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Abstract: The following paper addresses the issue of performing CFAR detection on signals
with colored noise distributions, such as that found when performing acoustic sensing via UAVs.
With respect to the outlined considerations, a CFAR-enhanced spectral whitening method is proposed
to maintain detector functionality without inhibiting detection sensitivity. The performance of the
method is also demonstrated using acoustic data taken from experiments involving a fixed-wing
UAV. From the results obtained, it is evident the approach performs significantly better than
standard techniques such as inverse spectral whitening, which tend to attenuate acquired target
source components.
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1. Introduction

Often for many real-world applications, signal noise does not follow a Gaussian distribution
but rather exhibits some colored form that is a function of frequency. For example, the transmission
of acoustic energy in a viscoelastic medium results in amplitude attenuation that is proportional
to the square of the component frequency as described by Stokes’ Law [1]. The resulting effect is a
coloring of acoustic energy across the frequency band of interest, which includes both noise and desired
signal components. For transmission in atmospheric conditions, semi-empirical models have been
developed to predict attenuation levels based on source frequency and thermodynamic properties of
the medium [2]. Thus, frequency-dependent attenuation or coloring of acoustic spectra is typical when
performing acoustic sensing of aircraft such as unmanned aerial vehicles (UAVs). This can be observed
in Figure 1 displayed below which provides power spectra for various propeller-driven aircraft
during a fly-by. From the plots, it is evident that the self-generated noise consists of strong harmonic
narrowband components, superimposed on a frequency-dependent broadband base. Although the
general downward power trend can be attributed to transmission effects, the specific shape is due to
more complex features regarding the aircraft design [3]. The presence of spectral coloring may greatly
influence the ability to perform operations such as target source detection. For example, common
CFAR detection methods require noise to follow a small class of known distributions that must remain
stationary with time [4]. For situations in which the underlying distribution is either unknown or does
not follow a standard form (e.g., Gaussian and Exponential), distribution-free methods may be used to
achieve constant false alarm rates. However, distribution-free CFAR (DF-CFAR) methods require noise
samples be independent and identically distributed (IID) to maintain accurate functionality [5].

One particular application subject to these conditions is acoustic sensing via UAVs. Although
generally considered unconventional, this technology is currently being investigated for the detection
of various ground-based and airborne acoustic sources [6–11]. However, current studies have not
employed the use of CFAR detectors to establish fixed false alarm rates during flight operations. Robust
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detection techniques using DF-CFAR detectors have been previously presented to address bandwidth
limitations and nonstationary signals associated with this particular application [12]. Here we examine
the issue of applying these detectors to acoustic signals with colored noise distributions. Thus,
the purpose of this paper is to present a spectral whitening technique that would enable the use
of DF-CFAR detectors for acoustic sensing via UAVs.
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2. Background Information

The two most common forms of spectral whitening are inverse filtering and frequency-band
gain control [13]. The frequency-band method is a time domain approach, where multiple band-pass
filters are applied in parallel to section the signal into various frequency bands. Each of the filtered
sections are then equalized using an active scaling approach such as automatic gain control (AGC)
or linear predictive coding (LPC). The benefit of this method is a continuously whitened output that
does not require any block-based processing such as that inherent with FFT operations. The major
downside is potential phase distortions since these scaling operations are typically non-linear [13].
In contrast, inverse filtering is typically performed in the frequency domain and does not produce
phase distortions. It involves dividing the spectrum of concern by the mean of its noise approximation
according to the following [14]:

Y( f ) =
X( f )∣∣∣X̃( f )
∣∣∣γ + C

(1)

where
∣∣∣X̃( f )

∣∣∣ is the approximated or smoothed magnitude spectrum of X( f ), γ is a scaling or
degree-of-flattening factor, and C is a constant to prevent division by zero. If desired, we may
exclude the division constant by simply performing the operation in the log-decibel domain instead:

|Y( f )| = |X( f )| − γ
∣∣∣X̃( f )

∣∣∣. (2)

To reconstruct the complex signal, the whitened spectrum is simply multiplied by the original
phase response:

