
Citation: Mansor, N.S.; Awang, H.;

Ndanusa, A.B.; Idris, R.; Shahatha

Al-Mashhadani, A.F. Design and

Development of Attendance and

Temperature Recording System: A

Smart Companion for the Current

VLE Implementation in Malaysian

Schools. Proceedings 2022, 82, 111.

https://doi.org/10.3390/

proceedings2022082111

Academic Editor: Mohamad Rahimi

Mohamad Rosman

Published: 26 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

proceedings

Proceeding Paper

Design and Development of Attendance and Temperature
Recording System: A Smart Companion for the Current VLE
Implementation in Malaysian Schools †

Nur Suhaili Mansor 1, Hapini Awang 1,* , Ahmed B. Ndanusa 2,3, Rizatulazri Idris 4

and Abdulrazak F. Shahatha Al-Mashhadani 5

1 Institute for Advanced and Smart Digital Opportunities (IASDO), School of Computing,
Universiti Utara Malaysia, Sintok 06010, Kedah, Malaysia

2 Department of Computer Science, University of Abuja, Abuja 900105, Nigeria
3 Department of Engineering and Space Systems, National Space Research and Development Agency,

Abuja 900105, Nigeria
4 Department of Operation, MAP2U SDN BHD, Nilai 71800, Negeri Sembilan, Malaysia
5 Faculty of Business, Sohar University, Sohar 311, Oman
* Correspondence: hapini.awang@uum.edu.my
† Presented at the International Academic Symposium of Social Science 2022, Kota Bharu, Malaysia, 3 July 2022.

Abstract: With the prominence of COVID-19 in our lives and with the looming threat of other
pandemics raising in the future, keeping track of everyone’s temperature as a clear symptom of the
disease is imperative for society moving forward. This applies to schools and other educational
institutions too. This study aims to give a comprehensive solution that would be adaptable to multiple
institutions. A web application that can run on most consumer devices would let schools keep track
of their students’ temperature on top of easing the process of tracking class attendance by correlating
both. At the moment, Malaysian schools have already implemented several ICT initiatives, including
for data management (APDM, SAPS, etc.) as well as for teaching and learning (Virtual Learning
Environment). Therefore, the proposed online system for attendance and temperature recording
would be a good complement to support the digitalization of Malaysian schools.

Keywords: Virtual Learning Environment (VLE); ICT in education; attendance recording system;
web-based computing

1. Introduction

Schools throughout the world are adapting to the pandemic situation brought about
by the COVID-19 virus. Educational institutions need to make sure that their students are
safe in the school environment. One way of doing this, which is comprehensive all over the
world and is seen everywhere, is the use of temperature scanners. Temperature is a good
indicator that a person is currently infected with a disease. As such, being able to track
everyone’s temperature is an important aspect of the future of society and every department
and institution should not only collaborate with the rest of the country’s institutions, but
they should also have the right and the tools to manage and track people’s temperature
to create safer environments. Attendance tracking is almost a natural correlation to the
issue of tracking temperature in a school setting [1]. Since most students are registered in
the internal school system, and their attendance must be tracked (whether manually or
otherwise) in order to receive a passing grade or mark, it is clear that tracking temperature
in addition to attendance is the preferred way of doing it. Manually tracking temperatures
would be time-consuming and mentally taxing for most educators. Manually calling out a
name and marking next to the individual’s name is simple enough. However, the addition
of manually scanning temperatures and correctly recording them is more complicated. Like

Proceedings 2022, 82, 111. https://doi.org/10.3390/proceedings2022082111 https://www.mdpi.com/journal/proceedings

https://doi.org/10.3390/proceedings2022082111
https://doi.org/10.3390/proceedings2022082111
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/proceedings
https://www.mdpi.com
https://orcid.org/0000-0001-6748-3893
https://doi.org/10.3390/proceedings2022082111
https://www.mdpi.com/journal/proceedings
https://www.mdpi.com/article/10.3390/proceedings2022082111?type=check_update&version=1

Proceedings 2022, 82, 111 2 of 9

many other educational institutions, SK Tanah Rata is facing these issues and they reached
out to create an application that would suit their needs.

