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Abstract: Geospatial crop water use mapping is critical for field-scale site-specific irrigation
management. Landsat 7/8 satellite imagery with a widely adopted METRIC (Mapping Evapotranspiration
at high Resolution with Internalized Calibration) energy balance model (LM approach) estimates
accurate evapotranspiration (ET) but limits field-scale spatiotemporal (30 m pixel−1, ~16 days)
mapping. A study was therefore conducted to map actual ET of commercially grown irrigated-field
crops (spearmint, potato, and alfalfa) at very high-resolution (7 cm pixel−1). Six small unmanned
aerial system (UAS)-based multispectral and thermal infrared imagery campaigns were conducted
(two for each crop) at the same time as the Landsat 7/8 overpass. Three variants of METRIC
model were used to process the UAS imagery; UAS-METRIC-1, -2, and -3 (UASM-1, -2, and -3)
and outputs were compared with the standard LM approach. ET root mean square differences
(RMSD) between LM-UASM-1, LM-UASM-2, and LM-UASM-3 were in the ranges of 0.2–2.9, 0.5–0.9,
and 0.5–2.7 mm day−1, respectively. Internal calibrations and sensible heat fluxes majorly resulted in
such differences. UASM-2 had the highest similarity with the LM approach (RMSD: 0.5–0.9, ETdep,abs

(daily ET departures): 2–14%, r (Pearson correlation coefficient) = 0.91). Strong ET correlations
between UASM and LM approaches (0.7–0.8, 0.7–0.8, and 0.8–0.9 for spearmint, potato, and alfalfa
crops) suggest equal suitability of UASM approaches as LM to map ET for a range of similar crops.
UASM approaches (Coefficient of variation, CV: 6.7–24.3%) however outperformed the LM approach
(CV: 2.1–11.2%) in mapping spatial ET variations due to large number of pixels. On-demand UAS
imagery may thus help in deriving high resolution site-specific ET maps, for growers to aid in timely
crop water management.

Keywords: actual evapotranspiration; high spatiotemporal resolution; multispectral imagery;
thermal infrared imagery; METRIC energy balance model; irrigated field crops

1. Introduction

Satellite-based remote sensing (RS) has been extensively used with energy balance models for
regional scale evapotranspiration (ET) mapping [1–8]. One such widely adopted model is Mapping
ET at high-resolution with Internalized Calibration (METRIC) [9,10]. The METRIC model uses
Landsat 5/7/8, or Terra and Aqua satellite based multispectral and thermal infrared imagery data to
compute ET as an energy balance residue. METRIC is advantageous for its independence from surface
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conditions, stabilized sensible heat flux (H) estimations, and internal calibration using hot and cold
anchor pixels. This internal calibration compensates for any computational biases that arise from
atmospheric dynamics, surface albedo, net radiation (Rn), surface temperature (Ts), air temperature
(Ta), soil heat flux (G), and wind speed (u). The METRIC model has been evaluated for a wide range of
irrigated field and orchard/tree crops under different agroclimatic zones, with studies reporting ET
estimation errors in the ranges of 1 to 11% [11–22].

Conventional METRIC uses high orbiting satellite imagery and as a result has low spatial
(~30 m pixel−1 for Landsat and 1 km pixel−1 for Terra and Aqua satellites) and temporal resolution
(~16 days for Landsat) ET maps. Cloud cover is an additional challenge. Alternatively, the ET mapping
can be improved spatiotemporally using unmanned aerial system (UAS)-based imagery data [23–25]
that can be collected on-demand [7,26–29]. Recent UAS technology advancements have enabled rapid
assessment of crop vigor and soil characteristics, crop water requirements, disease infestation, and yield
prediction [23,26–30]. Pertinent to ET estimation, Chavez et al. [27] have used airborne imagery data
with METRIC and reported daily ET errors of 9% for corn and sorghum grown on experimental
plots. Similarly, Ortega-Farias et al. [31] have estimated ET using UAS imagery for a drip irrigated
olive orchard and reported maximum errors below 7%. Brenner et al. [32] have estimated latent
heat fluxes (LE) from energy balance model for irrigated grassland and observed errors below 10%.
They also reported strong correlations of up to 0.9 between estimated LE and that measured with eddy
covariance system. Furthermore, Paul et al. [33] have reported suitability of UAS based imagery in
conjunction with METRIC model to estimate ET with maximum errors below 11% for irrigated forage,
corn, and sorghum crops. All these studies have experimentally illustrated potential of UAS based RS
data for accurate ET estimation. However, ET mapping of commercial crop fields from the grower’s
perspective has been limited for site-specific irrigation management. Additionally, the differences in
spatial ET mapping due to in-field elevation variability and near-site available meteorological inputs
have not been evaluated with respect to the conventional satellite-based METRIC approach.

Agricultural growers typically use standard crop coefficients or point soil moisture measurements
for irrigation scheduling and supply water at a constant rate to the entire field. This results in either
under or over irrigation. Satellite imagery also restricts site-specific irrigation management due to low
spatiotemporal resolutions. Alternatively, ET mapping with UAS imagery could be directly applicable
to growers. This study therefore assesses the suitability of UAS-based imagery to geospatially map
actual ET at very high-resolution relative to the satellite-based imagery. The spatial ET differences
resulting due to local field conditions and near-site meteorological inputs are also assessed. The specific
objectives are: (1) ET mapping of irrigated spearmint, potato, and alfalfa crops under commercial
operations using UAS-based multispectral and thermal infrared imagery with variants of METRIC
energy balance model, and (2) parametric comparison of the model outputs and spatial ET variation
assessment potentials from UAS imagery with that from satellite (Landsat 7/8) imagery.

