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Abstract: Offering remarkable biodiversity, coastal salt marshes also provide a wide variety of
ecosystem services: cultural services (leisure, tourist amenities), supply services (crop production,
pastoralism) and regulation services including carbon sequestration and natural protection against
coastal erosion and inundation. The consideration of this coastal protection ecosystem service takes
part in a renewed vision of coastal risk management and especially marine flooding, with an emerging
focus on “nature-based solutions.” Through this work, using remote-sensing methods, we propose
a novel drone-based spatial modeling methodology of the salt marsh hydrodynamic attenuation
at very high spatial resolution (VHSR). This indirect modeling is based on in situ measurements of
significant wave heights (Hm0) that constitute the ground truth, as well as spectral and topographical
predictors from VHSR multispectral drone imagery. By using simple and multiple linear regressions,
we identify the contribution of predictors, taken individually, and jointly. The best individual
drone-based predictor is the green waveband. Dealing with the addition of individual predictors to
the red-green-blue (RGB) model, the highest gain is observed with the red edge waveband, followed
by the near-infrared, then the digital surface model. The best full combination is the RGB enhanced
by the red edge and the normalized difference vegetation index (coefficient of determination (R2):
0.85, root mean square error (RMSE): 0.20%/m).

Keywords: UAS; multispectral; ecosystem service; mitigation; nature-based solution; salt marsh;
spatial modeling

1. Introduction

Worldwide, many studies have clearly highlighted the ability of the coastal ecosystems, like salt
marshes [1–11], shelly ridges [9,11] or seagrasses [11], to reduce the wave height, Hm0. Nevertheless,
this ability to reduce Hm0 exhibits a large variability, ranging from more than 7%/m [4] to less than
0.3%/m [8], depending on the plant species.

Due to the complexity of salt marsh meadows, which are rarely mono-specifics along European
coastlines but more similar to a patchwork of species, the calculation of attenuation values specifically for
each species remains limited for the global understanding of the attenuation dynamics. Furthermore,
unlike studies in the literature that report attenuation values calculated only along one or more
cross-shore transects distributed on the study site [11], a methodology based on remote sensing could
bring an overview to evaluate the attenuation induced by a whole meadow. Considering the high
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reflectance of vegetation in the red edge (RE) and near-infrared (NIR) electromagnetic spectrum, the use
of sensors provided with such wavebands and related index is well-suited to the need of an overview
of the wave attenuation induced by a meadow. The use of these infrared wavebands makes it possible
to discriminate plant functional traits, density [12–14], and species identification at very high spatial
resolution (VHSR) using remote-sensing methods [8].

The use of drone technology for the imagery acquisition and for the generation of digital surface
models (DSMs), using structure from motion (SfM) photogrammetry [15], is of many interests, especially
for the coastal monitoring [16]. It allows for creating orthophotomosaics and DSMs at VHSR and
very high temporal resolution (VHTR) [17]. This is highly relevant to monitoring the changes in
plant communities depending on the seasonality or after a punctual event [8,18]. The monitoring of
these changes is crucial owing to the temporal impact in the services that can be furnished by the
ecosystems. The modeling method of wave attenuation presented in this paper is an indirect modeling
methodology based on the spectral signatures of the vegetation which are a proxy of the vegetation
volume that governs the water movement.

The aim of this paper is to quantify the contribution of the drone spectral bands, derived spectral
index, and DSM for the indirect spatial modeling of wave attenuation. The working hypothesis was
that adding infrared information (namely, RE, NIR, and normalized difference vegetation index, NDVI)
to the basic red-green-blue (RGB) information can significantly improve the modeling performance.
The paper is structured as follows: (1) data acquisition and processing (wave measurements and
unmanned aerial system (UAS) multispectral imagery); (2) modeling the contribution of the salt marsh
to wave attenuation; (3) quantify and discuss the contribution of each spectro-spatial band and band
combination to the modeling.

2. Materials and Methods

2.1. Study Site

The bay of Mont-Saint-Michel (France) is enshrined in the Brittany-Normandy Gulf between the
Cotentin Peninsula and the northern coast of Brittany called the “Emerald Coast”. This bay, subjected
to a strong tidal regime, belongs to the top six areas hosting the world’s highest tide [19]. The bay
is delimited in the south from the lowland of the Dol Marsh polder by the Duchess Anne’s dike, at
the foot of which thrive important salt marsh surfaces contributing to coastal protection as natural
barriers against waves. These extended salt marsh meadows cover an area of approximately 40 km2

in the bay [20]. This study is focusing on a well-vegetated 1 km2 meadow of the western part of the
bay, where hydrodynamic conditions are calmer than on the estuarine domain of the eastern part.
This area forms an outgrowth compared to its direct vicinity, because of the sediment supplies carried
by one of the draining channels of the Dol Marsh, just on its eastern side (Figure 1). The study area is
composed of four principal plant communities, from north to south, (1) pioneer vegetation of Spartina
townsendii/Sueda maritima/Salicornia europea; (2) a short lawn of Puccinellia maritima with some Halimione
portulacoides bush and Aster tripolium; (3) a semi-woody formation of Halimione portulacoides; and (4) a
dense meadow dominated by Festuca rubra [21] (Table 1).
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Table 1. Cont.
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2.2. Significant Wave Height Measurement (Hm0) as the Model Response

