

Abstract

Conformational Dynamics Related to Membrane Fusion Observed in Single Ebola GP Molecules ⁺

Dibyendu Kumar Das ¹, Uriel Bulow ², Natasha D. Durham ³, Ramesh Govindan ^{2,3} and James B. Munro ^{2,3,*}

- ¹ Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208 016, India; dkdas@iitk.ac.in
- ² Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; uriel.bulow@tufts.edu (U.B.); ramesh.govindan@tufts.edu (R.G.)
- ³ Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA; natasha.durham@umassmed.edu
- * Correspondence: James.Munro@umassmed.edu
- + Presented at Viruses 2020-Novel Concepts in Virology, Barcelona, Spain, 5-7 February 2020.

Published: 15 June 2020

Abstract: The Ebola virus (EBOV) envelope glycoprotein (GP) is a membrane fusion machine required for virus entry into cells. Following the endocytosis of EBOV, the GP1 domain is cleaved by cellular cathepsins in acidic endosomes, exposing a binding site for the Niemann-Pick C1 (NPC1) receptor. The NPC1 binding to the cleaved GP1 is required for entry, but how this interaction translates to the GP2 domain-mediated fusion of viral and endosomal membranes is not known. Here, using a virus-liposome hemifusion assay and single-molecule Förster resonance energy transfer (smFRET)-imaging, we found that acidic pH, Ca²⁺, and NPC1 binding act synergistically to induce conformational changes in GP2 that drive lipid mixing. Acidic pH and Ca²⁺ shift the GP2 conformational equilibrium in favor of an intermediate state primed for NPC1 binding. GP1 cleavage and NPC1 binding enable GP2 to transition from a reversible intermediate to an irreversible conformation, suggestive of the post-fusion 6-helix bundle. Thus, the GP senses the cellular environment to protect against triggering prior to the arrival of EBOV in a permissive cellular compartment.

Keywords: virus entry; membrane fusion; Ebola virus; single-molecule FRET; conformational dynamics

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).