2. Materials and Methods

2.1. Field Sites

Selected were commercial sites (Table 1) planted with spearmint (Cultivar (cv.) Native) in
Toppenish, potato (cv. Russet Burbank) in Paterson, and alfalfa (cv. FD-4) in Prosser in Washington
state (Figure 1). All sites received limited rainfall (<60 mm), and seasonal mean air temperatures up to
20 ◦C and cumulative reference ET between 1000 to 1200 mm were observed.
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Table 1. Details of the field site and weather parameters for 2018 growth season.

Parameter Site 1 Site 2 Site 3

Crop Spearmint Potato Alfalfa

Location, WA Toppenish (46◦22′19.16′′ N,
120◦27′21.91′′ W)

Paterson (45◦59′43.52′′ N,
119◦33′57.58′′ W)

Prosser (46◦17′35.16′′ N,
119◦44′38.82′′ W)

Irrigation system Center pivot Center pivot Wheel-line
Study plot size (m ×m) 175 × 135 275 × 170 300 × 140

Mean wind speed (m s−1) 1.8 2.1 2.6
Mean relative humidity (%) 46.9 55.5 52.9

Total precipitation (mm) 25 53 57.2
Mean air temperature (◦C) 20.1 18.2 18

Cumulative seasonal reference
ET (alfalfa-based, mm) 1042 1153 1216
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Figure 1. Geolocations of (a) spearmint, (b) potato, and (c) alfalfa crop study sites (Source: Google Maps).

2.2. Data Acquisition Campaigns

2.2.1. UAS-Based Imagery

A UAS (ATI AgBOT™, Aerial Technology International, Wilsonville, OR, USA) was deployed
for imagery data acquisition (Figure 2). On-board was a multispectral imaging sensor (RedEdge 3,
MicaSense, Inc., Seattle, WA, USA) with Blue (B, 475± 10 nm), Green (G, 560± 10 nm), Red (R, 668± 5 nm),
Red Edge (RE, 717± 5 nm), and Near Infrared (NIR, 840± 20 nm) wavebands and a radiometric calibrated
thermal infrared imaging sensor (11,000 ± 3000 nm, Tau 2 640, FLIR Systems, Wilsonville, OR, USA).
Image-specific geotags for the multispectral sensor were received from the global positioning system
(GPS) receiver on-board UAS and that for thermal sensor were received from an independent GPS
receiver (ThermalCapture GPS, TeAx Technology GmbH, Wilnsdorf, Germany). On-board the UAS
was also a downwelling light sensor (DLS, MicaSense, Inc., Wilnsdorf, WA, USA) facing skyward to
embed the solar irradiance data in the imagery spectrum during flights.

UAS flights were configured using a ground control software (MissionPlanner, version 1.3.49,
Ardupilot, USA) for altitude of 100 m above ground level (AGL) to acquire multispectral and thermal
images at ground sampling resolutions of 7 and 13 cm pixel−1, respectively. The software aided in
configuring the multispectral sensor to acquire images at 85% front and 75% side overlaps. The thermal
imaging sensor was configured independently to acquire frames at 3 Hz to ensure image overlaps
of 90–95%. Imagery data was stored on-board in respective memory cards for the two sensors.
A calibrated reflectance panel (CRP, Micasense Inc., Seattle, WA, USA) was imaged before and after
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each flight and these reference images were used for radiometric calibration of the multispectral
imagery (Figure 2).

Total six UAS flights were conducted in summers of 2018 (two missions/site × 3 sites) during
the dates and approximate times of the Landsat 7/8 overpass. UAS imagery for spearmint crop
was collected 10 days before the first harvest (dataset-1) and 37 days before the second harvest
(dataset-2). Imagery for the potato crop was acquired 72 days (dataset-3) and 48 days before harvest
(DBH, dataset-4). Data for the alfalfa crop was collected 2 days before the first harvest (dataset-5) and
7 days before the second harvest (dataset-6).
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Figure 2. High-resolution imagery campaigns with optical sensors integrated with the small unmanned
aerial system.

2.2.2. Satellite-Based Imagery and Weather Data

Landsat 7/8 imagery datasets and 1-arc SRTM (Shuttle Radar Topography Mission) digital
elevation models (DEM) were downloaded for the data collection days (Table 2). Weather data logged
at every 15 min was downloaded from the nearest (1–5 km) stations (AgWeatherNet, Washington State
University, Washington, WA, USA). All the data collected on a day were grouped to have a total of six
datasets (see Table 2) ready for analysis.

Table 2. Summary of datasets used as inputs to METRIC energy balance.