Attendance systems in schools have gradually progressed over the years, due to the
students’ data being stored in a school database, the wide adoption of mobile devices, and
the ease of using an automated system for attendance compared to doing it manually [2].
However, not all schools implement automated attendance systems, especially in institu-
tions for younger students. This is mainly because despite the adoption of mobile devices
being great in most areas, many parents do not allow younger children to use mobile
devices until they grow older. Temperature, being a key indicator of human illness, plays
an essential role in maintaining the safety of all students, educators, and staff members.
Manually keeping track of it is a risk of close contact infections. An automated system to
keep track of both attendance and temperature would ease many of these problems.

2. Methodology

The study was conducted following the Agile application development. Agile soft-
ware development refers to a group of software development methodologies based on
iterative development, where requirements and solutions evolve through collaboration
between self-organizing cross-functional teams. Agile methods or Agile processes generally
promote a disciplined project management process that encourages frequent inspection
and adaptation, a leadership philosophy that encourages teamwork, self-organization, and
accountability, a set of engineering best practices intended to allow for rapid delivery of
high-quality software, and a business approach that aligns development with customer
needs and company goals. Agile development refers to any development process that
is aligned with the concepts of the Agile Manifesto. The manifesto was developed by a
group of fourteen leading figures in the software industry and reflects their experience of
which approaches do and do not work for software development. Figure 1 illustrates the
Agile phases.

Proceedings 2022, 82, 111 2 of 9

temperatures would be time-consuming and mentally taxing for most educators. Manu-
ally calling out a name and marking next to the individual’s name is simple enough. How-
ever, the addition of manually scanning temperatures and correctly recording them is
more complicated. Like many other educational institutions, SK Tanah Rata is facing these
issues and they reached out to create an application that would suit their needs.

Attendance systems in schools have gradually progressed over the years, due to the
students’ data being stored in a school database, the wide adoption of mobile devices, and
the ease of using an automated system for attendance compared to doing it manually [2].
However, not all schools implement automated attendance systems, especially in institu-
tions for younger students. This is mainly because despite the adoption of mobile devices
being great in most areas, many parents do not allow younger children to use mobile de-
vices until they grow older. Temperature, being a key indicator of human illness, plays an
essential role in maintaining the safety of all students, educators, and staff members. Man-
ually keeping track of it is a risk of close contact infections. An automated system to keep
track of both attendance and temperature would ease many of these problems.

2. Methodology
The study was conducted following the Agile application development. Agile soft-

ware development refers to a group of software development methodologies based on
iterative development, where requirements and solutions evolve through collaboration
between self-organizing cross-functional teams. Agile methods or Agile processes gener-
ally promote a disciplined project management process that encourages frequent inspec-
tion and adaptation, a leadership philosophy that encourages teamwork, self-organiza-
tion, and accountability, a set of engineering best practices intended to allow for rapid
delivery of high-quality software, and a business approach that aligns development with
customer needs and company goals. Agile development refers to any development pro-
cess that is aligned with the concepts of the Agile Manifesto. The manifesto was developed
by a group of fourteen leading figures in the software industry and reflects their experi-
ence of which approaches do and do not work for software development. Figure 1 illus-
trates the Agile phases.

Figure 1. Agile Phases.

2.1. Plan
As the Agile application development indicates, the first step was to plan the devel-

opment of the application, this was done by gathering the requirements (Table 1).

Figure 1. Agile Phases.

2.1. Plan

As the Agile application development indicates, the first step was to plan the develop-
ment of the application, this was done by gathering the requirements (Table 1).

Proceedings 2022, 82, 111 3 of 9

Table 1. List of Requirements for Creating and Managing Attendance and Temperature.

Functional Requirements

Num. Req. ID Requirements Description Priority

1. TSS_01 Login

TSS_01_01 Users shall login to the system by inputting their username and password
for authentication. M

TSS_01_02 The system can authenticate usernames and passwords. D

TSS_01_03 The system can store authentication information in the browser cookies for
easy access. D

TSS_01_04 Users can request a new password via email in case they forgot it. O
2. TSS_02 Manage Users

TSS_02_01 Admin shall add users to access the system. M
TSS_02_02 Admin can also delete a specific user. O
TSS_02_03 Admin can also edit the details of a specific user. O

TSS_02_04 The system can verify if the username and password of a new user are
acceptable to be added. D

3. TSS_03 Manage Students
TSS_03_01 Users shall add students to the system. M
TSS_03_02 Users can also delete a specific student. O
TSS_03_03 Users can also edit the details of a specific student. O
TSS_03_04 The system can verify the completion of the details of a new student. D

