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Abstract: Due to land development, high concentrations of suspended sediment are produced from
erosion after rain events. Sediment basins are commonly used for the settlement of suspended
sediments before discharge. Stormwater regulations may require frequent sampling and monitoring
of these basins, both of which are time and labor intensive. Potential remedies are small, unoccupied
aerial systems (sUAS). The goal of this study was to demonstrate whether sUAS multispectral
imagery could measure high levels of total suspended solids (TSS) and turbidity in a sediment basin.
The sediment basin at the Auburn University Erosion and Sediment Control Testing Facility was
used to simulate a local 2-year, 24-h storm event with a 30-min flow rate. Water samples were
collected at three depths in two locations every 15 min for six hours with corresponding sUAS
multispectral imagery. Multispectral pixel values were related to TSS and turbidity in separate
models using multiple linear regressions. TSS and turbidity regression models had coefficients
of determination (r2) values of 0.926 and 0.851, respectively. When water column measurements
were averaged, the r2 values increased to 0.965 and 0.929, respectively. The results indicated that
sUAS multispectral imagery is a viable option for monitoring and assessing sediment basins during
high-concentration events.

Keywords: remote sensing; sUAS; multispectral imagery; sediment basin; suspended sediment;
total suspended solids; turbidity

1. Introduction

Stormwater runoff from urban development and construction sites is and will continue to be an
increasing threat to water quality [1–4]. These flows are often laden with high sediment concentrations
that cause siltation and sedimentation of downstream waterways. Higher amounts of suspended solids
negatively affect aquatic life, transfer other contaminants and require more treatment for potability [5–7].
Further siltation and sedimentation can be expected with the acceleration of urbanization, increases in
population and global climate change [8–10].

In response to water quality issues, the United States of America (USA) established the National
Pollutant Discharge Elimination System (NPDES) through the Clean Water Act of 1972 [11]. In turn,
various stormwater regulations were established, specifically the Construction General Permit for land
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development which requires construction sites to implement stormwater pollution prevention plans
(SWPPP) that will lessen erosion, sedimentation/siltation and the pollution of stormwater [12,13].

The requirement to develop SWPPPs and increased societal concern about water quality have led
to the emergence of technologies and best management practices that address water quality needs.
For construction sites specifically, erosion and sediment control (ESC) techniques, such as hydroseeding,
erosion control blankets and silt fences, are being used [14]. One of the most used ESC methods is the
sediment basin which collects stormwater and allows sediment to settle before water is discharged
into streams [13]. There is a lack of agency guidance and few studies that detail monitoring protocols
for performance analysis and design configuration testing [15,16]. Sediment basin monitoring may be
necessary to demonstrate compliance with NPDES permits. Traditional sediment basin monitoring
involves a turbidity analysis of manually collected water samples. Many states use turbidity to ensure
construction sites are meeting the maximum water quality requirement or effluent limitation guidelines.
Most states hold their own permit and are in charge of ensuring that water quality within their state
meet federal NPDES requirements. Turbidity is often used as the main water quality parameter
since it is less labor intensive to measure than total suspended solids (TSS), but it is not a direct
measurement since cloudiness is a function of suspended solids. Turbidity only considers the amount
of light scattered by suspended solids. Turbidity, which is reliant on stream velocity and flow, should
only be compared to water samples that were taken at similar flow events [17]. TSS is a more direct
measure of the amount of solids suspended and is usable for sediment mass balance considerations
and sedimentation rate calculations.

Remote sensing could aid in water quality monitoring of sediment basins, but high spatial
resolution and financial viability are necessary for practical use. Acoustic doppler current profilers
(ADCP) along with satellite remote sensing are not viable options. ADCPs are not widely used, can only
be utilized at the scale of large river reaches and are expensive [18]. Satellite remote sensing has been
used to roughly estimate TSS concentrations, however, it requires long-term in situ TSS measurements
and has coarse spatial resolution that can only be applied to coastal areas, oceans, large rivers or large
lakes [18,19]. Satellite remote sensing for water quality purposes also fails to address the inherent
variability within a low-resolution pixel due to various factors, such as unsteady flows, sediment
transport dynamics and wind influence [20]. Capturing images from a fixed camera would prove to be
difficult and cumbersome for several reasons. The initial setting up of the system would delay data
collection as well as potentially make the surrounding space unsafe for construction efforts by adding
new overhead obstructions. A new setup would be required at each sediment basin. It is essential that
the camera angle be nadir to the ground to ensure pixels are not warped which would misrepresent
the water quality measurements. Additionally, these systems would be required to stay standing
through any type of weather. Wind could potentially move the camera off nadir or push down the
structure completely. Rain could damage the sensor, and rain or high humidity could produce droplets
of water on the lens, thus preventing sound data collection. Lastly, cameras would need to capture
images during overcast days or when minimum shadows are obstructing the sediment basin to ensure
excessive shadowing and sun glint are avoided. This would either require manual operation or setting
up a timer and manually selecting the optimum images. One data collection method that would allow
the user flexibility for data collection at any time along with control of image resolution would be the
use of small unoccupied aerial systems (sUAS).

