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Abstract: Classification and clustering problems are closely connected with pattern recognition
where many general algorithms have been developed and used in various fields. Depending
on the complexity of patterns in data, classification and clustering procedures should take into
consideration both continuous and categorical data which can be partially missing and erroneous
due to mismeasurements and human errors. However, most algorithms cannot handle missing data
and imputation methods are required to generate data to use them. Hence, the main objective of this
work is to define a classification and clustering framework that handles both outliers and missing
values. Here, an approach based on mixture models is preferred since mixture models provide
a mathematically based, flexible and meaningful framework for the wide variety of classification
and clustering requirements. More precisely, a scale mixture of Normal distributions is updated to
handle outliers and missing data issues for any types of data. Then a variational Bayesian inference
is used to find approximate posterior distributions of parameters and to provide a lower bound
on the model log evidence used as a criterion for selecting the number of clusters. Eventually,
experiments are carried out to exhibit the effectiveness of the proposed model through an application
in Electronic Warfare.
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1. Introduction

Classification and clustering problems are closely connected with pattern recognition [1] where
many general algorithms [2–4] have been developed and used in various fields [5,6]. Depending
on the complexity of patterns in data, classification and clustering procedures should take into
consideration both continuous and categorical data which can be partially missing and erroneous
due to mismeasurements and human errors. However, most algorithms cannot handle missing data
and imputation methods [7] are required to generate data to use them. Hence, the main objective
of this work is to define a classification and clustering framework that handles both outliers and
missing values. Here, an approach based on mixture models is preferred since mixture models provide
a mathematically based, flexible and meaningful framework for the wide variety of classification
and clustering requirements [8]. Two families of models emerge from finite mixture models fitting
mixed-type data:

• The location mixture model [9] that assumes that continuous variables follow a multivariate
Gaussian distribution conditionally on both component and categorical variables.
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• The underlying variables mixture model [10] that assumes that each discrete variable arises from
a latent continuous variable and that all continuous variables follow a Gaussian mixture model.

In this work, the location mixture model approach is retained since it better models relations
between continuous and categorical features when data patterns are mostly designed by first choosing
patterns of categorical features to achieve a specific goal and then choosing continuous features that
meet constraints related to the chosen patterns and the problem environment. Indeed regarding
clustering approach, each cluster groups observations that share same combinations of categorical
features where continuous features belong to a peculiar subset. Hence, the location mixture model
naturally responds to that dependence structure by assuming that continuous variables are normally
distributed conditionally to categorical variables. More precisely, a scale mixture of conditional
Gaussian distributions [11] is updated to handle outliers and missing data issues for any types of
data. Then a variational Bayesian inference [12] is used to find approximate posterior distributions of
parameters and to provide a lower bound on the model log evidence used as a criterion for selecting
the number of clusters. An application of the resulting model in Electronic Warfare [13] is proposed
to perform Source Emission Identification which is a supreme asset for decision making in military
tactical situations. By providing information about the presence of threats, classification and clustering
of radar emitters have a significant role ensuring that countermeasures against enemies are well-chosen
and enabling detection of unknown radar signals to update databases. As a pulse-to-pulse modulation
pattern [14], a radar signal pattern is decomposed into a relevant arrangement of sequences of pulses
where each pulse is defined by continuous features and each sequence is characterized by categorical
features. However, a radar signal is often partially observed due to the presence of many radar emitters
in the electromagnetic environment causing mismeasurements and measurement errors. Therefore the
proposed model is suitable for radar emitter classification and clustering. The outline of the paper is as
follows. Assumptions on mixed-type data are presented in Section 2. Then, the proposed model and
inference procedure are introduced in Section 3. Finally, evaluation of the model is proposed through
different experiments on radar emitter datasets in Section 4.

2. Mixed-Type Data

In this section, a joint distribution for mixed data is introduced to model the dependence structure
between continuous and categorical data. Then, outliers and missing values are tackled by taking
advantage of the joint distribution.

2.1. Assumptions on Mixed-Type Data

Data x consist of J observations (xj)
J
j=1 gathering continuous features xq = (xqj)

J
j=1 and

categorical features xc = (xcj)
J
j=1. Let xj = (xqj, xcj) the jth observation vector of mixed variables

where

• xqj ∈ Rd is a vector of d continuous variables,

• xcj =
(

x0
cj, . . . , xq−1

cj

)
∈ Cq is a vector of q categorical variables where Cq = C0 × . . .× Cq−1 is the

tensor gathering each space Ci =
{

mi
1, . . . , mi

|Ci |

}
of events that xi

cj can take ∀i ∈ {0, . . . , q− 1}.

