.69
Ageratina gynoxoides shrub 83.33 99.02 99.32 90.91 0.68 9.09

Blechnum sp. fern 82.76 97.42 98.23 88.89 1.77 11.11
Sphagnum sp. moss 95.00 98.70 99.65 86.36 0.35 13.64

Diplostephium phylicoides shrub 75.00 99.02 99.33 85.71 0.67 14.29
Paepalanthus columbiensis rosette 94.44 98.05 99.65 77.27 0.35 22.73

Rhynchospora ruiziana sedges 66.67 98.37 99.33 57.14 0.67 42.86
Monnina salicifolia shrub 83.33 98.37 99.66 55.56 0.34 44.44

Acaena cylindristachya forb 80.00 98.05 99.67 44.44 0.33 55.56
Aragoa abietina shrub 50.00 97.42 99.34 25.00 0.66 75.00
Orthrosanthus
chimboracensis forb 50.00 98.37 99.67 20.00 0.33 80.00

Pentacalia vaccinioides shrub 50.00 97.73 99.67 14.29 0.33 85.71
Bucquetia glutinosa shrub 25.00 97.11 99.01 14.29 0.99 85.71

Valeriana pilosa forb 50.00 97.42 99.67 12.50 0.33 87.50

3.2. Automated Species Classification Using Hyperspectral Data

The selected spectral bands using SFFS and RF approach were spread across the spectrum with
two clusters located between 420 and 630 nm, 735 and 840 nm. Different bands were selected for each
image, with marked differences in image A and RF feature selection, for which the selected bands
are between 550 and 800 nm (Figure 4). The most considerable differences in spectral values among
species are located in the NIR zone of the spectrum, where the rosette P. goudotiana has the highest
reflectance percentage values while the grass C. effusa has the lowest. These differences are likely to be
related to the larger proportion of necromass that usually surrounds grasses compared to the green
foliage of the bromeliads. The spectral signature of two species of the same genus, E. grandiflora and
E. argentea, important endemic species of the páramo ecosystem, can be visually differentiated with
higher reflectance percentage for E. argentea in the visible range in comparison with E. grandiflora,
while the NIR zone E.grandiflora shows higher values than E. argentea (Figure 4).

Of all the classification methods, the combination of two classes (binary), all bands feature selection,
SVM classifier, and random cross-validation obtained the highest overall accuracy percentage (91%),
followed by the same combination using the RF classifier (90%) (Figure 5). Overall accuracy was also
higher when using two classes (mean 85%) than when including multiple classes (mean 68%), but the
differences in the number of samples for the two classes decrease the accuracy to a kappa accuracy
mean value of 50%, while it remained higher when using multiple classes (mean 67%). The RF method
had, in general, higher overall accuracy values than SVM, and both classifiers were affected by the
feature selection method, with higher overall and kappa accuracy values for feature selection using the
SFFS classifier compared to RF (Figure 5).

As presented in Figure 6, overall and kappa accuracy were similar across images when all the
bands were included, independent of the number of classes or the classifiers used. However, when a
feature selection method was applied (SFFS or RF), lower overall and kappa accuracy values were
observed (SFFS > RF) accompanied with a higher variation between images. This pattern was especially
visible when features were selected using RF.

Regarding sensitivity and specificity, four of the five species studied (C. effusa, E. argentea,
E. grandiflora, and Sphagnum sp.) had higher true negative rate (specificity > 96%) in models constructed
from two classes, while the true-positive rate (sensitivity > 53%) was higher for models constructed
from multiple classes. The fifth species, P. goudotiana, presented the opposite pattern where higher
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true-positive rates were found in the models constructed from binary classes, while higher true negative
rates were found in the multiple class models (Table 3). Nevertheless, the models with relatively
higher sensitivity and specificity were models with binary classes, the SVM classifier in the case of
C. effusa, E. argentea, Sphagnum sp., and E. grandiflora. In general, the models constructed using all
bands showed the highest specificity (>96%) rates, followed by the models using SFFS feature selection
(specificity ± 95%). Spatial cross-validation significantly reduced the sensitivity rates for four of the
species studied (C. effusa < 10%, E. argentea < 10%, E. grandiflora < 27%, and Sphagnum sp. < 23%)
except for P. goudotiana (<77%). Notably, the highest specificity values for spatial cross-validation were
from models constructed using the RF feature selection method and binary classes.