Dataset DOY DBH Crop UAS Imagery Landsat 7/8 Imagery Weather & Scene Metadata

1 175 10 Spearmint
√ √ √

2 224 37 Spearmint
√ √ √

3 184 72 Potato
√ √ √

4 208 48 Potato
√ √ √

5 191 2 Alfalfa
√ √ √

6 223 7 Alfalfa
√ √ √

DOY: day of year, DBH: days before harvest,
√

: subset data, scene metadata: date, time, sun azimuth and solar
elevation angles during flights.

2.3. Imagery Analysis and METRIC Models Implementation

2.3.1. Preprocessing

UAS imagery was initially processed to obtain orthomosaics of the study site(s) through
a series of image stitching operations (Figure 3a) in a photogrammetry and mapping software
(Pix4D Mapper, Pix4D, Inc., Lausanne, Switzerland). Independent surface temperature orthomosaic
was then georeferenced and resampled to the multispectral orthomosaic (7 cm pixel−1) in Quantum
Geographic Information System (QGIS) platform (ver.2.18.16, Open Source). The “Georeferencer” tool
with “Thin Plate Spline” as the transformation type was used for georeferencing and the “Nearest
Neighborhood” method was used for resampling. Five surfaces reflectance (B, G, R, RE, and NIR



Drones 2020, 4, 52 5 of 18

(Figure 3b)), one surface temperature (Figure 3c) and a DEM orthomosaic were obtained for each
UAS mission.
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2.3.2. METRIC Model Implementation

The METRIC model is detailed in Allen et al. [9]. Briefly, model computes Rn, G, H and residual
LE within the blending height (100–200 m AGL) which can be converted to actual water loss to the
atmosphere (ET). METRIC eliminates the need for accurate surface temperature (Ts) measurements.
It uses ground weather station-based reference ET (ETr, alfalfa crop based) for internal calibration
and reduction of biases related to satellite imagery. The internal calibration indexes near-surface
temperature gradients to the radiometric Ts using extreme hot and cold anchor pixels. The model
was primarily developed for agricultural fields and does not need crop specific inputs. This enhances
METRIC’s applicability to high-resolution RS data. Small UAS based RS data captures distinct features
of soil, vegetation, or mixed regions that can improve internal calibration of METRIC model with
respect to the study environment [26–29,33].

Conventional METRIC maps regional ET for 185×185 km scene size and all its assumptions might
not necessarily apply at the field-scale. Therefore, METRIC model was implemented with three variant
approaches. The resulting approaches are named as UAS-METRIC-1, -2, and -3 (UASM-1, -2, and -3)
with pertinent modification highlights summarized in Table 3. UASM-1 (Figure 4) was implemented to
observe relative differences only due to UAS imagery specific inputs that include (i) scene metadata from
flight missions, (ii) surface albedo from on-board multispectral imager, and (iii) high-resolution DEM.
All other equations were identical as the conventional METRIC. Similar to LM, leaf area index (LAI) in
UASM-1 was calculated using soil adjusted vegetation index (SAVI) with background adjustment factor
(L) of 0.1 for high crop cover [34,35]. UASM-2 was employed for two reasons: (i) possibility to reduce
model input data needs from the grower perspective and (ii) to assess pertinent differences caused by
the DEM typical to flat agricultural fields located in non-terrain regions. Implementation of UASM-2
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was identical to UASM-1 except that UASM-2 used a flat DEM for local field conditions. This scenario
forced surface slopes and aspects to zero and elevation as the mean of all pixels in the DEM.
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Figure 4. Flow chart for processing UAS-based imagery data with Mapping Evapotranspiration at
High Resolution with Internalized Calibration (METRIC) energy balance model.

UASM-3 considered site-specific energy balance inputs typical to agricultural field plots imaged
in this study. Pertinent modifications include (i) DEM as per field conditions (as in UASM-2), (ii) LAI
calculation from spatial fraction canopy cover (FCC), (iii) incoming shortwave radiation (ISWR)
from the nearest open field weather station, (iv) incoming longwave radiation (ILWR) calculation
using air temperature (Ta), and (v) momentum roughness length (MRL) calculated without surface
slope (S) adjustments. The LAI calculation in UASM-3 were based on the fact that surface features
(i.e., soil, vegetation, and mixed) could be distinctively captured in every pixel [28–30] of high-resolution
imagery. FCC was first derived from the normalized difference vegetation index (NDVI) [28,36,37] and
soil was segmented using NDVI vegetation threshold mask (>0.3) to ensure LAI for the vegetation
only. ISWR measurements from the nearest weather station may be assumed as actual shortwave
radiation on the surface for the fact that these are open-field stations installed at 2 m AGL and located
within 5 km radius from the study sites. Moreover, conventional ISWR calculation might get affected
by cloud cover and other atmospheric dynamics [38,39]. Ta from nearest weather station was used to
calculate ILWR and can be assumed constant for a field (Stefan Boltzmann’s law, [40]).

For comparisons, Landsat imagery was processed through the conventional METRIC model
as described in a “R package” (water, [41,42]), hereafter abbreviated as LM (Landsat-METRIC)
approach. Level-2 surface reflectance products were downloaded for Landsat 8 while such products
were calculated within the package for Landsat 7 datasets. Similar to the LM approach, all UASM
approaches performed an energy balance within the blending height and used the conventional
automated approach of selecting anchor pixels.