Measurements of significant wave heights were made from 22 to 23 January 2019, during four
successive tides, using 12 mini-pressure sensors (NKE SP2T10) positioned along two transects at the
study site (Figure 2). They were fixed to an iron rod driven into the intertidal substrate. The instruments
recorded tide- and wave-induced pressure with a burst duration of 9 min every 15 min, at a frequency
of acquisition of 2 Hz. The 9-min sampling frequency was chosen as a compromise between a spectrum
large enough to be representative, but sufficiently short, to assure a good degree of stationarity in
the megatidal environment. Wave characteristics were obtained from the measured time series by
spectral analysis using fast Fourier transforms. The Fourier coefficients of the free surface elevation
fluctuations were obtained from corresponding coefficients computed from the pressure time series
using the frequency-dependent transfer function inferred from linear theory.

These Hm0 values are enabled to calculate 40 attenuation values (N = 40), which embodied the
response within the various statistical models further tested for hydrodynamic attenuation modeling.
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Figure 2. Hm0 measurement points location within the study site.

2.3. Multispectral Drone Imagery Acquisition and Processing

A drone imagery campaign was undertaken on 22 March 2019, using a Sensefly eBee+® fixed-wing
equipped with two optical sensors: a classical RGB sensor and a Parrot Sequoia®, exhibiting an RGB
(R: 660 nm; G: 520 nm; B: 450 nm, Figure 3a–c), RE (730–740 nm, Figure 3d) and NIR (770–810 nm,
Figure 3e) sensors (Table 2). The imagery collection followed a flight plan whose parameters are
provided in Table 3. Leveraging global navigation satellite system (GNSS) coordinates, the images were
further georeferenced to 9 ground control points (XYZ) acquired through Differential-GNSS (D-GNSS)
equipment (Topcon HiPer V) with horizontal and vertical accuracy of 0.02 m. An orthophotomosaic
and a DSM were then derived using the SfM photogrammetry procedure with the Pix4Dmapper®

software. The accuracy reached 0.05 m, 0.04 m and 0.12 m for X, Y and Z coordinates, respectively.

Table 2. Specifications of the fixed-wing (eBee+®) unmanned aerial system (UAS).

UAS platform Sensefly eBee+®

MultiSensor device Parrot Sequoia®

No. of pixels (RGB sensor) 5472 × 3648 pixels

No. of pixels (Green, Red, Red Edge and Near Infrared sensors) 1280 × 960 pixels

Lens F/2.3

Flight control software eMotion 3.5

Table 3. Specifications of the flight plan.

Flight planning software eMotion 3.5

Front overlap ratio 90%

Side overlap ratio 65%

Altitude 150 m

Gimbal pitch angle –90◦

Shutter interval 2.6 s

Flying time 25 mn
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Radiometric corrections were also applied accounting for the optical instrument factors (vignetting,
spectral response, etc.), the variation in solar irradiance and angle, using a radiometric target to provide
top of canopy reflectance [22].
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2.4. Modeling the Contribution of the Salt Marsh to Wave Attenuation

Data extracted from the drone imagery were considered as descriptors of the salt marsh composition
and 3D configuration, thus predictors for the statistical modeling. Using the 1D Hm0 in situ values
and the 2D seven predictors (R, G, B, RE, NIR, NDVI, DSM), an array of linear regression models were
achieved to spatially predict the hydrodynamic attenuation (Y) induced by the salt marsh meadow.
The contribution of each predictor (βi) was therefore independently tested through single regressions
(Table 4):

Y = β0 + β1X1 (1)

Different combinations (Table 3) of predictors were then tested using multiple regressions:

Y = β0 + β1X1 + β2X2 + . . . + βnXn (2)
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Table 4. Experienced predictors and predictor combinations for the drone spatial modeling of
hydrodynamic attenuation.

Simple linear regressions Red; Green; Blue; Red Edge; Near Infrared;
Normalize Difference Vegetation Index; Digital Surface Model

Multiple linear regressions

Predictors from visible spectrum RGB

Visible + IR

RGB + RE
RGB + NIR

RGB + RE + NIR
RGB + NDVI

RGB + RE + NDVI
RGB + NIR + NDVI

RGB + RE + NIR + NDVI

Visible + DSM RGB + DSM

Visible + IR + DSM

RGB + RE + DSM
RGB + NIR + DSM

RGB + RE + NIR + DSM
RGB + NDVI + DSM

RGB + RE + NDVI + DSM
RGB + NIR + NDVI + DSM

RGB + RE + NIR + NDVI + DSM

The coefficient of determination R2 and the root mean square error value (RMSE) were used to
assess the relevance of each model tested.