Regarding data partition, the overall accuracy was reduced when using the per individual data
partition approach. However, the effect was smaller for the approaches using the binary classes,
particularly in combination with the SVM classifier where the variation in accuracy was higher.
In comparison, the effect was more substantial when using the multiple classes approach, especially in
combination with the RF classifier (Supp. Figure S1).
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Figure 5. Variation in model performance in terms of overall accuracy and kappa accuracy given
the combination of feature selection, class grouping method (Binary or Multiple), classification
method (Random forest (RF) and Support vector machine (SVM)), and cross-validation method
(Random, Spatial). In the case of feature selection: all the spectral bands (ALL), spectral bands selected
using Sequential Floating Forward Selection (SFFS) using Jeffries–Matusita distance as a separability
index (FSSF) and, spectral bands with the highest importance on random forest the Gini decrease mean
value (RF).
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Figure 6. Variation in model performance, using random cross-validation, in terms of overall and
kappa accuracy values for each of the images analyzed (A, B and C) and for all combinations of model
construction: feature selection using all bands (ALL), bands selected with fast forward selection (SFFS)
and bands selected using the Gini decrease index in random forest (RF), number of classes from two
classes (binary) to five classes (multiple) and with two modeling approaches namely random forest
(RF) and support vector machine (SVM).
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Table 3. Hyperspectral classification accuracy. Sensitivity and specificity rates for all model combinations and each of the five species classified. Highest values in bold.

Cross-Validation Number of
Classes

Classifier Feature
Selection

C.effusa E. argentea E.grandiflora Sphagnum sp. P. goudotiana
Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Random

binary

RF
ALL 35.10 98.73 27.93 98.93 44.20 96.43 50.48 95.80 94.34 51.95
SFFS 33.77 98.19 27.64 98.28 43.13 95.02 47.65 94.73 92.86 48.46
RF 26.37 97.77 22.30 98.03 34.85 93.97 38.46 92.87 91.49 38.73

SVM
ALL 34.99 99.33 32.96 99.57 44.04 97.79 54.91 97.17 96.47 50.09
SFFS 24.63 99.09 21.19 99.18 32.47 96.56 43.69 95.61 94.94 39.22
RF 14.72 99.36 11.51 99.50 23.85 97.82 32.22 95.55 96.42 21.88

multiple

RF
ALL 50.49 96.46 57.77 94.29 66.30 88.09 67.55 90.38 74.24 82.41
SFFS 46.76 95.83 54.30 93.60 63.88 87.40 64.39 89.56 70.72 80.52
RF 39.47 95.01 47.26 91.79 54.47 83.81 55.64 85.73 61.03 76.86

SVM
ALL 52.52 97.01 61.71 94.58 65.78 89.45 69.65 91.21 75.94 82.08
SFFS 42.33 96.06 53.33 92.99 59.51 86.04 60.97 89.51 68.55 78.02
RF 29.96 96.43 45.48 92.07 52.84 85.10 54.95 84.25 62.32 73.54

Spatial

binary

RF
ALL 3.54 94.62 2.64 95.61 15.01 78.80 13.23 87.93 76.72 10.70
SFFS 5.08 93.70 3.70 95.36 17.06 77.21 15.04 86.94 75.46 12.17
RF 3.42 93.71 4.66 95.43 16.81 82.10 14.89 87.39 75.14 11.96

SVM
ALL 3.58 94.30 3.05 94.14 16.69 77.09 14.89 87.92 75.90 11.88
SFFS 4.48 94.23 3.98 94.35 17.14 78.10 15.13 87.49 75.54 14.44
RF 3.20 95.69 3.06 95.59 13.92 84.54 11.48 89.22 77.53 8.86

multiple

RF
ALL 8.75 91.32 9.84 84.27 25.86 64.54 20.21 80.44 25.96 59.85
SFFS 9.78 91.15 9.13 83.68 26.89 65.49 21.68 80.02 25.46 61.02
RF 9.06 91.15 8.86 83.59 25.82 66.89 21.62 79.21 25.37 60.13

SVM
ALL 8.06 89.79 8.88 83.68 26.20 63.36 20.92 81.35 25.31 61.69
SFFS 9.83 89.55 9.74 82.82 27.79 66.49 22.60 81.33 26.85 63.01
RF 7.77 91.02 8.56 83.00 27.11 66.14 18.09 81.20 29.05 59.19



Drones 2020, 4, 69 13 of 18

4. Discussion

4.1. Manual Species Identification Using RGB Imagery

Our study demonstrated the importance of RGB images for low-cost páramo species mapping and
monitoring. Despite the size of the study area that limited the number of individuals per species we
could use for training and testing, we were able to identify 41% of the species found in this ecosystem
and evaluate the accuracy of 20 species with accuracy levels above 97%. Many páramo species were
often not visible from the RGB image because of their small size and because they are often covered
by larger species (e.g., shrubs, large rosettes). However, here we found that it was relatively easy
to correctly identify some of them thanks to its conspicuous structure (Diplostepihum phylicoides) or
the large patches they form (Sphagnum sp.). Higher resolution (<1 cm) might allow reducing the
omission errors observed in this study as we observed it in preliminary higher resolution (1 cm pixel)
RGB images.