Y( f ) = |Y( f )|ejθ( f ) (3)

where θ( f ) = Arg[X( f )].
To obtain the noise approximation

∣∣∣X̃( f )
∣∣∣, multiple spectra are typically taken consecutively

in time and averaged together. If the signal is continuously windowed and frequency transformed,
a moving average function may be applied to obtain an accurate approximation. Common averaging
methods include the cumulative mean, the recursive exponential mean, and the windowed mean as
given by the following equations, respectively:∣∣∣X̃( f , w)

∣∣∣ = 1
w

[
|X( f , w)|+ (w− 1)

∣∣∣X̃( f , w)
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∣∣∣X̃( f , w)
∣∣∣ = ξ|X( f , w)|+ (1− ξ)

∣∣∣X̃( f , w)
∣∣∣ (5)

∣∣∣X̃( f , w)
∣∣∣ = 1

W

W

∑
k=1
|X( f , w− k)| (6)

where w is the current windowed segment number, ξ is the recursive forgetting factor (0 < ξ < 1),
and W is the total number of windows used for the mean estimate.

Although simplistic and often effective, the major drawback with the above approach is the
potential attenuation of desired signal components from a contaminated noise estimate. If target
signal components are present in past windowed spectra that constitute the current noise estimate,
the normalization process will act to remove them from the whitened spectra. The obvious solution to
this problem is to simply remove these components from the spectra before taking a mean estimate.
However, in many instances, the desired signal component(s) and frequency location(s) are not known
to facilitate removal. For such cases, the above methods are clearly not optimal in any sense.

3. CFAR-Enhanced Whitening

3.1. Description

A proposed solution to the problem of attenuating target signal components by inclusion into
the mean noise estimate, is to simply remove all peak components that may constitute a potential
target signal. This can be achieved using a CFAR detector, such as the DF-CFAR previously mentioned.
Using the detector, potential signals can be identified and effectively removed from the noise estimate
by flooring them to some scaled value of the CFAR detection threshold used. To ensure all potential
components are successfully located, a very high false alarm probability is used to maximize sensitivity.
By using a value much higher than that of the final target detection stage (performed after whitening),
the inability to detect a source component and subsequent inclusion into the mean noise estimate will
not affect the final detection performance. It is proposed that the OS-CFAR detector be utilized since
this form offers computational simplicity and superior performance in multi-target environments [15].
However, essentially any CFAR detector may be used instead. Some common forms include the
cell-averaging CFAR (CA-CFAR) [16], the greatest-of cell averaging CFAR (GOCA-CFAR) [17],
the smallest-of cell averaging CFAR (SOCA-CFAR) [17], the ordered statistic CFAR (OS-CFAR) [18],
the censored mean level CFAR (CML-CFAR) [19], and the trimmed mean CFAR (TM-CFAR) [20].
Each of these detectors operate using the same principles, with differences only in the method in
which the reference noise level is determined. For the OS-CFAR detector, the following binary testing
function may be constructed:

T( f , w) =

{
1 , i f |X( f , w)| ≥ η( f , w)

0 , i f |X( f , w)| < η( f , w)
(7)

where η( f , w) is the threshold factor given by

η( f , w) = αos|Xk( f , w)| (8)

where αos is the order statistic scaling factor, and |Xk( f , w)| is the kth largest spectral component
contained in the noise sample bandwidth of size N taken about the test cell |X( f , w)|.

Prior to calculating the mean approximation, potential signal components are effectively removed
by flooring their value to some scaled fraction of the detection threshold used. This can be expressed
by the following operation:

|X( f , w)| = δη( f , w)T( f , w) + [1− T( f , w)]|X( f , w)| (9)
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where δ is the flooring scale factor. The mean approximation is then found by substituting the above
value into Equations (4)–(6). Finally, the spectrally whitened form can then be obtained via Equations
(1) and (2) with γ = 0.