3. Results

The 23 linear regression models, both 7 simple and 16 multiple, allowed to quantify the predictors’
contribution to the hydrodynamic attenuation modeling (Table 5).

The simple linear regressions results showed the relevance of each predictor to explain the wave
attenuation, via its coefficient of determination, ranked in ascendant order as follows: RE (R2: 0.24),
DSM (R2: 0.29), NIR (R2: 0.32), R (R2: 0.33), NDVI (R2: 0.41), B (R2: 0.50) and G (R2: 0.51).

Dealing with multiple linear regressions, each predictor was added to the classic RGB combination
to quantify how much each one could improve the coefficient of determination of the RGB model (R2:
0.54). In so doing, the combinations with the three highest R2 were RGB + RE (R2: 0.73), RGB + NIR
(R2: 0.71), RGB + DSM (R2: 0.64).

Finally, multiple linear regressions using the RGB and combinations of predictors resulted in
models with R2 closing to 1. Thus, the most efficient combination was RGB + RE + NDVI (R2: 0.85),
followed by RGB + RE + DSM (R2: 0.84), RGB + RE + NIR + NDVI (R2: 0.81), RGB + NIR + DSM (R2:
0.80) and RGB + RE + NIR + DSM (R2: 0.80).

For this reason, the spatially explicit model was achieved using the RGB + RE + NDVI combination
(Figure 4).

The spatially explicit-model drew attenuation on values displaying important variations, from an
increase of Hm0 of 2.5%/m to a decrease of 3.5%/m on the study site. The mean Hm0 attenuation value
on the study site approximated 0.25%/m.
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Table 5. Results of the predictors’ contribution.

Predictors R2 RMSE

Simple linear regressions

R 0.33 0.42

G 0.51 0.36

B 0.50 0.36

RE 0.24 0.45

NIR 0.32 0.42

NDVI 0.41 0.39

DSM 0.29 0.43

Multiple linear
regressions

Predictors from
visible spectrum

RGB 0.54 0.35

Visible + IR

RGB + RE 0.73 0.26

RGB + NIR 0.71 0.27

RGB + RE + NIR 0.71 0.28

RGB + NDVI 0.58 0.33

RGB + RE + NDVI 0.85 0.20

RGB + NIR + NDVI 0.78 0.24

RGB + RE + NIR + NDVI 0.81 0.22

Visible + DSM RGB + DSM 0.64 0.30

Visible + IR + DSM

RGB + RE + DSM 0.84 0.20

RGB + NIR + DSM 0.80 0.23

RGB + RE + NIR + DSM 0.80 0.23

RGB + NDVI + DSM 0.63 0.31

RGB + RE + NDVI + DSM 0.83 0.21

RGB + NIR + NDVI + DSM 0.74 0.26

RGB + RE + NIR + NDVI + DSM 0.75 0.26
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Figure 4. Spatially explicit model of wave attenuation induced by a salt marsh meadow in the bay
of Mont-Saint-Michel (France) based on a combination of 5 spectral predictors (R, G, B, RE, NDVI),
identified as the best combination with a coefficient of determination of 0.85.
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4. Discussion

This experiment highlighted interest in the use of infrared wavebands (RE, NIR and derived data
NDVI) and topographic (DSM) data in addition to RGB channels for the spatial modeling of the wave
attenuation through a salt marsh meadow.

Results showed that the individual most effective predictors (Table 4), to explain the attenuation
values calculated from Hm0, in descending order, correspond to the reflectance (G and NIR) and
absorbance (R and B) peaks of chlorophyll pigments [23], their NDVI combination (vegetation density),
the surface changes (DSM) and the RE.

The addition of individual predictors to the RGB combination allowed us to observe some
interesting gains concerning the coefficient of determination (Figure 5), especially the addition of
RE and NIR predictors that improved by +0.19 and +0.17, respectively, the R2 of the multiple linear
regression of the RGB model. Thus, from the predictor with the highest gain to the predictor with the
lowest gain, there was: RE (+0.19), NIR (+0.17), DSM (+0.10) and NDVI (+0.04).
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These results can be explained by the fact that these predictors highlighted the natural vegetation
elements that increase the roughness or represent topographical changes able to mitigate waves. The best
performance of the RE and NIR predictors, witnessing the vegetation, indicate that the structural
complexity of vegetation seems more effective to model the attenuation than the topographical change,
highlighted by the DSM. The contribution of the NDVI appeared lower, perhaps due to the R integration
into it, generating an information redundancy with the RGB combination.

