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Abstract: With the prominence of COVID-19 in our lives and with the looming threat of other
pandemics raising in the future, keeping track of everyone’s temperature as a clear symptom of the
disease is imperative for society moving forward. This applies to schools and other educational
institutions too. This study aims to give a comprehensive solution that would be adaptable to multiple
institutions. A web application that can run on most consumer devices would let schools keep track
of their students’ temperature on top of easing the process of tracking class attendance by correlating
both. At the moment, Malaysian schools have already implemented several ICT initiatives, including
for data management (APDM, SAPS, etc.) as well as for teaching and learning (Virtual Learning
Environment). Therefore, the proposed online system for attendance and temperature recording
would be a good complement to support the digitalization of Malaysian schools.

Keywords: Virtual Learning Environment (VLE); ICT in education; attendance recording system;
web-based computing

1. Introduction

Schools throughout the world are adapting to the pandemic situation brought about
by the COVID-19 virus. Educational institutions need to make sure that their students are
safe in the school environment. One way of doing this, which is comprehensive all over the
world and is seen everywhere, is the use of temperature scanners. Temperature is a good
indicator that a person is currently infected with a disease. As such, being able to track
everyone’s temperature is an important aspect of the future of society and every department
and institution should not only collaborate with the rest of the country’s institutions, but
they should also have the right and the tools to manage and track people’s temperature
to create safer environments. Attendance tracking is almost a natural correlation to the
issue of tracking temperature in a school setting [1]. Since most students are registered in
the internal school system, and their attendance must be tracked (whether manually or
otherwise) in order to receive a passing grade or mark, it is clear that tracking temperature
in addition to attendance is the preferred way of doing it. Manually tracking temperatures
would be time-consuming and mentally taxing for most educators. Manually calling out a
name and marking next to the individual’s name is simple enough. However, the addition
of manually scanning temperatures and correctly recording them is more complicated. Like
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many other educational institutions, SK Tanah Rata is facing these issues and they reached
out to create an application that would suit their needs.

Attendance systems in schools have gradually progressed over the years, due to the
students’ data being stored in a school database, the wide adoption of mobile devices, and
the ease of using an automated system for attendance compared to doing it manually [2].
However, not all schools implement automated attendance systems, especially in institu-
tions for younger students. This is mainly because despite the adoption of mobile devices
being great in most areas, many parents do not allow younger children to use mobile
devices until they grow older. Temperature, being a key indicator of human illness, plays
an essential role in maintaining the safety of all students, educators, and staff members.
Manually keeping track of it is a risk of close contact infections. An automated system to
keep track of both attendance and temperature would ease many of these problems.

2. Methodology

The study was conducted following the Agile application development. Agile soft-
ware development refers to a group of software development methodologies based on
iterative development, where requirements and solutions evolve through collaboration
between self-organizing cross-functional teams. Agile methods or Agile processes generally
promote a disciplined project management process that encourages frequent inspection
and adaptation, a leadership philosophy that encourages teamwork, self-organization, and
accountability, a set of engineering best practices intended to allow for rapid delivery of
high-quality software, and a business approach that aligns development with customer
needs and company goals. Agile development refers to any development process that
is aligned with the concepts of the Agile Manifesto. The manifesto was developed by a
group of fourteen leading figures in the software industry and reflects their experience of
which approaches do and do not work for software development. Figure 1 illustrates the
Agile phases.
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Table 1. List of Requirements for Creating and Managing Attendance and Temperature.

Functional Requirements

Num. Req. ID Requirements Description Priority

1. TSS_01 Login

TSS_01_01 Users shall login to the system by inputting their username and password
for authentication. M

TSS_01_02 The system can authenticate usernames and passwords. D

TSS_01_03 The system can store authentication information in the browser cookies for
easy access. D

TSS_01_04 Users can request a new password via email in case they forgot it. O
2. TSS_02 Manage Users

TSS_02_01 Admin shall add users to access the system. M
TSS_02_02 Admin can also delete a specific user. O
TSS_02_03 Admin can also edit the details of a specific user. O

TSS_02_04 The system can verify if the username and password of a new user are
acceptable to be added. D

3. TSS_03 Manage Students
TSS_03_01 Users shall add students to the system. M
TSS_03_02 Users can also delete a specific student. O
TSS_03_03 Users can also edit the details of a specific student. O
TSS_03_04 The system can verify the completion of the details of a new student. D

4. TSS_04 Manage Classes
TSS_04_01 Admin shall add a new class to the system. M
TSS_04_02 Admin can also delete a specific class. O
TSS_04_03 Admin can also edit the contents of a class. O

5. TSS_05 Manage Attendance
TSS_05_01 Admin shall add a student from the system to a class. M
TSS_05_02 Admin can also delete a specific student from a class. O

6. TSS_06 Manage Temperature
TSS_06_01 Users shall append a new value for the temperature to a student of a class. M
TSS_06_02 Users can also delete a specific temperature from a student in a class. O
TSS_06_03 Users can also edit the temperature of a student in a class. O

7. TSS_07 Add Classes
TSS_07_01 Teachers shall add a new class to the system. M

8. TSS_08 Add Attendance
TSS_08_01 Admin shall add a student from the system to a class. M

9. TSS_09 Logout
TSS_09_01 Users shall log out of the system. M
TSS_09_02 The system can force a logout if a certain amount of time passes. D

2.2. Design

Before Prototype: The overall design of the application was made using pen and paper,
and the main elements, buttons, and links for the users to interact with UML diagrams
were created to visualize the elements and features (Figures 2 and 3).