As a fairly new tool, sUAS have become popular remote sensing platforms due to their
high-resolution data, low cost, and maneuverability [21–23]. However, there have been few sUAS
studies on water quality monitoring. Thermal imagery has been used for contamination detection
and monitoring [24–27]. sUAS multispectral imagery has been used for turbidity monitoring in
small reservoirs with little success because of model overfit [28] and on small lakes with coarser
resolution [29]. Additionally, sUAS multispectral imagery, along with a spectroradiometer, were used
for TSS monitoring at different depths in the Maumee River, Ohio, USA [30]. Models were developed
for each depth, but achieved limited coefficients of determination (r2) values and significance. A similar
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study was conducted in a stream, measuring turbidity along with multispectral flights before and
after a human-induced sediment plume [31]. No multi-variable modeling was performed; the focus
was only to analyze single bands or single-band ratios. Sampling with respect to exact location and
depth was not achieved with no account for how the streambed might influence results. Despite these
limitations, results agreed with similar previous studies such as [29,32]. Prior et al. [32] also used
sUAS multispectral imaging for TSS and turbidity modeling, but in a small stream setting along with
cross-site model testing. Low and high flow events were modeled separately because different single
bands and band ratios were significant. Cross-site model testing achieved no correlation, indicating that
site-specific models are required. Depth and streambed reflectance were also suggested to influence
results when shallow, clear water was present. This study discovered that one main limitation of sUAS
multispectral remote sensing was that streambed reflectance will interfere when suspended sediment
concentrations are relatively low. sUAS multispectral monitoring of TSS and turbidity might be a better
application for sediment basin monitoring since high levels of suspended sediments are expected.
To the best of our knowledge, there has been no sUAS multispectral imagery study involving high
sediment concentrations and sampling within a sediment basin.

The goal of this study was to develop statistical models that relate high levels of TSS and turbidity
to sUAS multispectral imagery for sediment basin monitoring. The study was conducted using
an experimental sediment basin at the Auburn University Erosion and Sediment Control Testing
Facility (AU-ESCTF) [14]. At two locations in the basin, automatic samplers collected water samples at
three depths in the water column every 15 min (min) during a 30-min inflow that simulated runoff

from a local 2-year (y), 24-hour (h) storm event. Concurrently, sUAS flights collected corresponding
multispectral imagery. This testing was done for a total of six hours. Water samples were processed for
TSS and turbidity. Models were developed using linear regressions that related pixel values back to
TSS and turbidity.

2. Materials and Methods

2.1. Study Site

A large-scale experimental sediment basin was designed and constructed at the AU-ESCTF to
understand basin performance under various conditions and configurations and to test sediment
control devices. The basin measured 13.4 m × 4.9 m along the bottom, with a total excavated footprint
of 17.1 m × 8.5 m. The depth of the basin was approximately 1.07 m and total storage, as built,
was 79.0 m3. The sediment basin and inflow channel were lined with a tied concrete block map and an
8-ounce (0.23 kg) nonwoven filter fabric. Three rows of wire-backed coir baffles attached to metal posts
divided the basin into four sections. The baffle installation was done following recommendations from
the Alabama Department of Transportation. A lamella plate settler, along with a fence near one of
the baffles, was located in the second to last downstream section (brown rectangle in basin; Figure 1).
The design details and layout of the basin were previously described in Perez et al. [33].

2.2. sUAS Setup

For this study, the sUAS platform (Table 1) consisted of a DJI Phantom 4 (DJI Ltd., Shenzhen,
China) with a mounted Parrot Sequoia (Parrot Drone SAS, Paris, France) multispectral sensor package.
A solar radiation sensor was also included in the sensor package for autocalibration along with four
band sensors capable of receiving green (G), red (R), red edge (RE) and near-infrared (NIR) spectral
bands. One-point calibration plus the solar radiation sensor were used for radiometric calibration
using a test pattern with known reflectance [34].
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Figure 1. Map of the Auburn University Erosion and Sediment Control Testing Facility sediment basin
where the experiment was conducted. The sampling locations, ground control points for spatially
referencing the drone flights and the outlet of the sediment basin are shown.

Table 1. Small, unoccupied aerial systems (sUAS) platform specifications [35,36].

Aircraft Sensor Band Span (nm)

Weight (g) 1380 72
Green: 480 to 520

Red: 640 to 680

Size (mm) 350 59 × 41 × 28
Red Edge: 730 to 810

Near-infrared: 770 to 810

2.3. Data Collection

Data collection was conducted on 27 May 2019. Before initiating testing, three ground control
point (GCPs) targets were placed at various locations around the sediment basin (Figure 1). GCPs were
used to ensure the geospatial accuracy of the imagery [37]. The GCP locations were selected to ensure
even, horizontal distribution while accounting for vertical undulations and confirming a clear view
of the sky. GCP targets and water sampling locations were measured and recorded using a Trimble
Geo7x Global Positioning System running TerraSync (Trimble Navigation Limited, Westminster, CO,
USA) rated at 1 cm accuracy. A total of six ISCO automatic samplers (Teledyne ISCO, Lincoln, NE,
USA) were used to collect water samples. Three samplers were used to collect water from the furthest
upstream section and three were used to collect from the furthest downstream section of the sediment
basin. Water samples were collected at the water surface and at 46 cm and 69 cm below the water
surface. Once initiated, the samplers collected 500 mL of water at fifteen minutes intervals for a total of
six hours. This resulted in 24 samples per depth location (i.e., 144 samples total).

