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Abstract: The changes in land surface temperature (LST) concerning time and space are mapped 
with the help of satellite remote sensing techniques. These measurements are used for determining 
several geophysical parameters including soil moisture, evapotranspiration, thermal inertia, and 
vegetation water stress. This study aims at calculating and analyzing the LST of manmade and 
natural features of Doon Valley, Uttarakhand, India. The study area includes the forest range of 
Doon Valley, agricultural areas, and urban settlements. Spaceborne multitemporal thermal bands 
of Landsat 8 were used to calculate the LST of various features of the study area. Split-window 
algorithm and emissivity-based algorithms were tested on the Landsat-8 data for LST calculation. 
The study also explored the effect of atmospheric correction on the temperature calculation. The 
land surface temperature determined using an emissivity based method that did not provide 
atmospheric correction was found to be less accurate as compared to the results by the split-window 
method. The LST for urban settlements is higher than the forest cover. A temporal analysis of the 
data shows an increase in the temperature for October 2018. The study shows the potential of the 
spaceborne thermal sensors for the multitemporal analysis of the LST measurement of manmade 
and natural features. 
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1. Introduction 

Remote sensing technique has been widely used in different thematic applications of solid earth, 
ecosystem, water, and cryosphere [1–3] Several modeling approaches and methods have been 
developed to characterize parameters of manmade and natural features [4–7]. Among all remote 
sensing techniques, thermal remote sensing is used primarily for emission-based thermal characterization 
to measure land surface temperature (LST) [8–10]. The applications of land surface temperature are 
quite wide with the inclusion of urban climate, hydrological cycle, and change in the climate. The 
changes in land surface temperature for time and space are mapped with the help of a thermal remote 
sensing technique [10,11]. These measurements are used for determining several geophysical 
parameters including soil moisture, evapotranspiration, thermal inertia, and vegetation water stress. 
Due to the wide application of land surface temperature, various methods have been developed over 
the past several years for its estimation [12]. In last few decades, several spaceborne thermal sensors 
have been launched for mapping and monitoring of sea surface and land surface temperatures. 
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Several algorithms have been developed to accurately measure the temperature, and it is found that 
the split-window algorithm (SWA) has been widely used by the scientific community [13]. 

It is very important to have access to correct and reliable estimates of land surface temperature 
over large temporal and spatial scales. This is due to the vast applications of land surface temperature 
in vegetation monitoring, hydrological applications, global circulation modeling, and other 
environmental applications. If the calculation of LST is not accurate, the results derived from it 
regarding the above-mentioned applications will consist of errors. In this project, LST is calculated 
for the study area—Dehradun—using the split-window algorithm. The prime focus of this work is to 
calculate the LST using spaceborne thermal sensor data and characterization for manmade and 
natural features. 

2. Study Area and Dataset 

To characterize the land surface temperature of manmade and natural features, Doon valley was 
selected, which includes urban settlement, agricultural fields, and forest cover. 

The study area lies between longitudes 77°34′43″ E to 78°18′22″ E and latitudes 29°56′22″ N to 
31°02′53″ N. The place has a moderate climate, as it is located at Himalayan foothills. Temperatures 
in summer are not very high, but during winters they can even reach below the freezing point. In 
summers, the temperature range is around 16.7–36 °C, whereas in winters it decreases to 5.2–23.4 °C. 
The scene extent and geographic location of the study area is shown in Figure 1. The vegetation cover 
is highlighted in the red color of the false-color composite (FCC) image of the study area. The FCC 
image (Figure 1) for the study area was generated with an infrared, red, and green band of the 
Landsat 8 data, which was acquired on 2 October 2018. Dry riverbeds and urban settlements are 
highlighted in cyan color in the FCC. Dry riverbeds could be easily identified in the study area as 
linear features. The water body is appearing as dark blue color and the agricultural fields are shown 
in light red homogeneous patches. The snow cover over the Himalayan region is visible in white 
color in the North East region of the FCC image of Figure 1. 

 

Figure 1. Location of the study area in the map of India released by the Survey of India and a false-
color composite image of the Landsat 8 data. 

3. Methodology for LST Estimation 

The methodological steps for LST estimation are shown in Figure 2. The first step of the 
methodology involves the Digital Number (DN) to radiance conversion. The brightness temperature 
was calculated using Equation (1) [14]. 
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𝑇௕ = 𝑘ଶln ቆቀ𝑘ଵ𝐿ఒቁ + 1ቇ (1) 

where 𝑘ଵ and 𝑘ଶ are constants, their values provided in the metadata file, or user manual, 𝐿ఒ is the 
spectral radiance calculated using the given Equation (2). 𝐿ఒ = 𝑀௅𝑄஼௔௟ + 𝐴௅ (2) 

Here, 𝑀௅ is the multiband radiance and 𝐴௅ is the add-band radiance, both of them provided in 
the image Metadata. 𝑄஼௔௟ is the digital number. 