4. TSS_04 Manage Classes
TSS_04_01 Admin shall add a new class to the system. M
TSS_04_02 Admin can also delete a specific class. O
TSS_04_03 Admin can also edit the contents of a class. O

5. TSS_05 Manage Attendance
TSS_05_01 Admin shall add a student from the system to a class. M
TSS_05_02 Admin can also delete a specific student from a class. O

6. TSS_06 Manage Temperature
TSS_06_01 Users shall append a new value for the temperature to a student of a class. M
TSS_06_02 Users can also delete a specific temperature from a student in a class. O
TSS_06_03 Users can also edit the temperature of a student in a class. O

7. TSS_07 Add Classes
TSS_07_01 Teachers shall add a new class to the system. M

8. TSS_08 Add Attendance
TSS_08_01 Admin shall add a student from the system to a class. M

9. TSS_09 Logout
TSS_09_01 Users shall log out of the system. M
TSS_09_02 The system can force a logout if a certain amount of time passes. D

2.2. Design

Before Prototype: The overall design of the application was made using pen and paper,
and the main elements, buttons, and links for the users to interact with UML diagrams
were created to visualize the elements and features (Figures 2 and 3).

During Prototyping: When the prototyping phase started, the design was made using
Figma (Figures 4 and 5), an interactive tool that allows the creation of prototypes that
are very functional and helps show the connection between functions and parts of the
application with one another.

During Development: When developing the application, the design elements were
created using HTML and CSS and using Bootstrap to create elements such as buttons and
clean up the look of the application.

Proceedings 2022, 82, 111 4 of 9Proceedings 2022, 82, 111 4 of 9

Figure 2. Use Case Diagram.

Figure 3. Activity Diagram for Add Classes Use Case.

During Prototyping: When the prototyping phase started, the design was made using
Figma (Figures 4 and 5), an interactive tool that allows the creation of prototypes that are
very functional and helps show the connection between functions and parts of the appli-
cation with one another.

Figure 2. Use Case Diagram.

Proceedings 2022, 82, 111 4 of 9

Figure 2. Use Case Diagram.

Figure 3. Activity Diagram for Add Classes Use Case.

During Prototyping: When the prototyping phase started, the design was made using
Figma (Figures 4 and 5), an interactive tool that allows the creation of prototypes that are
very functional and helps show the connection between functions and parts of the appli-
cation with one another.

Figure 3. Activity Diagram for Add Classes Use Case.

Proceedings 2022, 82, 111 5 of 9Proceedings 2022, 82, 111 5 of 9

Figure 4. Landing Page Using Figma.

Figure 5. Prototype Interactions in Figma.

Figure 4. Landing Page Using Figma.

Proceedings 2022, 82, 111 5 of 9

Figure 4. Landing Page Using Figma.

Figure 5. Prototype Interactions in Figma. Figure 5. Prototype Interactions in Figma.

Proceedings 2022, 82, 111 6 of 9

2.3. Development

The application was developed using the Ruby language, and the Ruby on Rails
application framework written in Ruby [3–5]. Ruby on Rails is a server-side model–view–
controller (MVC) framework, that provides default structures for a database, a web service,
and web pages (Figure 6). It encourages and facilitates the use of web standards such as
JSON or XML for data transfer and HTML, CSS, and JavaScript for user interfacing. In
addition to MVC, Rails emphasizes the use of other well-known software engineering
patterns and paradigms, including convention over configuration (CoC), do not repeat
yourself (DRY), and the active record pattern [6,7]. Active record is a key component in the
development of this application.

Proceedings 2022, 82, 111 6 of 9

During Development: When developing the application, the design elements were
created using HTML and CSS and using Bootstrap to create elements such as buttons and
clean up the look of the application.

2.3. Development
The application was developed using the Ruby language, and the Ruby on Rails ap-

plication framework written in Ruby [3–5]. Ruby on Rails is a server-side model–view–
controller (MVC) framework, that provides default structures for a database, a web ser-
vice, and web pages (Figure 6). It encourages and facilitates the use of web standards such
as JSON or XML for data transfer and HTML, CSS, and JavaScript for user interfacing. In
addition to MVC, Rails emphasizes the use of other well-known software engineering
patterns and paradigms, including convention over configuration (CoC), do not repeat
yourself (DRY), and the active record pattern [6,7]. Active record is a key component in
the development of this application.

Figure 6. MVC Model.