The sediment basin was filled at a flow rate of 0.042 m3/s for 30 min which simulated runoff from
a local Alabama 2-y, 24-h storm event for a 979.3 m2 drainage area. Sediment was introduced at a rate
of 20.5 kg/min which simulated bare soil conditions based on the modified universal soil loss equation
with a soil erodibility factor of 0.085 and cover practice factor of 1.0 (i.e., worst-case scenario of no
vegetation cover). Stockpile soil, classified as sandy loam (59.5% sand, 24.0% silt, 16.5% clay) by the
USDA soil classification system, was sieved using a 1.3-cm screen to remove any large organic material
and particles. All procedures related to calculating and maintaining consistent flow and sediment
introduction rates, system setup, and sediment basin specifics can be found in Perez et al. [33]. Filling
the basin took approximately 35 min.

Once filled, flow and sediment introduction were stopped. Flights and automatic water collection
were conducted every fifteen min. The sUAS was then flown with a side and front overlap of 80% at
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76 m altitude. These parameters were selected to ensure high resolution along with a quick flight that
could be easily done within the 15 min sampling window. This sampling pattern was repeated for a
total of six hours, which resulted in 24 flight samples from each of two locations in the sediment basin.

2.4. Data Processing

Water samples were processed in the laboratory for turbidity and TSS. TSS was measured following
the U.S. EPA Method 160.2 [38]. Each filter (Whatman® glass microfiber filters, Grade 934-AH® RTU)
was pre-rinsed, dried and weighed. Each sample was shaken to resuspend sediments and 250 mL
was suctioned through a filter, which was then removed from the filtering apparatus and placed in a
drying oven (103 ◦C) until a constant weight was achieved. Turbidity was measured following the
U.S. EPA Method 180.1 [39] using a Hach 2100Q turbidimeter (Hach, Loveland, CO, USA) calibrated
according to manufacturer’s recommendations. Each sample was thoroughly mixed, and 5 mL of
sample was diluted such that turbidity readings were below 40 nephelometric turbidity units (NTU).
Four turbidity measurements were averaged for each water sample.

For multispectral imagery processing, Pix4Dmapper (Pix4D, Prilly, Switzerland) was used for
radiometric calibration, importing and locating GCPs and orthomosaic construction. Atmospheric
correction was not applied since the sUAS was flown at 76 m above the ground which resulted in a
small atmospheric column, especially when compared to satellite atmospheric columns. Because of the
low flight altitude, the discrepancy of radiance at the sensor and at the water surface was negligible
and was disregarded [40]. Pixel values for each band were then determined using the recorded GPS
locations for each water sample and the zonal statistics tool in ArcGIS (ESRI, Redlands, CA, USA).

2.5. Statistical Analysis

To develop unique models for the sediment basin, correlation tests between turbidity and band
pixel values and between TSS and band pixel values were conducted for all single bands and possible
band ratios: G, R, RE, NIR, G/R, G/RE, G/NIR, R/G, R/RE, R/NIR, RE/G, RE/R, RE/NIR, NIR/G,
NIR/R and NIR/RE. Correlation tests were conducted considering all water samples and the averaged
water column values. The averaged water column value was calculated as the mean of water sample
measurements from the surface, middle and bottom of the water column.

From the correlation analyses, four single bands and band ratios were identified that had the
highest and most significant correlation coefficients (r) for turbidity and TSS. These four band variables
were then used in a stepwise linear regression procedure to determine the combination that produced
the highest r2 value while including only model variables with probability (p) values less than 0.05.
Once the best models were selected for each data type, each model was tested for overfitting by
randomly excluding 20% of the data followed by reprocessing this dataset through the stepwise linear
regression. The revised model was fit to the removed data points and was deemed not to be overfit if
the r2 value for the removed data was within 0.1 of the r2 of the original model. Additionally, the root
mean square error (RMSE), residual prediction deviation (RPD) and mean normalized bias (MNB) were
calculated (Equations (1)–(3), respectively). All statistical analyses were performed in SAS (SAS, Cary,
NC, USA) [41,42] and Matlab 2020a (Mathworks, Natick, MA, USA). The above methods of developing
unique TSS and turbidity models from multispectral data followed procedures from Prior et al. [32].