Despite the high diversity of short-stature growth forms and the large proportion of cloudy and
rainy days throughout the year, acquiring the images was feasible. It only required a couple of hours
of clear sky to obtain 1cm pixel-resolution used in this study. Previous research has highlighted the
importance of this type of imagery in different types of ecosystems from big trees in highly diverse
tropical [46,47] and subtropical forests [48], to small stature species in temperate grasslands [49], in a
diverse set of ecological studies that include mapping, restoration and monitoring [50–52]. In this
study, we conclude that high-resolution imagery (1 cm pixel) has great potential for at least 21% of
the species, comprising a range of growth forms from big rosettes (P. goudotiana), endemic species
(Espeletia sp.) to mosses (Sphagnum sp.), that are known to be essential in this ecosystem [53–55].
Such an outcome shows the potential of UAV-borne RGB imagery for low-cost, in terms of time and
money, efforts to visually detect changes in the species composition and enhance ground surveys and
inform the development of the automated image classification techniques explored in this study.

4.2. Automated Species Identification Using Hyperspectral Data

Our study has shown that hyperspectral data effectively differentiated five important páramo
species, two of them of the same genus and endemic from this ecosystem, following other studies
in temperate alpine ecosystems [49,50]. Comparing overall model accuracy, combining two classes
(binary), all bands and the SVM classifier had high accuracy, followed closely by the model developed
using binary classes, SFFS for feature selection, and SVM or RF classifiers (Figure 7). Our results agree
with Burai et al. 2015 [56], a study performed on the vegetation of similar characteristics (herbaceous),
where, using all the bands, SVN performed slightly better than RF, but the differences were not
significant [50]. Additionally, they found that the number of pixels affected the classification accuracy,
which was similar to our results at the species level (P. goudotiana, 15,724 pixels, Supp. Figure S2)
but not at the image level. In our study, the image with the highest number of pixels (image A,
20,084 pixels) did not have the highest overall accuracy values, reflecting that the characteristics of the
image such as the spatial distribution of the classes affects the accuracy independent of the number of
pixels (Figure 6).

Sensitivity and specificity were also higher for all bands, binary classes, and SVM model
combinations for all the species classified. When comparing overall and kappa accuracies across
images, the RF classifier showed more inconsistencies than the SVM classifier, and the SVM classifier
had higher accuracy values for all images than the RF classifier. This finding is relevant for monitoring
schemes, where multiple images are taken at different points in time, in which case the SVM classifier
is more stable despite differences in the hyperspectral data, and has more consistency. Regarding
the data partition, in cases where the sample size is small, and the per-pixel partition is used, we
recommend using the binary classes in combination with the SVM classifier. Doing so would result in
more consistent outcomes, in terms of variation and decreases in the overall accuracy, when comparing
both data partition approaches. This difference in consistency suggests that the combination of binary
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classes and SVM classifier might be less affected by the effect of autocorrelation among pixels, probably
because of a lower number of classes involved in the determination of the separating margin with
kernel methods. Nevertheless, including high-resolution RGB imagery and visual classification for
developing individual species sample, as we did in our study, increases the number of individuals
identified, hence sample size. In our particular case, increasing the RGB imagery resolution would
have significantly improved our sample size.
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Figure 7. Example of classification results using binary classes, sequential fast forward feature selection
(SFFS) and SVM classifier, compared to the view from a false color representation of the hyperspectral
data for C. effusa, E. grandiflora, Sphagnum, P. goudotiana.

Upon visual examination of the classified maps, the results were not as expected, given the high
accuracy values, especially in images with small aggregations of the species studied. On the one hand,
species classification methods using a pixel-based approach are prone to inflated accuracy values
due to autocorrelated pixel values. On the other hand, the data are collected within a spatial context,
and therefore the effect of space should also be included in order to construct models relevant across
the landscape. Following Meyer et al. 2019, including space, using spatial cross-validation, resulted in
more variation in the overall accuracy and kappa values [39]. Additionally, we found that this effect
is more substantial in the models constructed using multiple classes, as in the binary classes, overall
accuracy did not vary significantly from the random cross-validation. According to our results, binary
models appear to be more suited for species with a highly aggregated spatial distribution because it
increases the number of non-focal samples, thereby increasing the accuracy in areas where the number
of individuals of the focal species is low. For P. goudotiana, the true negative rate did not decrease as
much as for the other species; this might be related to the plant size (e.g., a higher number of pixels),
but the true positive rate was affected, which might be due to the dense spatial aggregation of this
species. Our study demonstrates the potential of hyperspectral images for species classification in
tropical alpine ecosystems, in accordance with the findings from Marcinkowska-Ochtyra et al. 2018 [14],
but in their study, the SVM classifier performed better with a subset of 40 bands, whereas in our
analysis, it performed slightly better when using all bands.