All of the development processes can be tracked on GitHub, where the open-source
code of the application resides, and all the comments with information regarding the im-
provements can be seen. The first step was to install Ruby, and all the dependencies
needed by Rails in the main computer, this included packages such as yarn and node.js.
Once Ruby was installed, gems (Ruby development packages) could be installed, fol-
lowed by Rails. Once Rails was installed in the system, we generated a repository using
Rails, which created all the directories and files needed to run a barebones application.
Most of the code was written using Visual Studio Code, an open-source editor from Mi-
crosoft. The code was run using Microsoft PowerShell. Version control was implemented
using Git, and a remote repository was created on GitHub to mirror all the changes made
to the application public for interested parties to see.

We utilized the Ruby Gem ‘devise’ for user authentication. We created routes, mod-
els, controllers, and views with all the CRUD actions for each of the elements we wanted
to integrate: users, students, classes, and attendance. The database was handled by sqlite3
in the development environment, however, we planned on using PostgreSQL for the pro-
duction environment. To create the models and migrate them into the database, Rails im-
plemented what is known as migration files, these files were created to generate the tables,
columns, and relationships of the different elements of the application. These migration
files were meant to be run only once and any updates to a table had to be done by creating
a new migration file. Once the migrations were complete, we started to write the code for
every CRUD action in the system. It was an iterative process in which we tested each
feature, identified the errors, attempted to fix them, made appropriate changes, uploaded
the code, tested the system, and so on. There are still things to be improved. The Entity-
Relationship Diagram (ERD) of the different resources of the system is presented in Figure
7.

Figure 6. MVC Model.

All of the development processes can be tracked on GitHub, where the open-source
code of the application resides, and all the comments with information regarding the
improvements can be seen. The first step was to install Ruby, and all the dependencies
needed by Rails in the main computer, this included packages such as yarn and node.js.
Once Ruby was installed, gems (Ruby development packages) could be installed, followed
by Rails. Once Rails was installed in the system, we generated a repository using Rails,
which created all the directories and files needed to run a barebones application. Most
of the code was written using Visual Studio Code, an open-source editor from Microsoft.
The code was run using Microsoft PowerShell. Version control was implemented using
Git, and a remote repository was created on GitHub to mirror all the changes made to the
application public for interested parties to see.

We utilized the Ruby Gem ‘devise’ for user authentication. We created routes, models,
controllers, and views with all the CRUD actions for each of the elements we wanted to
integrate: users, students, classes, and attendance. The database was handled by sqlite3
in the development environment, however, we planned on using PostgreSQL for the
production environment. To create the models and migrate them into the database, Rails
implemented what is known as migration files, these files were created to generate the
tables, columns, and relationships of the different elements of the application. These
migration files were meant to be run only once and any updates to a table had to be done
by creating a new migration file. Once the migrations were complete, we started to write
the code for every CRUD action in the system. It was an iterative process in which we
tested each feature, identified the errors, attempted to fix them, made appropriate changes,
uploaded the code, tested the system, and so on. There are still things to be improved. The
Entity-Relationship Diagram (ERD) of the different resources of the system is presented in
Figure 7.

Proceedings 2022, 82, 111 7 of 9Proceedings 2022, 82, 111 7 of 9

Figure 7. Entity Relationship Diagram of the Different Resources.

2.4. Testing
Testing was done in Google Chrome, using localhost:3000 as the root address of the

application. We used Google Chrome to test features such as JavaScript, HTML, and CSS.
The testing processes are presented in Figure 8.

Figure 8. Server running on Windows via Microsoft PowerShell.

2.5. Deployment
Deployment of the application was done on Heroku, a subsidiary of Salesforce. Her-

oku is a cloud platform as a service (PaaS) supporting several programming languages
[8]. Applications that are run on Heroku typically have a unique domain used to route
HTTP requests to the correct application container or dyno. Each of the dynos is spread
across a “dyno grid” which consists of several servers. Heroku’s Git server handles appli-
cation repository pushes from the permitted user. All Heroku services are hosted on Am-
azon’s EC2 cloud-computing platform. A Heroku account was created, a Heroku applica-
tion was initiated, and the code was pushed to the Heroku git, which then ran the code

Figure 7. Entity Relationship Diagram of the Different Resources.

2.4. Testing

Testing was done in Google Chrome, using localhost:3000 as the root address of the
application. We used Google Chrome to test features such as JavaScript, HTML, and CSS.
The testing processes are presented in Figure 8.