RMSE =

√∑n
i = 1(Pi −Oi)

2

n
(1)

RPD =
σO

RMSEP
(2)

MNB =
1
n

n∑
i = 1

(Pi −Oi)

Oi
× 100% (3)
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where:

RMSE = root mean square error;
n = number of observations;
i = a value in a dataset;
Pi = predicted value;
Oi = observed value;
RPD = residual prediction deviation;
σO = standard deviation of the observed variable;
RMSEP = root mean square error of the predicted value;
MNB = mean normalized bias.

3. Results

3.1. Turbidity and TSS

Turbidity and TSS results show the settling of particles over the six-h time period and also
throughout the water column (Figure 2). The TSS results (Figure 2a) showed a slightly more rapid
decline at the beginning and flatten out towards the end compared to turbidity (Figure 2b). This can
also be seen in the graphs showing space and time (Figure 2c,d). The first few measurements in the
water column closest to the inlet were similar, but rapidly diverge, indicating settlement over time.
The first measurement in the water column furthest from the inlet was much lower than the initial
measurement in the first water column. This is due to larger solids settling quickly upon entry into
the basin, resulting in higher measurements near the front of the basin. The water column was more
uniform near the outlet, demonstrating that TSS and turbidity reached equilibrium towards the rear of
the sediment basin.

Figure 2. TSS and turbidity from the Auburn University Erosion and Sediment Control Testing Facility
(AU-ESCTF): (a) averaged TSS of water column from the two sampling locations over time, (b) averaged
turbidity of water column from the two sampling locations over time, (c) TSS over time and space with
0 m being furthest upstream and closest to the inlet, (d) turbidity over time and space with 0 m being
furthest upstream and closest to the inlet.

Table 2 shows the progressive decrease in suspended sediment through TSS and turbidity
measurements along with the response of single-band spectral data at the two sampling locations in
the basin. From Table 2, a decreased spectral reflectance can be seen over time as turbidity and TSS
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decreases. This was expected since there were fewer particles suspended to reflect light at lower TSS
levels [30,43,44]. Additionally, Table 2 shows that the red band had consistently higher reflectance
compared to the other bands. This was also expected since relatively high concentrations of sediment
were present during this study. Water with high levels of suspended sediment has been found to
exhibit higher reflectances in all wavelengths, especially in the red and NIR channels [45,46].

Table 2. Band and water quality measurements shaded to indicate percentile relative to full dataset.

Sampling Location Closest to the Inlet

Time (h) Green Red RE NIR TSS
Surface (mg/L)

Turbidity
Surface (NTU)

TSS
Middle (mg/L)

Turbidity
Middle (NTU)

TSS
Bottom (mg/L)

Turbidity
Bottom (NTU)

0.25 0.1067 0.2428 0.2503 0.2193 748.4 803.78 716.8 746.55 699.6 769.65
0.75 0.1274 0.2648 0.1880 0.1714 278.4 417.38 309.2 441.53 329.2 522.38
1.00 0.1275 0.2595 0.1858 0.1708 225.6 392.70 250.8 391.13 294.0 442.58
1.25 0.1162 0.2407 0.1632 0.1505 175.2 379.58 228.0 374.33 232.4 411.60
1.50 0.1141 0.2355 0.1608 0.1514 204.4 315.00 208.8 333.90 212.8 373.80
1.75 0.1071 0.2196 0.1434 0.1310 172.8 295.58 190.8 319.20 212.4 352.80
2.00 0.1157 0.2293 0.1497 0.1401 155.6 284.55 184.4 322.88 201.6 347.55
2.25 0.1146 0.2235 0.1439 0.1388 143.2 270.90 178.0 307.13 188.8 345.45
2.50 0.1123 0.2198 0.1422 0.1312 128.0 253.58 163.2 281.93 187.2 358.05
2.75 0.1071 0.2055 0.1341 0.1273 102.0 233.10 158.8 287.18 162.0 353.85
3.00 0.1079 0.2069 0.1309 0.1230 110.0 217.35 142.8 270.38 178.0 323.93
3.25 0.1023 0.1980 0.1268 0.1222 98.0 206.64 130.4 250.95 170.0 302.93
3.50 0.1058 0.2082 0.1293 0.1270 86.8 193.04 106.4 260.40 168.8 308.18
3.75 0.1084 0.2143 0.1323 0.1294 85.2 186.17 134.0 250.43 158.0 318.15
4.00 0.1066 0.2137 0.1293 0.1268 66.4 171.36 129.6 254.63 137.6 301.88
4.75 0.1427 0.2729 0.1787 0.1503 78.0 162.28 112.8 225.75 141.6 266.70
5.00 0.1055 0.2089 0.1276 0.1182 77.6 163.96 110.4 215.78 144.0 273.00
5.50 0.1231 0.2352 0.1386 0.1370 73.6 169.42 105.2 215.25 136.0 260.93
5.75 0.1152 0.2465 0.1393 0.1364 72.4 161.12 101.2 209.58 133.2 269.33
6.00 0.1200 0.2020 0.1271 0.1201 68.0 169.58 101.6 195.72 128.4 270.38

Sampling Location Furthest from the Inlet

Time (h) Green Red RE NIR TSS
Surface (mg/L)

Turbidity
Surface (NTU)