2.4. Output Comparisons

This study aimed at evaluating spatial ET maps from UAS based remote sensing (RS) data relative
to satellite-based RS data for crops grown in commercial farming operations. As the conventional
METRIC model is well-established for spatial ET mapping for its corroboration in over 25 countries and
in almost all types of agroclimatic zones [22], the additional field validation was deemed not necessary,
i.e., outside the scope of the study. Thus, we did not conduct ground-reference ET measurements.
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Table 3. METRIC model modifications for UAS imagery compared to the conventional Landsat-METRIC (LM) approach.

Parameter LM UASM-1 UASM-2 UASM-3

Metadata Landsat 7/8 based UAS flight based

Surface albedo Landsat 7/8 imager based UAS imager based

Digital elevation model (DEM)
SRTM grids Derived corresponding to small UAS-based imagery

Considers variable elevation, slope and aspect per pixel Considers constant elevation by forcing slope and aspects to zero

Leaf area index (LAI) LAI = −(ln[(0.69−SAVI)/0.59])/0.91
SAVI = ((1 + L) ×(RNIR−RR))/(L + (RNIR+RR)), L = 0.1

LAI = (−ln(1−FCC))/K
FCC = (NDVI−NDVImin)/(NDVImax−NDVImin)

FCC = 0 for NDVI < 0.3

Incoming shortwave radiation
(ISWR)

Rs↓ = Gsc × cosθrel × τsw/d2

Measured directly from the nearest open field
weather station.cosθrel calculated for non-horizontal surface using surface slopes

and aspect.

cosθrel calculated for horizontal
surface by forcing surface slope

and aspect to zero.

Incoming longwave radiation
(ILWR) RL↓ = εaσTs4 RL↓ = εaσTa

4

Momentum roughness length
(MRL)

Zom = 0.018 × LAI

Zom,mtn = Zom × (1 + (((180×S)⁄π)−5)/20) No adjustment

NDVI: Normalized difference vegetation index, SAVI: Soil adjusted vegetation index, K: Solar extinction coefficient, RNIR: Reflectance in near-infrared band, RR: Reflectance in red
band, L: Soil background adjustment factor, θrel: Angle of incidence, τsw: Atmospheric transmissivity, d: Relative earth-sun distance, Gsc: Solar constant, εa: Atmospheric emissivity, σ:
Stefan Boltzmann’s constant, Ts: Surface temperature, Ta: Air temperature, and S: Surface slope derived from DEM and Zom,mtn: Momentum roughness length adjusted for varying
elevation surface.
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Since the energy balance computations with LM approach were performed for images of
180 km × 180 km dimension, intermediate and final output maps were clipped to the study site
areas covered by the UAS flights. The mean, standard deviation (SD), and coefficients of variation
(CV, %) to assess spatial variability capturing potentials of ET pixels from LM (ETLM) and UASM-1, -2,
and -3 approaches (ETUASM) were calculated. Percentage absolute departures of mean ET (ETdep,abs,
Equation (1)) from all UAS-based approaches with respect to that from the LM approach were also
calculated. Next, ET maps from all UAS-based approaches were resampled to the resolution equal to
ET maps from LM approach (30 m pixel−1) using the “Nearest Neighborhood” method and region of
interest (ROI) samples were randomly extracted. Sample ET from these ROIs were compared using
root mean square difference (RMSD) and Pearson’s linear correlation (r) at 5% significance (RStudio,
Inc., Boston, MA, USA).

ETdep,abs (%) = (|ETUASM − ETLM| × 100)/ETLM (1)

3. Results

Major energy balance computations from the UASM and LM approaches are presented in the
following subsections. Results pertinent to spearmint (Table 4, Figures 5a–d and 6), potato (Table 5,
Figures 5e–h and 7), and alfalfa crops (Table 6, Figures 5i–l and 8) are also presented.

3.1. Crop Vigor

The UAS imagery mapped crop vigor indicators of SAVI (Mean: 0.7–0.9, SD: 0.1–0.2) and NDVI
(Mean: 0.8–0.9, SD: 0.1–0.2) similar to the Landsat imagery mapped SAVI (Mean: 0.7–0.85, SD: ~0.02)
and NDVI (Mean: 0.8–0.9, SD: 0.02–0.1). The mean LAI from LM approach ranged between 4–6 m2

m−2 and that from UASM-1/-2 and -3 ranged from 5.1–5.8 m2 m−2 and 3.5–5.9 m2 m−2, respectively.
Mean FCC ranges were 0.91–0.93 (SD: ~0.14) for spearmint, 0.92–0.93 (SD: ~0.1) for potato, and 0.8–0.9
(SD: 0.1–0.24) for the alfalfa fields. All these estimates show high density vegetation also observed at
the sites.

3.2. Net Radiation, Soil Heat and Sensible Heat Fluxes

The mean ISWR ranges from the LM, UASM-1, -2, and -3 approaches were 819–903, 817–927,
818–921, and 737–949 W m−2, respectively. Mean ILWR ranges from those approaches were 337–396,
296–347, 296–347, and 321–375 W m−2, respectively. Mean outgoing longwave radiation (OLWR) from
the LM, UASM-1, -2, and -3 approaches ranged between 440–514, 381–451, 381–451, and 381–451 W
m−2, respectively and Rn ranges were 508–594, 596–685, 596–685, and 564–716 W m−2. Mapped G
from the LM, UASM-1, -2, and -3 approaches were in the ranges of 23.8–63.6, 19.4–35.9, 19.4–35.9, and
18.2–36.1 W m−2, respectively and mean H ranges were 60–181, 114–237, 126–250, and 127–233 W
m−2, respectively.