Proceedings 2022, 82, 111 7 of 9

Figure 7. Entity Relationship Diagram of the Different Resources.

2.4. Testing
Testing was done in Google Chrome, using localhost:3000 as the root address of the

application. We used Google Chrome to test features such as JavaScript, HTML, and CSS.
The testing processes are presented in Figure 8.

Figure 8. Server running on Windows via Microsoft PowerShell.

2.5. Deployment
Deployment of the application was done on Heroku, a subsidiary of Salesforce. Her-

oku is a cloud platform as a service (PaaS) supporting several programming languages
[8]. Applications that are run on Heroku typically have a unique domain used to route
HTTP requests to the correct application container or dyno. Each of the dynos is spread
across a “dyno grid” which consists of several servers. Heroku’s Git server handles appli-
cation repository pushes from the permitted user. All Heroku services are hosted on Am-
azon’s EC2 cloud-computing platform. A Heroku account was created, a Heroku applica-
tion was initiated, and the code was pushed to the Heroku git, which then ran the code

Figure 8. Server running on Windows via Microsoft PowerShell.

2.5. Deployment

Deployment of the application was done on Heroku, a subsidiary of Salesforce. Heroku
is a cloud platform as a service (PaaS) supporting several programming languages [8].
Applications that are run on Heroku typically have a unique domain used to route HTTP
requests to the correct application container or dyno. Each of the dynos is spread across
a “dyno grid” which consists of several servers. Heroku’s Git server handles application
repository pushes from the permitted user. All Heroku services are hosted on Amazon’s
EC2 cloud-computing platform. A Heroku account was created, a Heroku application was
initiated, and the code was pushed to the Heroku git, which then ran the code on their Ruby

Proceedings 2022, 82, 111 8 of 9

server. Migration files were run and any updates to the software were carried over Git push.
The application is currently online and can be found on https://rafael-ats.herokuapp.com/
(accessed on 25 March 2021) An example of the system’s interfaces is shown in Figure 9.

Proceedings 2022, 82, 111 8 of 9

on their Ruby server. Migration files were run and any updates to the software were car-
ried over Git push. The application is currently online and can be found on https://rafael-
ats.herokuapp.com/ (accessed on 25 March 2021) An example of the system’s interfaces is
shown in Figure 9.

Figure 9. Application Dashboard Running on Heroku.

3. Conclusions and Future Work
In line with the Malaysian vision to digitalize its education, the proposed online sys-

tem for attendance and temperature recording would support the existing implementa-
tion of VLE [9–11]

Towards a future of limited close contact, constant health checks, and close depend-
ency on technology, we must adjust to the new paradigms in order to continue living
fulfilling lives and producing products and services on par or better than what we had
before. Applications such as the one described in this paper will aid in the improvement
of different institutions and sectors in the country and help provide better services and
education. There are still many ways in which to improve applications such as this one.
For example, the use of face recognition, geolocation and long-range temperature devices,
would remove the middleman and provide a truly automated attendance system with a
temperature infrastructure.

Author Contributions: Conceptualization, N.S.M. and H.A.; methodology, A.B.N. and R.I.; testing,
A.F.S.A.-M. and N.S.M.; formal analysis, H.A.; investigation, N.S.M.; resources, R.I.; writing—orig-
inal draft preparation, N.S.M. and H.A.; writing—review and editing, A.B.N. and A.F.S.A.-M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research is supported by the Universiti Utara Malaysia College Grant: S/O
Code: 14826.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Patel, A.; Joseph, A.; Survase, S.; Nair, R. Smart Student Attendance System Using QR Code. In proceedings of the 2nd Interna-

tional Conference on Advances in Science & Technology (ICAST), Mumbai, India, 8–9 April 2019; pp. 1–4.
2. Wei, X.; Manori, A.; Devnath, N.; Pasi, N.; Kumar, V. QR Code Based Smart Attendance System. Int. J. Smart Bus. Technol. 2017,

5, 1–10.
3. Hartl, M. Ruby on Rails Tutorial: Learn Web Development with Rails, 3rd ed.; Addison-Wesley: Boston, MA, USA, 2015.
4. Tate, B.A.; Hibbs, C. Ruby on Rails: Up and Running; O’Reilly Media: Farnham, UK, 2008.
5. Tate, B.A.; Hibbs, C. Ruby on Rails: Up and Running: Lightning-Fast Web Development, 1st ed.; O’Reilly Media: Sebastopol, CA,

USA, 2006.
6. Bächle, M.; Kirchberg, P. Ruby on Rails. IEEE Softw. 2007, 24, 105–108, doi:https://doi.org/10.1109/MS.2007.176.
7. Ruby, S.; Copeland, D.B.; Thomas, D. Agile Web Development with Rails 6. In Pragmatic Programmers; Pragmatic Bookshelf:

Raleigh, NC, USA, 2020.