TSS
Middle (mg/L)

Turbidity
Middle (NTU)

TSS
Bottom (mg/L)

Turbidity
Bottom (NTU)

0.25 0.1215 0.2659 0.2111 0.1888 296.8 399.00 371.2 486.68 348.4 488.00
0.75 0.1259 0.2669 0.1716 0.1588 182.4 322.35 244.8 404.78 270.0 405.60
1.00 0.1297 0.2631 0.1694 0.1575 164.0 277.73 218.4 364.35 225.6 348.80
1.25 0.1154 0.2335 0.1402 0.1287 135.2 267.75 189.2 343.35 209.6 340.00
1.50 0.1157 0.2363 0.1488 0.1404 130.4 246.75 162.8 300.83 186.8 317.20
1.75 0.1097 0.2174 0.1345 0.1236 125.6 251.48 142.4 270.90 182.8 322.00
2.00 0.1161 0.2260 0.1393 0.1303 117.6 224.70 132.0 254.10 165.6 299.60
2.25 0.1169 0.2240 0.1391 0.1354 114.8 240.45 114.0 241.50 153.2 309.60
2.50 0.1161 0.2204 0.1318 0.1229 104.0 218.40 112.8 217.88 142.0 278.80
2.75 0.1142 0.2188 0.1287 0.1188 86.8 206.59 104.0 217.88 127.6 268.00
3.00 0.1100 0.2052 0.1238 0.1162 84.8 211.37 100.0 202.65 117.2 229.60
3.25 0.1056 0.2041 0.1205 0.1125 94.8 191.99 101.2 197.66 104.8 209.20
3.50 0.1105 0.2165 0.1252 0.1172 82.4 183.02 98.0 198.35 102.8 224.40
3.75 0.1114 0.2125 0.1248 0.1189 80.4 195.98 95.6 202.97 100.0 213.20
4.00 0.1101 0.2132 0.1203 0.1137 90.0 185.69 92.4 179.81 95.2 200.00
4.25 0.1725 0.3314 0.1628 0.1636 82.4 187.32 87.6 194.46 84.4 191.60
5.00 0.1098 0.2090 0.1163 0.1070 78.0 177.40 89.2 181.76 83.2 186.80
5.50 0.1271 0.2303 0.1266 0.1183 76.0 183.02 80.4 174.62 83.2 186.80
5.75 0.1295 0.2630 0.1432 0.1274 71.2 167.84 78.8 170.73 79.6 178.00
6.00 0.1385 0.2136 0.1319 0.1241 70.0 161.39 78.4 170.10 78.4 170.00
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3.50 0.1058 0.2082 0.1293 0.1270 86.8 193.04 106.4 260.40 168.8 308.18 

3.75 0.1084 0.2143 0.1323 0.1294 85.2 186.17 134.0 250.43 158.0 318.15 

4.00 0.1066 0.2137 0.1293 0.1268 66.4 171.36 129.6 254.63 137.6 301.88 

4.75 0.1427 0.2729 0.1787 0.1503 78.0 162.28 112.8 225.75 141.6 266.70 

5.00 0.1055 0.2089 0.1276 0.1182 77.6 163.96 110.4 215.78 144.0 273.00 

5.50 0.1231 0.2352 0.1386 0.1370 73.6 169.42 105.2 215.25 136.0 260.93 

5.75 0.1152 0.2465 0.1393 0.1364 72.4 161.12 101.2 209.58 133.2 269.33 

6.00 0.1200 0.2020 0.1271 0.1201 68.0 169.58 101.6 195.72 128.4 270.38 

Sampling Location Furthest from the Inlet 

Time 
(h) Green Red RE NIR 

TSS 
Surface 
(mg/L) 

Turbidity 
Surface 
(NTU) 

TSS 
Middle 
(mg/L) 

Turbidity 
Middle 
(NTU) 

TSS 
Bottom 
(mg/L) 

Turbidity 
Bottom 
(NTU) 