3.3. Daily Evapotranspiration

The mean ranges of mapped instantaneous ET (ETinst) from the LM, UASM-1, -2, and -3 approaches
were 0.5–0.7, 0.5–0.7, 0.5–0.7, and 0.5–0.7 mm h−1, respectively and pertinent ETrF ranges were 0.7–0.9,
0.74–0.95, 0.7–1, and 0.7–0.93, respectively. ETr24 for the six datasets were 9.4, 5.2, 6.3, 6.5, 8.8,
and 8.5 mm day−1. The mean of mapped daily ET from LM, UASM-1, -2, and -3 approaches were in the
ranges of 4–7, 4.3–8.4, 4.1–6.7, and 3.9–8.2 mm day−1, respectively. Ranges of absolute departures of
daily ET (ETdep,abs) from UASM-1, -2, and -3 were 0.4–20.8, 2.0–14.4, and 2.2–21% of ETLM, respectively
for the selected crops. Highest correlations and minimum RMSDs (Figures 6–9) were observed for
UASM-2 (r: 0.66–0.9, RMSD: 0.5–0.9) followed by UASM-1 (r: 0.65–0.9, RMSD: 0.2–2.9) and UASM-3
(r: 0.65–0.9, RMSD: 0.5–2.7) approaches compared to the LM approach.
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Table 4. Summary of intermediate and final energy balance outputs for spearmint crop.

Approach LM UASM-1 UASM-2 UASM-3

Parameter (Unit) Mean SD Mean SD Mean SD Mean SD

DBH 10 37 10 37 10 37 10 37 10 37 10 37 10 37 10 37

SAVI 0.8 0.9 0.03 0.01 0.8 * 0.8 * 0.1 * 0.1 * 0.8 * 0.8 * 0.1 * 0.1 * 0.8 * 0.8 * 0.1 * 0.1 *
NDVI 0.9 0.9 0.02 0.02 0.9 * 0.9 * 0.1 * 0.1 * 0.9 * 0.9 * 0.1 * 0.1 * 0.9 * 0.9 * 0.1 * 0.1 *
FCC - - - - - - - - - - - - 0.9 0.9 0.2 0.1

LAI (m2 m−2) 5.8 6.0 0.3 0.1 5.5 * 5.7 * 1.2 * 1.0 * 5.5 * 5.7 * 1.2 * 1.0 * 5.5 5.9 1.6 0.9
MRL (m) 0.1 0.1 0.004 0.001 0.1 0.1 0.02 0.02 0.1 0.1 0.02 0.02 0.1 0.1 0.03 0.02

ISWR (W m−2) 903 820 0.02 0.01 899 817 6.1 8.3 901 820 0.01 0.01 934 737 - -
ILWR (W m−2) 396 352 4.4 3.8 347 * 296 * 24.2 * 11.0 * 347 * 296 * 24 * 11.0 * 349 334 - -
OLWR (W m−2) 515 455 5.7 4.9 451 * 382 * 29.7 * 13.2 * 451 * 382 * 29.7 * 13.2 * 451 381 29.7 13.5

Net radiation (Rn, W m−2) 594 508 17.3 11.3 677 * 596 * 16.3 * 17.7 * 677 * 596 * 16.3 * 17.7 * 707 564 29.2 22.3
Soil heat flux (G, W m−2) 48.3 23.8 8 3.6 35 * 19.4 * 22 * 8.4 * 35.2 * 19.4 * 22 * 8.4 * 36 18.2 20.2 7.2

Sensible heat flux (H, W m−2) 106 168 13.5 12 188 237 87 41 165 250 87 39 194 234 80 29.5
ETinst (mm h−1) 0.66 0.47 0.04 0.02 0.67 0.50 0.15 0.08 0.65 0.48 0.15 0.08 0.65 0.46 0.15 0.08

ETrF 0.73 0.78 0.05 0.04 0.74 0.83 0.16 0.13 0.71 0.79 0.16 0.13 0.72 0.76 0.16 0.13
ETr24 (mm day−1) 9.43 * 5.2 * 0 0 9.43 * 5.16 * 0 0 9.43 * 5.16 * 0 0 9.43 * 5.16 * 0 0

Daily ET (mm day−1) 6.99 4.01 0.22 0.20 6.96 4.26 1.53 0.67 6.72 4.09 1.5 0.65 6.79 3.92 1.53 0.65
ETdep,abs (%) - - - 0.43 6.23 - - 3.86 2.00 - - 2.86 2.24 - -

ETdep,abs (%): Percentage absolute ET departure with respect to LM approach, SD: Standard deviation, and * indicates same values for different approaches on same data collection day.

Table 5. Summary of intermediate and final energy balance outputs for potato crop.