Hennessy et al. (2020) [57], in their review on the hyperspectral classification of plants, highlighted
the importance of testing multiple feature selection and classification methods due to the high variation
in outcomes among studies. Out study supports this statement. We found that the values of accuracy,
kappa, sensitivity, and specificity varied depending on the species and image analyzed and the
combination of feature selection, number of classes, and classifier applied.

From our results, the potential of RGB and hyperspectral imagery for species classification at the
páramo is relevant, and the advantages of each technology make them better when used together.
On the one hand, the low-cost RGB imagery approach allows for higher accuracies with lower computer
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processing requirements, but has higher omission rate and can be time-consuming when mapping
large areas. Classification using hyperspectral imagery, although requiring more computer processing,
reaches stable overall accuracies above 75% (when using binary classes, SVM or RF classifiers and all
bands) in a fraction of the time required using RGB imagery. However, the combination of both can
give the best results as we show in this study where we have taken advantage of the RGB imagery to
identify plant species that could be used to develop the automated hyperspectral image classification.
Thus, RGB imagery appears promising to monitor several páramo plant species while providing data
to develop automated classification with hyperspectral images for a subset of the species.

5. Conclusions

In this study, we explored the potential of UAV-borne RGB and hyperspectral imagery for
species classification in one type of tropical alpine ecosystem (páramo). Our results regarding species
identification using RGB imagery highlight the importance of this low-cost technology as a useful tool
for vegetation monitoring in this ecosystem, especially given that all the analyses were performed
using free and open source software (FOSS), which keeps the costs down and facilitates applicability.
However, given the high omission error due to the small vegetation sizes, characteristic of tropical alpine
plant communities, we propose the use of higher resolution images, which would not significantly
increase flying time but rather increase species identification performance.

Hyperspectral automated species classification, using a combination of multiple feature selection
methods, data partition, classifiers, number of classes, and cross-validation approaches, allowed us to
explore the potential of hyperspectral for páramo species classification thoroughly. Even though the
pixel resolution used in this study allowed us to perform all the analysis, exploring the spatial resolution
would provide insight into the resolution thresholds needed for an accurate species classification.
Future directions should also include a test of the effect of larger samples on the model performance
and the spatial arrangement of those samples to include the effect of spatial distribution patterns of the
species in the classification process.

The páramo ecosystem is highly threatened by land-use change, plant invasions, and climate
change; thus, this technology’s potential to help understand, monitor, and detect threats at the
landscape scale opens a promising alternative to species management and conservation in tropical
alpine regions. RGB imagery and hyperspectral data offer several advantages to monitor changes in
species survival and distribution patterns. RGB imagery can be used for annual monitoring of selected
areas, and hyperspectral imagery can be applied for five-year monitoring at the landscape-level,
with the advantage of all the other well-known applications of these data (e.g., biochemical signals of
change and invasive species detection). Future directions could build from this method and explore
plant trait mapping using UAV-borne hyperspectral images, monitor individuals and changes in spatial
distribution patterns and explore the transferability of these methods to other páramos.

Supplementary Materials: The following are available online at http://www.mdpi.com/2504-446X/4/4/69/s1,
Figure S1: Variation in model performance per data partition approach (per pixels, and per individual) in terms
of overall accuracy (for spatial and random cross-validation) given the combination of feature selection, class
grouping method (Binary or Multiple) and classification method (Random forest (RF) and Support vector machine
(SVM). In the case of feature selection: all the spectral bands (ALL), spectral bands selected using Sequential
Floating Forward Selection (SFFS) using Jeffries-Matusita distance as a separability index (FSSF) and, spectral
bands with the highest importance on random forest the Gini decrease mean value (RF), Figure S2: Variation in
model performance per species in terms of producer accuracy (for spatial and random cross-validation) given the
combination of feature selection, class grouping method (Binary or Multiple) and classification method (Random
forest (RF) and Support vector machine (SVM). In the case of feature selection: all the spectral bands (ALL),
spectral bands selected using Sequential Floating Forward Selection (SFFS) using Jeffries-Matusita distance as a
separability index (FSSF) and, spectral bands with the highest importance on random forest the Gini decrease
mean value (RF).