 

Figure 2. Methodological flow diagram for LST estimation. 

The split-window algorithm has been used for the calculation of LST. To eliminate the 
atmospheric contribution, the split-window algorithm takes into account the differential absorption 
of water vapor between two adjacent channels. The channels are centered on 11.0 and 12 µm 
respectively. It has been proven that the general split window algorithm could accurately determine 
the LST, but the errors occur mainly due to perceptible water vapor and emissivity. Atmospheric 
transmittance and land surface emissivity were the only two required parameters. Due to the 
accuracy and simplicity of the estimation process for input parameters, Qin et al.’s algorithm was 
applied to thermal infrared sensor (TIRS) data [14–16]. The equation used in the split-window 
algorithm to calculate surface temperature is shown in Equation (1) [14,17]. 𝑇௦ = 𝐴଴ + 𝐴ଵ𝑇ଵ଴ − 𝐴ଶ𝑇ଵଵ (3) 

Here, 𝑇௦  is the LST, 𝑇ଵ଴  and 𝑇ଵଵ  are the brightness temperatures for band 10 and band 11, 
respectively. 𝐴଴, 𝐴ଵ, and 𝐴ଶ  are the three coefficients that are obtained by emissivity and 
atmospheric transmittance for both of the TIRS bands, with the use of Equation (4) 𝐴଴ =  𝐸ଵ𝑎ଵ଴ + 𝐸ଶ𝑎ଵଵ 𝐴ଵ = 1 + 𝐴 + 𝐸ଵ𝑏ଵ଴ 𝐴ଶ = 𝐴 + 𝐸ଶ𝑏ଵଵ 

(4)  

The parameters used in the above set are derived with the help of Equation (5). 𝐶௜ = 𝜀௜𝜏௜ 𝐷௜ = (1 − 𝜏௜)[(1 − 𝜀௜) ∗ 𝜏௜] (5) 
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𝐴 = 𝐷ଵ଴/𝐸଴ 𝐸ଵ = 𝐷ଵଵ(1 − 𝐶ଵ଴ − 𝐷ଵ଴)/𝐸଴ 𝐸ଶ = 𝐷ଵ଴(1 − 𝐶ଵଵ − 𝐷ଵଵ)/𝐸଴ 𝐸଴ = 𝐷ଵଵ𝐶ଵ଴ − 𝐷ଵ଴𝐶ଵଵ 
Here, 𝜀௜ is the emissivity, 𝜏௜ is the atmospheric transmittance, and ‘i’ denotes the band number [15]. 

3.1. Emissivity 

Emissivity is calculated using the NBEM (NDVI-based) method. For comparison purposes, 
another method—method of normalized emissivity of MNE—is also applied. The mathematical 
formula for MNE is given in Equation (6) [18]. 𝜀ఒ,௜ = 𝐼ఒ,௜ − 𝑅ఒ↑ − 𝜏ఒ𝑅ఒ↓𝜏ఒ൫𝐵ఒ൫𝑇ெ,௜൯ − 𝑅ఒ↓൯ 

(6) 

Here, 𝐼ఒ,௜ is the measured radiance, 𝑅ఒ↑ is the upwelling radiance and 𝑅ఒ↓ is the downwelling 
radiance, 𝜏ఒ is the atmospheric transmittance, and 𝐵ఒ(𝑇) is the blackbody radiance, which can be 
calculated using Equation (7) [14,16]. 𝐵ఒ(𝑇) = 𝑐ଵ𝜆ହ(exp ቀ 𝑐ଶ𝜆𝑇ቁ − 1) (7) 

Here, 𝑐ଵ  and 𝑐ଶ  are constants with values 1.191*10଼𝑤 𝜇𝑚ସ 𝑠𝑟ିଵ𝑚ିଶ  and 1.439 ∗ 10ସ𝜇𝑚𝑘 , 
respectively.  𝜆  is the wavelength of band 10 and 11, and T is the maximum of brightness 
temperature. 