Approach LM UASM-1 UASM-2 UASM-3

Parameter (Unit) Mean SD Mean SD Mean SD Mean SD

DBH 72 48 72 48 72 48 72 48 72 48 72 48 72 48 72 48

SAVI 0.86 0.82 0.02 0.03 0.85 * 0.85 * 0.09 * 0.07 * 0.85 * 0.85 * 0.09 * 0.07 * 0.85 * 0.85 * 0.09 * 0.07 *
NDVI 0.90 0.85 0.02 0.02 0.90 * 0.88 * 0.09 * 0.06 * 0.90 * 0.88 * 0.09 * 0.06 * 0.90 * 0.88 * 0.09 * 0.06 *
FCC - - - - - - - - - - - - 0.93 0.92 0.12 0.08

LAI (m2 m−2) 6 4.02 0 0.46 5.83 * 5.82 * 0.85 * 0.70 * 5.83 * 5.82 * 0.85 * 0.70 * 5.52 5.11 0.71 0.62
MRL (m) 0.08 0.04 0 0.006 0.09 0.09 0.01 0.01 0.11 0.1 0.02 0.01 0.1 0.09 0.01 0.01

ISWR (W m−2) 903.5 854.9 0.01 0.01 927.1 873.4 7.35 9.95 921.3 865.6 0.003 0.003 949 889 - -
ILWR (W m−2) 337.2 370.3 4.38 3.68 314.3 * 335.8 * 4.14 * 9.99 * 314.3 * 335.8 * 4.14 * 9.99 * 321.3 375.4 - -
OLWR (W m−2) 439.6 478.5 5.71 4.02 409.9 * 434.7 * 4.11 * 12.04 * 409.9 * 434.7 * 4.11 * 12 * 409.8 434.6 4.05 12

Net radiation (Rn, W m−2) 565.5 546.6 9.22 6.68 685.2 * 617 * 15.0 * 18.42 * 685.2 * 617 * 15.0 * 18.4 * 715.8 675.3 17.4 20.5
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Table 5. Cont.

Approach LM UASM-1 UASM-2 UASM-3

Parameter (Unit) Mean SD Mean SD Mean SD Mean SD

DBH 72 48 72 48 72 48 72 48 72 48 72 48 72 48 72 48

Soil heat flux (G, W m−2) 29 46.9 3.94 5.50 22.5 * 29.9 * 9.53 * 10.97 * 22.5 * 29.9 * 9.53 * 11 * 23.5 32.6 9.50 10.8
Sensible heat flux (H, W m−2) 133 91.8 13.4 6.35 175.3 180.5 71.7 17.78 201.1 134.8 67.6 20.5 202.5 218.7 67.5 12.4

ETinst (mm h−1) 0.59 0.61 0.02 0.01 0.71 0.60 0.13 0.04 0.68 0.67 0.12 0.05 0.72 0.62 0.13 0.05
ETrF 0.75 0.89 0.03 0.02 0.91 0.88 0.10 0.06 0.86 0.98 0.10 0.07 0.91 0.92 0.10 0.07

ETr24 (mm day−1) 6.27 * 6.47 * 0 0 6.27 * 6.47 * 0 0 6.27 * 6.47 * 0 0 6.27 * 6.47 * 0 0
Daily ET (mm day−1) 4.71 5.76 0.17 0.12 5.69 5.71 0.63 0.42 5.39 6.35 0.60 0.45 5.71 5.95 0.63 0.44

ETdep,abs (%) - - - - 20.8 0.87 - - 14.4 10.2 - - 21.2 3.30 - -

* indicates same values for different approaches on same data collection day.

Table 6. Summary of intermediate and final energy balance outputs for alfalfa crop.

Approach LM UASM-1 UASM -2 UASM-3

Parameter (Unit) Mean SD Mean SD Mean SD Mean SD

DBH 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7

SAVI 0.83 0.68 0.01 0.19 0.85 * 0.73 * 0.07 * 0.20 * 0.85 * 0.73 * 0.07 * 0.20 * 0.85 * 0.73 * 0.07 * 0.20 *
NDVI 0.83 0.83 0.11 0.08 0.82 * 0.81 * 0.17 * 0.22 * 0.82 * 0.81 * 0.17 * 0.22 * 0.82 * 0.81 * 0.17 * 0.22 *
FCC - - - - - - - - - - - - 0.92 0.80 0.08 0.24

LAI (m2 m−2) 5.31 4.74 0.68 1.24 5.25 * 5.05 * 1.53 * 0.98 * 5.25 * 5.05 * 1.53 * 0.98 * 5.05 3.54 0.96 1.18
MRL (m) 0.07 0.06 0.02 0.02 0.08 0.08 0.01 0.02 0.09 0.09 0.01 0.02 0.09 0.04 0.02 0.01

ISWR (W m−2) 886.1 822.9 0.02 0.02 902.3 840.4 9.19 9.90 889.2 821.3 0.003 0.003 872 804.5 - -
ILWR (W m−2) 367.2 367 7.00 6.89 324.1 * 312.2 * 27.8 * 20.7 * 324.1 * 312.2 * 27.8 * 20.7 * 331.9 346.7 - -
OLWR (W m−2) 475.1 477.6 8.58 8.34 419.2 * 401.9 * 32.5 * 23.2 * 419.2 * 401.9 * 32.5 * 23.2 * 419.5 401.8 32.5 23.1