With regard to the models based on the RGB dataset combined with multiple predictors, the best
gains were observed with the addition of the RE + NDVI (+0.31), RE + DSM (+0.30), RE + NDVI +

DSM (+0.29), RE + NIR + NDVI (+0.27), RE + NIR + DSM (+0.26) predictors (Figure 5). These results
highlighted the ubiquity of the RE predictor into the most efficient combination predictors for the
spatially-explicit modeling of the Hm0 attenuation, because of its high sensitivity to a medium to
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high level of chlorophyll content, complementary to the RGB spectral signatures of the salt marsh
vegetation [24].

Results of the combinations RGB + RE + NDVI (R2: 0.85), RGB + RE + DSM (R2: 0.84) and
RGB + RE + NDVI + DSM (R2: 0.83) (Figure 5) were strongly comparable. It implies that the NDVI
and the DSM bring the same quantity of complementary information to the modeling. Once the RE
intermediate reflectance is integrated, the vegetation density (NDVI) and the topographic features are
almost identical for the attenuation prediction.

The highest attenuation values (between 1.5 and 3.5%/m) were mainly located in two areas of the
study site: (1) on the marsh edge, probably due the abrupt topographical change of the slope, which
induced a wave overwash, and (2) on the high marsh where the vegetation was the tallest on the study
site. By contrast, the lowest attenuation values (between −2.5 and 0.5%/m) were observed where the
vegetation density was lower or quasi absent (i.e., mudflat), and in the channels in front of the marsh
where the bathymetry was higher (Figure 6).
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Figure 6. Artefacts visible on the three principal components extracted from the RGB imagery
highlighting the flight lines: (a) third (last) component of the RGB-derived principal component
analysis (PCA), (b) third (penultimate) and (c) fourth (last) components of the Green-Red-Red Edge-Near
Infrared-derived PCA.

The results indicate also that vegetation is (through its standing biomass) a better proxy than
DSM. It can be explained by the dense standing biomass (with a specific spectral signature), which
translates into greater roughness than the DSM information, probably underestimating the structural
complexity of the biomass because of the dense canopy closure of this low vegetation.

The mean Hm0 attenuation value on the study site is comparable to the values obtained through
north-west European mixed salt marshes (0.34%/m [3], 0.25–0.30%/m [25]). The slightly lower results
can be explained by the study area that presents a long mudflat, reducing the mean attenuation value
on the whole site.

Some artefacts due to a vignetting effect following the flight lines appeared on the spatially explicit
model. This noise can be nevertheless retrieved from the original B, G, R, RE and NIR data sources
using a principal component analysis (PCA), for further investigation (Figure 6). This vignetting effect
could be imputed to the sensors and especially the Sequoia® sensor which exhibits some troubles into
the radiometric correction, and to the lateral overlap ratio.

Concerning the future improvements of this modeling methodology, the Hm0 data acquisition
could be enhanced by increasing the number of measurement stations and by widening their distribution
on the study site. Augmentation of the side overlap ratio, from 65% to 80%, and the use of the
second-generation sensor (e.g., Parrot Sequoia+®, leveraging an automatic radiometric calibration
system with a shorter shutter interval) is advised, to reduce the vignetting effect. These corrections
hold great potential to ameliorate the prediction of the built regression models.

Complementary topographical predictors could also be added to the models such as the roughness
index or slope index sourced from the photogrammetry methods, or from other sensors like airborne
light detection and ranging system (LiDAR), bringing information about the vegetation topographical
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but also spectral (intensity) signatures [26,27]. The spatially explicit modeling could also be enhanced
using artificial or convolutional neural networks instead of linear regressions.

5. Conclusions

The prediction of multispectral drone imagery was very efficient and accurate in achieving
spatially explicit modeling of the wave attenuation in a salt marsh meadow, in addition to in situ
wave measurements. Individual G, B, NDVI, R, NIR, DSM and finally RE bands decreasingly brought
insights into the attenuation simple linear modeling, emphasizing the relevance of the reflectance
and absorbance peaks, the density of the vegetation communities, and then the induced surface
changes. Combined with the RGB standard dataset (R2: 0.54), the highest gain by individual predictors
was reached by the RE (+0.19), followed by the NIR (+0.17), then the DSM (+0.10). The joint
full-combinations highlighted the presence of the RE into the 5 best datasets, with the highest one
composed of the RGB + RE + NDVI (R2: 0.85), closely followed by the RGB + RE + DSM (R2: 0.84)
and RGB + RE + NDVI + DSM (R2: 0.83). These last results indicated a relative redundancy in the
information drawn from the NDVI and the DSM.

In this experimental model, significant wave height values ranged from an increase of 2.5%/m to a
decline of 3.5%/m. The modeling allowed us to identify what and where are the most effective areas to
attenuate the waves, providing strong advice for future wetland restoration programs.
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