Figure 9. Application Dashboard Running on Heroku.

3. Conclusions and Future Work

In line with the Malaysian vision to digitalize its education, the proposed online system
for attendance and temperature recording would support the existing implementation of
VLE [9–11]

Towards a future of limited close contact, constant health checks, and close dependency
on technology, we must adjust to the new paradigms in order to continue living fulfilling
lives and producing products and services on par or better than what we had before.
Applications such as the one described in this paper will aid in the improvement of
different institutions and sectors in the country and help provide better services and
education. There are still many ways in which to improve applications such as this one.
For example, the use of face recognition, geolocation and long-range temperature devices,
would remove the middleman and provide a truly automated attendance system with a
temperature infrastructure.

Author Contributions: Conceptualization, N.S.M. and H.A.; methodology, A.B.N. and R.I.; testing,
A.F.S.A.-M. and N.S.M.; formal analysis, H.A.; investigation, N.S.M.; resources, R.I.; writing—original
draft preparation, N.S.M. and H.A.; writing—review and editing, A.B.N. and A.F.S.A.-M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research is supported by the Universiti Utara Malaysia College Grant: S/O
Code: 14826.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Patel, A.; Joseph, A.; Survase, S.; Nair, R. Smart Student Attendance System Using QR Code. In Proceedings of the 2nd

International Conference on Advances in Science & Technology (ICAST), Mumbai, India, 8–9 April 2019; pp. 1–4.
2. Wei, X.; Manori, A.; Devnath, N.; Pasi, N.; Kumar, V. QR Code Based Smart Attendance System. Int. J. Smart Bus. Technol. 2017, 5,

1–10. [CrossRef]
3. Hartl, M. Ruby on Rails Tutorial: Learn Web Development with Rails, 3rd ed.; Addison-Wesley: Boston, MA, USA, 2015.
4. Tate, B.A.; Hibbs, C. Ruby on Rails: Up and Running; O’Reilly Media: Farnham, UK, 2008.
5. Tate, B.A.; Hibbs, C. Ruby on Rails: Up and Running: Lightning-Fast Web Development, 1st ed.; O’Reilly Media: Sebastopol, CA,

USA, 2006.
6. Bächle, M.; Kirchberg, P. Ruby on Rails. IEEE Softw. 2007, 24, 105–108. [CrossRef]
7. Ruby, S.; Copeland, D.B.; Thomas, D. Agile Web Development with Rails 6. In Pragmatic Programmers; Pragmatic Bookshelf:

Raleigh, NC, USA, 2020.
8. Richardson, L.; Ruby, S. RESTful Web Services; O’Reilly Media: Sebastopol, CA, USA, 2008.

https://rafael-ats.herokuapp.com/
http://doi.org/10.21742/ijsbt.2017.5.1.01
http://doi.org/10.1109/MS.2007.176

Proceedings 2022, 82, 111 9 of 9

9. Awang, H.; Zahurin, M.A.; Wan, R.S.O. Measuring Virtual Learning Environment Success from the Teacher’s Perspective: Scale
Development and Validation. In Proceedings of the 3rd International Conference on Applied Science and Technology, Penang,
Malaysia, 10–12 April 2018; pp. 1–6.

10. Awang, H.; Zahurin, M.A.; Wan, R.S.O. The Moderating Effect of Workload in Determining the Continuous Usage of Virtual
Learning Environment amongst School Teachers. In Proceedings of the Pacific Asia Conference on Information Systems,
Yokohama, Japan, 26–30 June 2018; p. 51.

11. Awang, H.; Wan, R.S.O.; Zahurin, M.A. A Conceptual Model to Evaluate Virtual Learning Environment among Malaysian
Teachers. J. Telecommun. Electron. Comput. Eng. 2018, 10, 59–63.

	Introduction
	Methodology
	Plan
	Design
	Development
	Testing
	Deployment

	Conclusions and Future Work
	References