0.25 0.1215 0.2659 0.2111 0.1888 296.8 399.00 371.2 486.68 348.4 488.00 

0.75 0.1259 0.2669 0.1716 0.1588 182.4 322.35 244.8 404.78 270.0 405.60 

1.00 0.1297 0.2631 0.1694 0.1575 164.0 277.73 218.4 364.35 225.6 348.80 

1.25 0.1154 0.2335 0.1402 0.1287 135.2 267.75 189.2 343.35 209.6 340.00 

1.50 0.1157 0.2363 0.1488 0.1404 130.4 246.75 162.8 300.83 186.8 317.20 

1.75 0.1097 0.2174 0.1345 0.1236 125.6 251.48 142.4 270.90 182.8 322.00 

2.00 0.1161 0.2260 0.1393 0.1303 117.6 224.70 132.0 254.10 165.6 299.60 

2.25 0.1169 0.2240 0.1391 0.1354 114.8 240.45 114.0 241.50 153.2 309.60 

2.50 0.1161 0.2204 0.1318 0.1229 104.0 218.40 112.8 217.88 142.0 278.80 

2.75 0.1142 0.2188 0.1287 0.1188 86.8 206.59 104.0 217.88 127.6 268.00 

3.00 0.1100 0.2052 0.1238 0.1162 84.8 211.37 100.0 202.65 117.2 229.60 

3.25 0.1056 0.2041 0.1205 0.1125 94.8 191.99 101.2 197.66 104.8 209.20 

3.50 0.1105 0.2165 0.1252 0.1172 82.4 183.02 98.0 198.35 102.8 224.40 

3.75 0.1114 0.2125 0.1248 0.1189 80.4 195.98 95.6 202.97 100.0 213.20 

4.00 0.1101 0.2132 0.1203 0.1137 90.0 185.69 92.4 179.81 95.2 200.00 

4.25 0.1725 0.3314 0.1628 0.1636 82.4 187.32 87.6 194.46 84.4 191.60 

5.00 0.1098 0.2090 0.1163 0.1070 78.0 177.40 89.2 181.76 83.2 186.80 

5.50 0.1271 0.2303 0.1266 0.1183 76.0 183.02 80.4 174.62 83.2 186.80 

5.75 0.1295 0.2630 0.1432 0.1274 71.2 167.84 78.8 170.73 79.6 178.00 

6.00 0.1385 0.2136 0.1319 0.1241 70.0 161.39 78.4 170.10 78.4 170.00 
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The initial analysis was conducted with TSS and turbidity values from all sampling locations. 
The first set of models considered all water column measurements, while the second set of models 

0th percentile 100th percentile

3.2. Regression Model Development

The initial analysis was conducted with TSS and turbidity values from all sampling locations.
The first set of models considered all water column measurements, while the second set of models
considered the water column averages. By testing the correlations between multispectral parameters
versus turbidity and TSS, the four single bands and/or band ratios with the highest r values and
lowest p values were identified (i.e., band, r and p value rows in Table 2). All possible combinations
(ranging from one variable to all four variables) of the selected four bands and/or band ratios were
then inputted as predictive variables in a stepwise linear regression procedure. The best r2 results
were those that included all four variables. Linear regression model coefficients and statistics can be
found in Table 3. The strongest and most significant correlations were all with band ratios and were
consistent between models. Turbidity models had lower r2 values than corresponding TSS models due
to the lower r values of NIR/R and RE/R. Turbidity r values for NIR/R and RE/R increased to greater
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than 0.9 when averaged values were used. These findings were reinforced by linear regression values
and comparisons of modeled predictions and measurements (Figure 3). In Figure 3, the linear fit is
consistent across a wide range of measurements with the mid-water column measurements tending
to be closest to the linear fit. Sediment maps were generated by applying the models to the entire
sediment basin. Sediment maps using the average TSS and turbidity models were applied at various
times to the sediment basin area (Figure 4). Sediment maps using the total TSS and turbidity models
were applied at various times to the sediment basin area (Figure 5). Note that the blue rectangle in
each map is the lamella plate settler and the blue shading that perpendicularly transects the sediment
basin is three rows of wire backed coir baffles attached to metal posts dividing the basin into four
sections. Lastly, reflectance values along with TSS and turbidity measurements from this study and
from Prior et al. [32] were compared (Figure 6).

Table 3. Results of correlation analysis and linear regression.

TSS

Band RE/G NIR/G NIR/R RE/R Intercept Sample Size, n r2 RMSE RPD MNB (%)

r value 0.950 0.932 0.898 0.929
–319.760 60 0.93 30.7 3.6 4.2p value <.0001 <0.0001 <0.0001 <0.0001

Coefficient 7935.402 –8115.633 15,933.000 –14,837.000

Turbidity

Band RE/G NIR/G NIR/R RE/R Intercept Sample Size, n r2 RMSE RPD MNB (%)

r value 0.920 0.913 0.874 0.893
–328.016 60 0.85 44.6 2.5 2.9p value <0.0001 <0.0001 <0.0001 <0.0001

Coefficient 1656.912 –1352.279 2967.325 –2588.921

Averaged TSS

Band RE/G NIR/G NIR/R RE/R Intercept Sample Size, n r2 RMSE RPD MNB (%)

r value 0.969 0.951 0.916 0.948
–319.775 20 0.97 21.8 5.0 1.5p value <0.0001 <0.0001 <0.0001 <0.0001

Coefficient 7932.678 –8112.650 15,927.000 –14,831.000

Averaged Turbidity

Band RE/G NIR/G NIR/R RE/R Intercept Sample Size, n r2 RMSE RPD MNB (%)

r value 0.961 0.953 0.913 0.933
–328.013 20 0.93 30.9 3.5 1.2p value <0.0001 <0.0001 <0.0001 <0.0001

Coefficient 1657.235 –1352.618 2968.020 –2589.587

Figure 3. Scatter plots of measured TSS and turbidity compared to modeled results: (a) all TSS values
and modeled TSS values, (b) all turbidity values and modeled turbidity values, (c) averaged water
column TSS values and modeled averaged water column TSS values, (d) averaged water column
turbidity values and modeled averaged water column turbidity values.
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Figure 4. Generated sUAS average TSS and turbidity maps (blue rectangle is the lamella plate settler): 
(a) average TSS map at time equals 0 h, (b) average turbidity map at time equals 0 h, (c) average TSS 
map at time equals 3 h, (d) average turbidity map at time equals 3 h, (e) average TSS map at time 
equals 6 h, (f) average turbidity map at time equals 6 h. 