3.2. Atmospheric Transmittance 

There are several constituents present in the atmosphere. Water vapor, 𝐶𝑂ଶ, 𝑂ଷ, and other gases 
are also a part. However, during an atmospheric correction, only water vapor is taken into 
consideration, because in the atmosphere, the contents of gases are more stable in comparison. 
Instead, the water vapor content has a high degree of variability, allowing the atmospheric 
transmittance to depend heavily on it [14]. The equations to calculate transmittance with the help of 
water vapor content (content range—0.5–3 g/cm²) are shown in Equation (8) [15]. 

w = 𝑐ଶ* (𝜏௝/𝜏௜)ଶ + 𝑐ଵ*(𝜏௝/𝜏௜) + 𝑐଴;  𝜏௜/𝜏௝ = (ఌ೔ఌೕ)𝑅௜௝            𝑅௜௝ =∑ (𝑇௜,௞ − 𝑇ത௜)(𝑇௝,௞ି𝑇ത௃ே௄ୀଵ )/∑ (𝑇௝,௞ି𝑇ത௃)ଶே௄ୀଵ  

(8) 

where c0, c1, and c2 are coefficients. N is the number of adjacent pixels (excluding cloud pixels). 𝑇௜,௞ 
and 𝑇௝,௞ are brightness temperatures for the band i and j, respectively, at the TOA for the kth pixel, 
and w is the water vapor content. 𝑇ത௜ and 𝑇ത௃ are mean or median brightness temperatures for the N 
pixels for the two bands. 

4. Results and Discussion 

To determine land surface temperature, firstly brightness temperature is calculated for all of the 
images. The second step is to obtain the required parameters, which are emissivity and atmospheric 
transmittance. Lastly, the split-window algorithm is applied to the images. The emissivity image as 
shown in Figure 3a was generated for the Landsat data of October 15, 2017. The general value range 
for every studied image is observed to be about 0.91–0.97. This range indicates the presence of water 
and vegetation as it is proximate to 1. 
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(a) 
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Figure 3. Landsat 8 image-based (a) emissivity (b) LST for the study area for 15 October 2017. 

After the retrieval of all essential parameters, the split-window algorithm is applied for four 
consecutive years of 2015, 2016, 2017, and 18. Split window incorporates the brightness temperature 
obtained from TIRS bands to retrieve LST. The accuracy of the split-window algorithm is more 
reliable due to implementation of atmospheric correction to retrieve LST. The LST values were 
retrieved for those scenes of LANDSAT-8 data for which the manmade and natural features were not 
covered by the cloud. Three images for the years 2015 to 2018 were selected as per the availability of 
the cloud-free data for September, October, and November. The LST map (Figure 3b) shows the very 
low temperature for snow-covered (black color) areas, and very high temperature (yellow color) is 
recorded for the urban area and the agricultural field. Manmade features like urban area and 
agricultural fields showed very high LST, and natural features like forest cover and water bodies 
showed moderate to low emissivity (Figure 3b). 

A temporal analysis of the maximum LST of the study area for TIRS bands 10 and 11 is shown 
in Figure 4. The months of September, October, and November face a gradual decrease in 
temperature. The first six months of year face gradual increase in the temperature because of the 
same reason of climate change and the approach of summer season. Additionally, if the land surface 
temperature for September, October, and November is observed over consecutive years, a very slight 
increase in temperature is seen. It could be easily seen from Figure 4 that the maximum LST was 
observed for the September month of the years 2015, 2016, and 2017, but in the band 10 for 2 October 
2018, it was found that the LST is higher than September 2018. In comparison to the three months of 
the years, 2015 to 2018 LST value recorded for November month is always low. This increase in 
temperature is due to several factors that include manmade anthropogenic and climatic conditions. 
Effect of seasonal change on LST [19] could also be seen in Figure 4. September is a month of monsoon 
season in India, and November is the month of winter season. A fall in temperature has been observed 
from September to November, indicating the change in LST, which is due to the change in weather. 
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Figure 4. Maximum LST for the years (a) 2015; (b) 2016; (c) 2017; (d) 2018. 

5. Conclusions 

Land surface temperature is mandatory for the determination of various geophysical processes, 
including evapotranspiration and desertification. To derive the land surface temperature in this 
project, Landsat 8 images have been used. It is found that the split-window algorithm seems to be the 
most appropriate approach due to its simplicity and provision for atmospheric correction. The 
inverse relationship between the wavelength and temperature has also been proved with brightness 
temperature, and the land surface temperature is slightly increased for Band 10 as compared to Band 
11. Atmospheric transmittance is a factor that causes disruption in the results of land surface 
temperature, and hence the split-window algorithm achieves accuracy by providing atmospheric 
correction for a given image. 
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