2.2. Distribution of Mixed-Type Data

Considering that the retained approach focuses on conditioning continuous data xq = (xqj)
J
j=1

according to categorical data xc = (xcj)
J
j=1, the following joint distribution is introduced

∀j ∈ {1, . . . , J}, p(xqj, xcj) = ∏
c∈Cq

(
πcN

(
xqj|µc, Σ

))δc
xcj (1)
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where continuous variables xqj are normally distributed according to categorical variables xcj with
means (µc)c∈Cq and variance Σ. As for categorical variables xcj, they are jointly distributed according
to a multivariate categorical distribution MC(xcj|π) parametrized by weights π = (πc)c∈Cq and
defined by

MC(xcj|π) = ∏
c∈Cq

π
δc

xcj
c (2)

where ∀c = (c0, . . . , cq−1) ∈ Cq = C0 × . . .× Cq−1 :

∑
c∈Cq

πc = 1 and δc
xcj

=

1 if x0
cj = c0, . . . , xq−1

cj = cq−1

0 otherwise
.

This multivariate categorical distribution is proposed to tackle issues related to missing data by
modelling a dependence structure for xcj that enables inference on missing categorical features.

2.3. Outlier Handling

Outliers are only considered for continuous data xq = (xqj)
J
j=1 since only reliable categorical

variables are assumed to be filled in databases and unreliable ones are processed as missing data.
Then, continuous outliers are handled by introducing scale latent variables u = (uj)

J
j=1 conditionally

to categorical data xc due to the dependence structure established in (1) such that

∀j ∈ {1, . . . , J}, xqj|uj, xcj ∼ ∏
c∈Cq

N
(

xqj|µc, u−1
j Σ

)δc
xcj and uj|xcj ∼ ∏

c∈Cq

G
(
uj|αc, βc

)δc
xcj ,

where each uj follows conditionally to categorical data xcj a Gamma distribution with rate and shape
parameters (αc, βc) ∈ R∗+ ×R∗+.

2.4. Missing Data Handling

Both continuous and categorical data (xqj, xcj)
J
j=1 can be partially observed. Hence (xqj, xcj)

J
j=1

are decomposed into observed features (xobs
qj , xobs

cj )J
j=1 and missing features (xmiss

qj , xmiss
cj )J

j=1 such that

∀j ∈ {1, . . . , J},

xqj =

(
xmiss

qj
xobs

qj

)
with (xmiss

qj , xobs
qj ) ∈ Rdmiss

j ×Rdobs
j and dmiss

j + dobs
j = d ,

xcj =

(
xmiss

cj
xobs

cj

)
with (xmiss

cj , xobs
cj ) ∈ Cqmiss

j
× Cqobs

j
and qmiss

j + qobs
j = q .

where (Rdmiss
j , Cqmiss

j
) and (Rdobs

j , Cqobs
j
), are disjoint subsets of (Rd, Cq) embedding missing features

(xmiss
qj , xmiss

cj ) and observed features (xobs
qj , xobs

cj ). Missing continuous data xmiss
q = (xmiss

qj )J
j=1 are

handled by taking advantage of properties of the multivariate normal distribution to obtain a
distribution for missing values. Due to the dependence structure established in (1), missing continuous
data xmiss

q = (xmiss
qj )J

j=1 are distributed conditionally to observed continuous data xobs
q = (xobs

qj )J
j=1 and

categorical data xc as follows

∀j ∈ {1, . . . , J}, xmiss
qj |x

obs
qj , xcj ∼ ∏

c∈C
N
(

xmiss
qj |µ

xmiss
q

jc , Σxmiss
q

)δc
xcj

, xobs
qj |x

obs
qj , xcj ∼ ∏

c∈C
N
(

xobs
qj |µ

xobs
q

jc , Σxobs
q

)δc
xcj

,
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where ∀j ∈ {1, . . . , J}, ∀c ∈ Cq :

µ
xmiss

q
jc = µmiss

c + ΣcovΣobs−1
(

xobs
qj − µobs

c

)
, µ

xobs
q

jc = µobs
c ,

Σxmiss
q = Σmiss − ΣcovΣobs−1

Σcov’ and Σxobs
q =

(
Σobs−1

+ 2× Σobs−1
Σcov’

(
Σxmiss

q
)−1

ΣcovΣobs−1
)−1

.

Noting that the dependence structure between categorical features is modeled through Kronecker
symbols (δc

xcj
)c∈Cq , this dependence structure can be exploited to handle missing features such that the

missing features xmiss
cj follow a multivariate categorical distribution conditionally to observed features

xobs
cj given by

p(xmiss
cj = cmiss|xobs

cj = cobs) =
πcmiss,cobs

∑
cmiss∈Cqmiss

j

πcmiss,cobs

where πcmiss,cobs is the joint probability πc defined in (2) for c = (cmiss, cobs) ∈ Cqmiss
j
× Cqobs

j
.

3. Model and Inference

In this section, the proposed model is briefly presented as a hierarchical latent variable model
handling missing values and outliers. Then, the inference procedure is developed through a variational
Bayesian approximation. At last, classification and clustering algorithms are introduced by using the
proposed model.