Author Contributions: Conceptualization C.X.G.-L.; Data processing and analysis, C.X.G.-L.; writing, reviewing
and editing, C.X.G.-L. and E.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by University of los Andes: “Fondo de Investigaciones para apoyar programas
de profesores de la Facultad de Ciencias de la Universidad de los Andes, grant number INV-2019-84-1805 and by

http://www.mdpi.com/2504-446X/4/4/69/s1


Drones 2020, 4, 69 16 of 18

Colciencias Patrimonio autónomo fondo nacional de financiamiento para la ciencia, la tecnología y la innovación
Francisco José de Caldas”, grant number 120471451294.

Acknowledgments: Special thanks to all the people that helped collecting data in the field: Alejandra Ayarza,
Indira Leon, Lina Aragon, Paola Matheus, Marisol Cruz, David Ocampo. We would like to thank the Sabogal
family for allowing us to establish the plots and fly the drone in the “Parque Ecológico Matarredonda”. Special
thanks to Michele Dalponte for his valuable advice on the data analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Madriñán, S.; Cortés, A.J.; Richardson, J.E. Páramo is the world’s fastest evolving and coolest biodiversity
hotspot. Front. Genet. 2013, 4, 192. [CrossRef] [PubMed]

2. Farley, K.A.; Bremer, L.L.; Harden, C.P.; Hartsig, J. Changes in carbon storage under alternative land uses
in biodiverse Andean grasslands: Implications for payment for ecosystem services. Conserv. Lett. 2013, 6,
21–27. [CrossRef]

3. Bueno, J.; Ritoré, S. Bioprospecting Model for a New Colombia Drug Discovery Initiative in the Pharmaceutical
Industry. In Analysis of Science, Technology, and Innovation in Emerging Economies; Martínez, C.I.P., Poveda, A.C.,
Moreno, S.P.F., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 37–63.

4. Balthazar, V.; Vanacker, V.; Molina, A.; Lambin, E.F. Impacts of forest cover change on ecosystem services in
high Andean mountains. Ecol. Indic. 2015, 48, 63–75. [CrossRef]

5. Buytaert, W.; Celleri, R.; de Bievre, B.; Cisneros, F.; Wyseure, G.; Deckers, J.; Hofstede, R. Human impact on
the hydrology of the Andean páramos. Earth-Sci. Rev. 2006, 79, 53–72. [CrossRef]

6. Baldeck, C.A.; Asner, G.P.; Martin, R.E.; Anderson, C.B.; Knapp, D.E.; Kellner, J.R.; Wright, S.J. Operational
Tree Species Mapping in a Diverse Tropical Forest with Airborne Imaging Spectroscopy. PLoS ONE 2015,
10, e0118403. [CrossRef]

7. He, K.S.; Rocchini, D.; Neteler, M.; Nagendra, H. Benefits of hyperspectral remote sensing for tracking plant
invasions: Plant invasion and hyperspectral remote sensing. Divers. Distrib. 2011, 17, 381–392. [CrossRef]

8. Garzon-Lopez, C.X.; Bohlman, S.A.; Olff, H.; Jansen, P.A. Mapping Tropical Forest Trees Using
High-Resolution Aerial Digital Photographs. Biotropica 2013, 45, 308–316. [CrossRef]

9. Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS
J. Photogramm. Remote Sens. 2014, 92, 79–97. [CrossRef]

10. Thenkabail, P.S.; Lyon, J.G.; Lyon, J.G. Hyperspectral Remote Sensing of Vegetation; CRC Press: Boca Raton, FA,
USA, 2016.

11. Yao, H.; Qin, R.; Chen, X. Unmanned Aerial Vehicle for Remote Sensing Applications—A Review. Remote Sens.
2019, 11, 1443. [CrossRef]

12. Warner, T.A.; Nellis, M.D.; Foody, G.M. Remote Sensing Scale and Data Selection Issues. In The SAGE
Handbook of Remote Sensing; SAGE Publications, Inc.: Oliver’s Yard, London, UK, 2009; pp. 2–17.

13. Ewald, M.; Skowronek, S.; Aerts, R.; Lenoir, J.; Feilhauer, H.; van de Kerchove, R.; Honnay, O.; Somers, B.;
Garzon-Lopez, C.X.; Rocchini, D.; et al. Assessing the impact of an invasive bryophyte on plant species
richness using high resolution imaging spectroscopy. Ecol. Indic. 2020, 110, 105882. [CrossRef]

14. Marcinkowska-Ochtyra, A.; Zagajewski, B.; Raczko, E.; Ochtyra, A.; Jarocińska, A. Classification of
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