Figure 4. Generated sUAS average TSS and turbidity maps (blue rectangle is the lamella plate settler):
(a) average TSS map at time equals 0 h, (b) average turbidity map at time equals 0 h, (c) average TSS
map at time equals 3 h, (d) average turbidity map at time equals 3 h, (e) average TSS map at time equals
6 h, (f) average turbidity map at time equals 6 h.
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Figure 5. Generated sUAS total TSS and turbidity maps (blue rectangle is the lamella plate settler): (a) 
total TSS map at time equals 0 h, (b) total turbidity map at time equals 0 h, (c) total TSS map at time 
equals 3 h, (d) total turbidity map at time equals 3 h, (e) total TSS map at time equals 6 h, (f) total 
turbidity map at time equals 6 h. 

Figure 5. Generated sUAS total TSS and turbidity maps (blue rectangle is the lamella plate settler):
(a) total TSS map at time equals 0 h, (b) total turbidity map at time equals 0 h, (c) total TSS map at
time equals 3 h, (d) total turbidity map at time equals 3 h, (e) total TSS map at time equals 6 h, (f) total
turbidity map at time equals 6 h.
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sampling at Moores Creek, Lanett, AL, USA (MC). 
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data [43–47]. From Figure 2, it should be noted that the second sampling location reached equilibrium 
within the time of sampling, thus allowing for the water column to be homogenous. Conversely, the 
first sampling location, closest to the inlet, still had varying TSS and turbidity measurements within 
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values. The bands and coefficients for all values versus averaged values models were very similar 
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column status is potentially accounted for more holistically in the averaged models, thus resulting in 
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The models in Table 3, show that the use of multiple band ratios produced higher r2 values 
versus single bands; this was expected since multiple band ratios have been shown to reduce the 
effect of sun glint from the water’s surface on recorded reflectance [30,47,48]. The models exhibited 
more significance with red and NIR bands. Averaging water measurements only substantially 
increases the turbidity r2 and r values for NIR/R and RE/R. Overall, r2, RMSE, and RPD agree closely 
as to which models perform well. Generally, RPD > 2 indicates a reliable model [49]. MNB indicated 
that the models tend to overpredict, with the TSS model being the highest. The generated sediment 
maps (Figures 4 and 5) show the expected decrease in suspended sediments over time. The resulting 
maps also looked identical since generated models have similar coefficients (Table 2). This can be 
excepted since the high levels of suspended solids were consistent throughout the water column, 
thus resulting in similar models. 

In contrast, Prior et al. [32] showed that separate models were required to relate sUAS 
multispectral imagery to TSS for cases with low and high sediment loads due to stream flow 
variation. Even with elevated suspended sediment levels present during high flow events, the models 
still struggled, likely due to influence from stream bed reflectance. The results from the current 
sediment basin study suggest that the relationship between reflectance and suspended sediment will 
reach linearity when the bed is not visible due to either excessive cloudiness and or if the depth 
obscures the bed. The linear regression approach probably produced stronger models than in Prior 
et al. [32] since a much wider range of suspended sediment values were collected (Figure 6). This 
wide range of values was much easier to achieve since the sediment basin allowed for continuous 

Figure 6. Comparison of results to Prior et al. [32]: (a) box and whisker plots of reflectance values from
this study (AU-ESCTF) and from Prior et al. [32] sampling at Moores Creek, Lanett, AL, USA (MC),
(b) box and whisker plots of TSS and turbidity from this study (AUESCTF) and from Prior et al. [32]
sampling at Moores Creek, Lanett, AL, USA (MC).

4. Discussion

From Table 2, there was a general increase in spectral reflectance with increased TSS and turbidity.
The red band was consistently the highest while the green band was consistently the lowest (Table 2 and
Figure 6). Red and NIR bands should have the highest spectral response with high suspended sediment
concentrations partnered with dampened response from the other spectral bands; these results agree
with several other studies comparing sediment concentrations to spectral data [43–47]. From Figure 2,
it should be noted that the second sampling location reached equilibrium within the time of sampling,
thus allowing for the water column to be homogenous. Conversely, the first sampling location, closest
to the inlet, still had varying TSS and turbidity measurements within the water column. Despite these
discrepancies, the models were able to produce high r2 values, suggesting that water column status
does not affect reflectance, at least with high concentrations. This finding is reinforced by comparison
between the generated models for average values and for all values. The bands and coefficients for all
values versus averaged values models were very similar (Table 3) and the generated maps from these
models are almost identical (Figures 4 and 5). Water column status is potentially accounted for more
holistically in the averaged models, thus resulting in better model statistics (Table 3).