Net radiation (Rn, W m−2) 592.5 534.7 9.03 5.73 661.4 * 620.7 * 28.7 * 29.1 * 661.4 * 620.7 * 28.7 * 29.1 * 654.6 639.8 53.5 46.7
Soil heat flux (G, W m−2) 63.6 44.6 15.3 15.7 35.9 * 27.6 * 25.6 * 21.1 * 35.9 * 27.6 * 25.6 * 21.1 * 33.7 27.7 20.2 19

Sensible heat flux (H, W m−2) 181 59.9 33.7 30.3 119.5 114.3 70 51.8 238.4 126.3 47 49.8 126.9 137.5 46.2 34
ETinst (mm h−1) 0.53 0.64 0.07 0.06 0.74 0.70 0.18 0.14 0.57 0.68 0.14 0.14 0.72 0.69 0.17 0.14

ETrF 0.67 0.74 0.08 0.07 0.95 0.81 0.22 0.16 0.73 0.79 0.18 0.16 0.93 0.80 0.22 0.16
ETr24 (mm day−1) 8.84 * 8.48 * 0 0 8.84 * 8.48 * 0 0 8.84 * 8.48 * 0 0 8.84 * 8.84 * 0 0

Daily ET (mm day−1) 5.90 6.26 0.73 0.59 8.40 6.88 1.95 1.39 6.43 6.71 1.56 1.36 8.18 6.82 1.91 1.38
ETdep,abs (%) - - - - 42.4 9.90 - - 8.98 7.19 - - 38.6 8.95 - -

* indicates same values for different approaches on same data collection day.
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4. Discussion

4.1. Crop Vigor

High spatial variability in crop vigor was captured by the UAS imagery. Soil background
adjustment factor (L) of 0.1 as in the LM calculated similar SAVI with the UAS imagery for selected
crops [34,35]. Higher NDVI compared to SAVI for some datasets may be due to the saturation effects
ignored in SAVI [43]. Soil-segmented FCC mapped similar LAI from UASM-3 as from the LM approach.
MRL estimates from UAS and Landsat imagery were also similar. Slight differences in MRL from
UASM-1 and -2 approaches were mainly due to surface slope factor in the case of UASM-1 approach
and that between UASM-1 and -3 approaches were due to LAI and DEM inputs.

4.2. Net Radiation and Soil Heat Flux

The ISWR from LM, UASM-1, and -2 approaches were similar and slight differences were due
to the DEM inputs. ISWR from UASM-3 approach was different due to its direct measurement
source (nearest weather station). Such ISWR measurements may be assumed actual compared to the
standard computations for the weather stations installed near study sites (within 5 km) approximately
at 2 m height [38,39]. Higher ILWR estimates from the LM approach compared to UASM-1 and
-2, were primarily due to higher Ts. Minor ILWR differences between LM and UASM-1 or -2
approaches would be due to slightly different DEMs used to calculate atmospheric transmissivities.
ILWR computation in UASM-3 approach used Ta as the input (Stefan Boltzmann’s law) instead
of the Ts [40] and no variation for use of a single value may be assumed realistic at field level.
OLWR differences between LM and UASM approaches were primarily due to differences in Ts from
pertinent imaging systems. Similar OLWR from UASM-1, -2, and -3 approaches showed no effect
of LAI differences that contribute only 1% to the surface emissivity calculations. Rn and G estimate
differences between UASM and LM approaches can be attributed to differences between ISWR, ILWR,
OLWR and surface albedo computations. While no Rn and G differences between UASM-1 and UASM-2
approaches were due to negligible differences between ISWR, ILWR, and OLWR. Such differences
between UASM-1 and UASM-3 approaches were due to the ISWR and ILWR differences. Since high
LAI was observed in all imaging campaigns, slightly high variations in OLWR and Rn may be expected
during initial days of plantation (Low LAI).

4.3. Sensible Heat Flux

Differences between H estimates from LM and UASM approaches were primarily due to Ts

differences, and secondarily due to different internal calibrations. As the Landsat 7/8 imagery has coarse
resolution (~30 m pixel−1), it might not be readily possible to find uniform hot and cold anchor pixels.
This demands for additional flexibility in anchor pixel identification also suggested by Jaafar et al. [42].
Contrarily, it was easier with the UAS-based approaches (~7 m pixel−1) to identify anchor pixels within
the imaged field area (Table 7). Irrigated crops would have also facilitated identification of highly
transpiring cold anchor pixels alike the reference alfalfa. H differences between UASM-1, -2, and -3
could be due to LAIs, MRLs, Rn, and G differences in the different cold pixels that resulted in different
internal calibrations.