3.2. Validation

To confirm the validity of the proposed whitening approach, the method is applied to acoustic data
taken from a fixed-wing Delta X-8 UAV fitted with 4 microphones during flight operations. Using a
single channel recording, probability distributions were calculated from consecutive FFT spectra for
the unwhitened and whitened signals, and compared to that of ideal white Gaussian noise. Since the
purpose is to evaluate the broadband spectral noise distribution, narrowband self-noise components
generated by the aircraft propulsion system were first removed via the referenceless adaptive IIR
approach previously proposed by Tan [21–24]. Since notch filter bandwidth is typically very narrow,
the process has little to no effect on the underlying broadband features. To calculate the probability
distributions, the FFT was applied to the 1150 s flight recording using 0.5 s rectangular windows with
a 50% overlap, producing 4599 windowed points for each frequency bin. Using these observations,
the probability density functions (PDFs) for each spectral form (whitened, unwhitened, etc.) were then
calculated as a function of frequency. Figure 2 displayed below provides the results obtained using the
magnitude spectra for the original, whitened, and Gaussian noise signals. From the plots, it is evident
that broadband noise in the original notch filtered signal are not IID since density values vary largely
as a function of frequency. In contrast, the whitened signal PDF is nearly identical to the ideal response
obtained from Gaussian noise which follows a Rayleigh distribution. Thus, we may conclude that the
broadband noise components were effectively whitened to form a group of IID spectral components
as desired.
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4. Experimental Results & Discussion

The performance of the proposed CFAR-enhanced whitening approach is now illustrated using
experimental data. In brief, the experiment involved flybys of a Delta X-8 aircraft fitted with four
microphones at approximately 20 knots overhead a ground-based loudspeaker emitting various pure
tone frequencies. Here we examine the separate cases of a 200 Hz and 500 Hz pure tone being emitted.
Further details regarding the experimental setup can be found in [10]. Recorded signals were first
decimated to reduce data processing requirements since the recorded sampling rate was 48 kHz,
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but only information to up approximately 1000 Hz was found to be useful. The sample-reduced
signals were then notch filtered to remove narrowband self-noise components using the referenceless
adaptive IIR approach previously proposed by Tan [21–24]. Figure 3 provides spectrograms of the
original and notch filtered signals for the 200 Hz source case. The filtered signals were then windowed,
frequency transformed using the FFT operation, and spectrally whitened via the CFAR-enhanced
method. Finally, detection statistics were established using the selective cell distribution-free CFAR
detector (SCDF-CFAR) in conjunction with the single trial (ST), binary integration (BI), and robust
binary integration (RBI) detection schemes. Details regarding the SCDF-CFAR detector and various
detection schemes can be found in [12] and are not discussed here since it is outside the scope of
this paper.
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Tables 1–3 provide the notch filter, FFT, spectral whitening, and SCDF-CFAR parameters used.
As previously discussed, the proposed whitening procedure can be effectively employed without
reducing the probability of detection by using a threshold value which produces a much higher false
alarm rate than that used in the final detection stage. Here, thresholding values are chosen using the
values displayed below such that a false alarm rate of PFA = 0.1 is achieved. This is considerably
higher than that offered by the SCDF-CFAR detector as indicated in the table (PSC

FA = 0.001). Note that
SC indicates testing a single cell in the acquired signal FFT spectrum, while ST indicates testing all
cells across the frequency band of interest.

Table 1. Signal preprocessing and filter parameters.

Sampling Frequency (fs) 48 kHz Number of Signals 4
Decimation Factor 8 FFT Window 0.5 s

IIR Step Size (µ) 5 × 10−4 Window Overlap 50%
Notch Radius (r) 0.995 Padded Length (L f f t) 12,000 pts

Harmonics Removed (R) 8 Spectral Resolution ( fr) 0.5 Hz/bin

Table 2. CFAR-enhanced spectral whitening parameters.

Detector Type OS-CFAR Noise Samples (N) 101
Forgetting Factor (ξ) 0.2 Order Statistic (k) 0.75 N
Flooring Factor (δ) 0.5 Guard Cell Band (

⇀
G) 5.5 Hz

Noise Band (
⇀
N) 50 Hz Guard Cells (G) 12
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Table 3. SCDF-CFAR detection parameters.