During Prototyping: When the prototyping phase started, the design was made using
Figma (Figures 4 and 5), an interactive tool that allows the creation of prototypes that
are very functional and helps show the connection between functions and parts of the
application with one another.

During Development: When developing the application, the design elements were
created using HTML and CSS and using Bootstrap to create elements such as buttons and
clean up the look of the application.
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2.3. Development

The application was developed using the Ruby language, and the Ruby on Rails
application framework written in Ruby [3–5]. Ruby on Rails is a server-side model–view–
controller (MVC) framework, that provides default structures for a database, a web service,
and web pages (Figure 6). It encourages and facilitates the use of web standards such as
JSON or XML for data transfer and HTML, CSS, and JavaScript for user interfacing. In
addition to MVC, Rails emphasizes the use of other well-known software engineering
patterns and paradigms, including convention over configuration (CoC), do not repeat
yourself (DRY), and the active record pattern [6,7]. Active record is a key component in the
development of this application.
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All of the development processes can be tracked on GitHub, where the open-source
code of the application resides, and all the comments with information regarding the
improvements can be seen. The first step was to install Ruby, and all the dependencies
needed by Rails in the main computer, this included packages such as yarn and node.js.
Once Ruby was installed, gems (Ruby development packages) could be installed, followed
by Rails. Once Rails was installed in the system, we generated a repository using Rails,
which created all the directories and files needed to run a barebones application. Most
of the code was written using Visual Studio Code, an open-source editor from Microsoft.
The code was run using Microsoft PowerShell. Version control was implemented using
Git, and a remote repository was created on GitHub to mirror all the changes made to the
application public for interested parties to see.

We utilized the Ruby Gem ‘devise’ for user authentication. We created routes, models,
controllers, and views with all the CRUD actions for each of the elements we wanted to
integrate: users, students, classes, and attendance. The database was handled by sqlite3
in the development environment, however, we planned on using PostgreSQL for the
production environment. To create the models and migrate them into the database, Rails
implemented what is known as migration files, these files were created to generate the
tables, columns, and relationships of the different elements of the application. These
migration files were meant to be run only once and any updates to a table had to be done
by creating a new migration file. Once the migrations were complete, we started to write
the code for every CRUD action in the system. It was an iterative process in which we
tested each feature, identified the errors, attempted to fix them, made appropriate changes,
uploaded the code, tested the system, and so on. There are still things to be improved. The
Entity-Relationship Diagram (ERD) of the different resources of the system is presented in
Figure 7.
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2.4. Testing

Testing was done in Google Chrome, using localhost:3000 as the root address of the
application. We used Google Chrome to test features such as JavaScript, HTML, and CSS.
The testing processes are presented in Figure 8.
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2.5. Deployment

Deployment of the application was done on Heroku, a subsidiary of Salesforce. Heroku
is a cloud platform as a service (PaaS) supporting several programming languages [8].
Applications that are run on Heroku typically have a unique domain used to route HTTP
requests to the correct application container or dyno. Each of the dynos is spread across
a “dyno grid” which consists of several servers. Heroku’s Git server handles application
repository pushes from the permitted user. All Heroku services are hosted on Amazon’s
EC2 cloud-computing platform. A Heroku account was created, a Heroku application was
initiated, and the code was pushed to the Heroku git, which then ran the code on their Ruby
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server. Migration files were run and any updates to the software were carried over Git push.
The application is currently online and can be found on https://rafael-ats.herokuapp.com/
(accessed on 25 March 2021) An example of the system’s interfaces is shown in Figure 9.
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In line with the Malaysian vision to digitalize its education, the proposed online system
for attendance and temperature recording would support the existing implementation of
VLE [9–11]

Towards a future of limited close contact, constant health checks, and close dependency
on technology, we must adjust to the new paradigms in order to continue living fulfilling
lives and producing products and services on par or better than what we had before.
Applications such as the one described in this paper will aid in the improvement of
different institutions and sectors in the country and help provide better services and
education. There are still many ways in which to improve applications such as this one.
For example, the use of face recognition, geolocation and long-range temperature devices,
would remove the middleman and provide a truly automated attendance system with a
temperature infrastructure.
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