4.4. Daily Evapotranspiration

Similar ET was mapped from all UASM approaches compared to the LM approach (Figures 5–9).
However, UASM approaches showed larger potential for assessing spatial variations in field ET
maps (Figure 10) due to large number of pixels [21]. The ET differences between LM, UASM-1,
and -3 approaches were large for dataset-5 (alfalfa field) and dataset-3 (potato field) primarily due
to the internal calibration differences, H and Rn differences. The ETrF for alfalfa crop in dataset-6
was high compared to dataset-5 showing more matured crop at 2 DBH than 7 DBH. Notable ETrF
differences between LM and UASM approaches could also be due to accumulated differences between
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the intermediate outputs. ETrFs for selected crops did not exceed 1.1, complying to the cold anchor
pixel assumption (1.05 × ETr, [9]). UASM-3 approach (METRIC model modified to local conditions) can
also provide reliable geospatial ET maps as LM. As also reported by Paul et al. [33], G and H differences
between LM and UAS approaches did not influence daily ET maps for irrigated field crops due to
small magnitudes. UASM approaches indicate their versatility for geospatial ET mapping for a range
of similar crops as spearmint, potato and alfalfa (r: 0.8–0.9). However, additional parametrization may
be needed for different crop physiologies [21,27]. An average 10% uncertainty of UASM approaches
for point scale ET might be acceptable as discussed in prior research studies that used similar UAS
imagery with METRIC model [29,33]. Flight missions within solar noon ± 2 h could have produced
comparable and reasonable ETrF used for 24-h [44].

Table 7. Details of hot and cold anchor pixels identified in the LM and UASM approaches.

DBH Approach Pixel
Spearmint Potato Alfalfa

NDVI Ts NDVI Ts NDVI Ts

10 (Spearmint)
72 (Potato)
2 (Alfalfa)

LM
Hot 0.21 336.15 0.28 321.07 0.19 330.26
Cold 0.87 300.86 0.82 299.34 0.86 298.66

UASM-1
Hot 0.27 320.43 0.26 319.18 0.25 323.54
Cold 0.93 294.65 0.89 296.92 0.9 296.54

UASM-2
Hot 0.27 320.43 0.26 319.18 0.25 323.54
Cold 0.81 295.82 0.85 295.03 0.88 294.42

UASM-3
Hot 0.27 320.43 0.26 319.18 0.25 323.54
Cold 0.87 293.2 0.87 294.55 0.85 293.43

37 (Spearmint)
48 (Potato)
7 (Alfalfa)

LM
Hot 0.19 333.47 0.15 326.78 0.17 331.3
Cold 0.91 301.37 0.96 306 0.86 300.52

UASM-1
Hot 0.24 317.94 0.27 326.85 0.21 319.11
Cold 0.85 297.8 0.91 294.84 0.87 297.51

UASM-2
Hot 0.24 317.94 0.27 326.85 0.21 319.11
Cold 0.86 298.58 0.92 294.61 0.85 296.88

UASM-3
Hot 0.24 317.94 0.27 326.85 0.21 319.11
Cold 0.88 295.57 0.89 295.96 0.89 294.98
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5. Conclusions

Agricultural growers are highly dependent on generalized crop coefficients or point measurements
(soil moisture, sap flow, etc.) for irrigation scheduling and are restrictive towards satellite-based remote
sensing approaches due to low spatiotemporal resolution and cloud cover issues. Considering the
critical need for geospatial ET mapping towards precision irrigation management, ET of irrigated
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field crops was mapped using very high resolution multispectral and thermal infrared imagery.
Three variants of standard METRIC energy balance model modified as per UAS and local conditions
were used to process UAS imagery and their performance was evaluated relative to standard
LM approach.

Increased spatial resolution did not influence the mean field-scale ET (low RMSD: 0.2–1.0 mm
day−1, ETdep,abs: 0.4–21.2%, and r: 0.7–0.9). However, high spatial ET variation potential was assessed in
UAS derived maps (6.7–24.3%) compared to the Landsat satellite derived maps (2.1–11.2%). Variants of
UASM models performed very similar to the LM approach for irrigated field crops; spearmint (ETdep,abs:
0.4–6.2% and r: 0.7–0.8), potato (ETdep,abs: 0.9–21.2% and r: 0.7–0.8), and alfalfa (ETdep,abs: 7.2–9.9%
and r: 0.8–0.9). UASM-2 showed highest similarity with the LM approach (RMSD: 0.5–0.9 mm day−1

and r: 0.7–0.9) for very similar energy balance outputs. ET differences between LM and UAS based
approaches were majorly due to the internal calibrations differences that could have been affected
slightly by the spatial resolution. UASM-1 could be advantageous for agricultural fields with elevation
variability and resulting temperature differences due to lapse rates. UASM-1 uses high-resolution UAS
imagery derived DEM inputs that can be accurately compared to the satellite based DEMs. UASM-2
could be advantageous for the crop fields where spatial variability in ground elevation is negligible, as it
also reduces additional DEM data requirement for ET mapping. UASM-3 uses actual meteorological
parameters of ISWR and Ta (for ILWR) measured by the automated weather station near the field site.
UASM-3 could also be advantageous for ensuring LAI calculation for the areas with vegetation only,
as supported by high spatial resolution to distinctly capture soil, vegetation and mixed pixels. UASM-1
and UASM-3 could also be merged for field-relevant energy balance inputs such as meteorological
parameters and ground elevation variabilities to obtain more realistic crop water use maps.

ET mapping at high spatiotemporal resolution provides more control over timely monitoring of
spatial crop water requirements where restrictions of cloud cover interference and imagery acquisition
at 16-day interval could be avoided unlike LM approach. LM based approaches may assist in reviewal
of seasonal water distribution rights while UASM approaches may assist in irrigation water savings
through grower friendly and on-demand site-specific irrigation prescription maps/tools.
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