Noise Sample Band (
⇀
N) 1–1000 Hz Consecutive Detections (D) 2

Test Band (
⇀
B) 150–550 Hz Cell Deviation (∆) 1

Guard Cell Band (
⇀
G) 10.5 Hz Maxima Tested (M) 2

Noise Samples (N) 1998 pts PSC
FA 1.0 × 10−3

Test Cells (B) 801 pts PST
FA 6.5 × 10−1

Guard Cells (G) 22 pts PBI
FA 8.2 × 10−4

Order Statistic (k) 2 PRBI
FA 2.5 × 10−3

Consecutive Trials (T) 2

We first illustrate the effectiveness of the proposed whitening approach in avoiding attenuation
of source signal components. Figure 4 displayed below provides a spectrogram of the pre-whitened
signal with a 500 Hz source component clearly visible, while Figure 5 displays spectrograms for the
standard inverse and CFAR-enhanced whitened signals, respectively. The noise approximation was
calculated using the recursive mean as previously given by Equation (5) with ξ = 0.5, and using a
flooring scale value of δ = 1. From observation of the three plots, it is evident that both methods
whiten broadband noise components since power levels remain relatively constant across the frequency
band. However, the standard approach also greatly attenuates the target source component to near
noise-floor levels. It is evident that the proposed CFAR method does not attenuate the source signal,
but actually increases the SNR slightly while still maintaining an overall whitened response. This effect
can be better visualized by Figure 6, which depicts the whitening process for a single windowed
segment taken at 8.4 min into the flight. Here, |X( f )| is the orgional unwhitened signal,

∣∣X( f )
∣∣−1 is

the inverse noise approximation, |Xk( f )| is the CFAR detection threshold used to establish the inverse
noise approximation, and |Yw( f )| is the whitened signal spectrum.
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We now provide quantitative results showing the effectiveness of the proposed whitening
approach to increase general detection capabilities. Table 4 provides the detection results for the
200 Hz and 500 Hz source signals with a passing altitude of 150 m. For each source frequency, results
are provided for the both the whitened and unwhitened signals. It should be noted that the SNR values
quoted are not calculated in the manner typical of most signal processing applications. The “effective
SNR” was used instead, which closely resembles the spurious free dynamic range. This method
provides a more meaningful measure since it compares the peak signal value to the point at which
it can no longer be detected (noise floor or detection threshold). It is depicted in the sample spectra
displayed in Figure 7. From a comparison of the results obtained, it is apparent that the whitened
signals produce significantly better results compared to the standard unwhitened forms; SNR values
and detection rates were generally much higher for all of the detection schemes used. In addition
to SNR values and overall detection rates, initial detection times were also found to be less for the
whitened forms. From a visual inspection of spectrograms displayed in Figure 8 it is apparent that a
single harmonic component was present at the 400 Hz location. Although the emitted source contained
only a pure 200 Hz tone, the harmonic component was generated by the presence of a reflecting
boundary (ground) located directly behind the speaker. However, it is apparent from the power
spectra displayed in Figure 8 that this component would not be detectable for the unwhitened signal,
since the non-flat power distribution produces an inherently high detection threshold. For the whitened
signal, this is not the case and the harmonic component would instead be detected.
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Table 4. Detection results for 150 m passing altitude.

fo = 200 Hz fo = 500 Hz

Unwhitened Whitened Unwhitened Whitened

Detection Rate (ST, BI, RBI) 64%, 54%, 55% 100%, 97%, 99% 69%, 37%, 51% 100%, 63%, 83%
Max SNR 28 dB 38.3 dB 26.5 dB 47.4 dB

Average SNR 12.4 dB 19.7 dB 8.2 dB 32.5 dB
Initial Detection 13.25 s 13 s 11 s 10.5 s

Second Detection 20.25 s 13.25 s 12 s 10.75 s
Observed Frequency Range 212–190 Hz 523–479 Hz
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5. Conclusions

Based on the results obtained from the analysis provided, it is evident that the proposed
CFAR-enhanced spectral whitening method is an effective means to whiten signals in the frequency
domain without attenuating potential source components. In addition, the method was also found to
transform colored frequency-dependent distributions to a frequency-independent form, thus producing
IID variables. This property is considered significant since methods such as the DF-CFAR detector
require this feature to accurately predict false alarm rates. The effectiveness of the approach was
demonstrated using experimental data, with results confirming the method provides increased
detection of narrowband signals when embedded in colored broadband noise.
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