The models in Table 3, show that the use of multiple band ratios produced higher r2 values versus
single bands; this was expected since multiple band ratios have been shown to reduce the effect of
sun glint from the water’s surface on recorded reflectance [30,47,48]. The models exhibited more
significance with red and NIR bands. Averaging water measurements only substantially increases the
turbidity r2 and r values for NIR/R and RE/R. Overall, r2, RMSE, and RPD agree closely as to which
models perform well. Generally, RPD > 2 indicates a reliable model [49]. MNB indicated that the
models tend to overpredict, with the TSS model being the highest. The generated sediment maps
(Figures 4 and 5) show the expected decrease in suspended sediments over time. The resulting maps
also looked identical since generated models have similar coefficients (Table 2). This can be excepted
since the high levels of suspended solids were consistent throughout the water column, thus resulting
in similar models.

In contrast, Prior et al. [32] showed that separate models were required to relate sUAS multispectral
imagery to TSS for cases with low and high sediment loads due to stream flow variation. Even with
elevated suspended sediment levels present during high flow events, the models still struggled, likely
due to influence from stream bed reflectance. The results from the current sediment basin study suggest
that the relationship between reflectance and suspended sediment will reach linearity when the bed is
not visible due to either excessive cloudiness and or if the depth obscures the bed. The linear regression
approach probably produced stronger models than in Prior et al. [32] since a much wider range of
suspended sediment values were collected (Figure 6). This wide range of values was much easier
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to achieve since the sediment basin allowed for continuous sampling over six hours of settlement,
whereas stream suspended sediment load is heavily dependent on rainfall and watershed size.

One of the main challenges of this study was syncing of the automatic water samplers among
each other and with the sUAS flight. Another challenge was connecting the sUAS to the multispectral
sensor within the 15-min break between sampling. Since the plan was to conduct samplings every
15 min for six hours, there should have been 24 samplings. However, only 20 successful samplings
were collected due to difficulty in connecting the multispectral sensor and the overheating of the
sUAS. Moreover, it should be noted that the automatic samplers purged the intake tubes each time
before sampling, causing air bubbles to rise through the water column. This could have affected the
settlement of particles and may be the source of the small inflections toward the end of sampling seen
in Figure 2. Timing the launch of the sUAS before the purge of the intake tubes was also difficult,
thus sUAS imagery during purging could have skewed some results due to the presence of air bubbles
at the surface in some instances. Despite these uncertainties, settlement of solids followed an overall
expected trend, and stepwise linear regression was able to produce models that could be used for TSS
and turbidity predictions.

Several challenges might be faced when implementing sUAS multispectral suspended sediment
monitoring for management applications. The most important aspect of sUAS utilization is maintaining
a safe environment. This could be difficult to achieve if a sUAS is being used on a construction site.
Maintaining a safe launch and landing zone, ensuring line of site visibility as well as keeping a safe
distance from obstacles could prove to be difficult on a construction site. Sensor calibration would
need to occur prior to every flight as well as ensuring that no shadows are being cast on the sediment
basin. Flights are best conducted on overcast days, usually during midmorning, to reduce the potential
sun glint off the water surfaces. Hazardous weather, including rain and high wind speeds, should be
avoided. Standards and best practices would need to be established and accepted by industry and
academia as well as federal and state governments in order to ensure legitimate compliance through
sUAS multispectral remote sensing.

Results of this study show that sUAS multispectral imagery could be alternatively used for TSS
and turbidity monitoring instead of relying on grab samples. Future studies could improve these
results by conducting multiple sediment basin tests with the same soil type to ensure consistent results.
Additional tests with different soil types could result in varying spectral reflectance responses, if soil
types and/or grain sizes reflect differently. Incorporating sampling depth in tests with lower suspended
sediment concentrations could also be beneficial to determine the influence of bed reflectance on sUAS
multispectral measurements.

5. Conclusions

This study indicates that sUAS multispectral imagery and linear regression modeling can determine
elevated levels of TSS and turbidity with high accuracy in a sediment basin. The measured spectral
reflectance showed an expected increase with higher levels of TSS and turbidity in addition to the red
and NIR bands increasing the most. Developed models were able to measure a wide range of TSS and
turbidity levels while also accounting for both homogeneous and heterogenous water column states.
Only the turbidity model that considered all measurements had an r2 value below 0.9. The turbidity
model that averaged water column values had slightly increased individual band ratio r values and an
over increased r2 value above 0.9.

This study showed that depth and bed reflectance did not need to be accounted for with elevated
TSS and turbidity levels. Future studies should include multiple sediment basin experiments for
validation and correlation assurance. Additionally, future studies could include determining when
depth and bed reflectance need to be considered and if various soil types and compositions reflect
differently when in suspension. This study exhibits the potential for using sUAS technology to
assess, measure and monitor sediment basins after high flow events. Further studies are needed to
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establish monitoring protocols and to investigate if sUAS technology can be used on streams receiving
construction and municipal discharges during high flow events.
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