3.1. Model

According to a dataset xobs of i.i.d observations, independent latent variables h = (xmiss, u, z),
parameters Θ = (a, π, α, β, µ, Σ) of the K clusters and assumptions on mixed data defined in Section 2.1,
the complete likelihood of the proposed mixture model can be expressed as

p(xobs, h|Θ, K) =
J

∏
j=1

K

∏
k=1

ak ∏
c∈Cq

(
πkcN

((
xmiss

qj
xobs

qj

)
|µkc, u−1

j Σk

)
G(uj|αkc, βkc)

)δc(
xmiss

cj ,xobs
cj

)δk
zj

where

• xobs = (xobs
qj , xobs

cj )J
j=1 are the observed features,

• xmiss = (xmiss
qj , xmiss

cj )J
j=1 are the latent variables modelling the missing features,

• z = (zj)
J
j=1 the independent labels for continuous and categorical observations x = (xqj, xcj)

J
j=1

• u = (uj)
J
j=1 the scale latent variables handling outliers for quantitative data xq and

distributed according to a Gamma distribution with shape and rate parameters (α, β) =

(αkc, βkc)(k,c)∈{1,...,K}×Cq ,
• a = (ak)

K
k=1 are the weights related to component distributions,

• (µ, Σ) = ((µkc)c∈Cq , Σk)
K
k=1 the mean and the variance parameters of quantitative data xq for each

cluster,
• π = (πk)

K
k=1 the weights of the multivariate Categorical distribution of categorical data xc for

each cluster.
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Eventually, the Bayesian framework imposes to specify a prior distribution p(Θ|K) for Θ which
is chosen as

p(Θ|K) = p(a|K)p(π|K)p(α, β|K)p(µ, Σ|K)

= D(a|κ0)
K

∏
k=1
D(πk|π0) ∏

c∈Cq

p(αkc, βkc|p0, q0, s0, r0)N
(

µkc|µ0kc
, η−1

0kc
Σk

)
IW (Σk|γ0, Σ0)

where D(·|·) and IW(·|·) denote the Dirichlet and Inverse-Wishart distributions and p(·, ·|p, q, s, r) is
a particular distribution designed to avoid a non-closed-form posterior distribution for (α, β) such
that ∀(α, β) ∈ R∗+ ×R∗+, p(α, β|p, q, s, r) ∝ pα−1e−qββsαΓ(α)−r.

3.2. Variational Bayesian Inference

The intractable posterior distribution P = p(h, Θ|xobs, K) is approximated by a tractable one Q =

q(h, Θ|K) whose parameters are chosen via a variational principle to minimize the Kullback-Leibler
(KL) divergence

KL [Q||P] =
∫

q(h, Θ|K) log
(

q(h, Θ|K)
p(h, Θ|xobs, K)

)
∂h∂Θ = log p(xobs|K)−L(q|K)

with L(q|K) a lower bound for the log evidence log p(xobs|K) given by

L(q|K) = Eh,Θ

[
log p(xobs, h, Θ|K)

]
−Eh,Θ [log q(h, Θ|K)] , (3)

where Eh,Θ[·] denotes the expectation with respect to q(h, Θ|K). Then, minimizing the KL divergence is
equivalent to maximizing L(q|K). Assuming that q(h, Θ|K) can be factorized over the latent variables
h and the parameters Θ, a free-form maximization with respect to q(h|K) and q(Θ|K) leads to the
following update rules :

VBE-step : q(h|K) ∝ exp
(
EΘ

[
log p(xobs, h|Θ, K)

])
,

VBM-step : q(Θ|K) ∝ exp
(
Eh

[
log p(xobs, h, Θ|K)

])
.

Thereafter, the algorithm iteratively updates the variational posteriors by increasing the bound
L(q|K). Even if latent variables h and parameters Θ are assumed to be independent a posteriori, their
conditional structures are preserved as follows

q(h|K) = q(xmiss
q |u, xmiss

c , z, K)q(u|xmiss
c , z, K)q(xmiss

c |z, K)q(z|K) ,

q(Θ|K) = q(a|K)q(π|K)q(α, β|K)q(µ, Σ|K) .

Eventually, the following conjugate variational posterior distributions are obtained according to
the previous assumptions

q(h|K) =
J

∏
j=1

K

∏
k=1

r̃jk ∏
cmiss∈Cqmiss

j

r̃xmiss
c

jkcmiss ∏
cobs∈Cqobs

j

(
N
(

xmiss
qj |µ̃

xmiss
q

jkc , u−1
j Σ̃

xmiss
q

k

)
G
(

uj|α̃jkc, β̃ jkc

))δ
cobs
xobs

cj


δ

cmiss
xmiss

cj


δk

zj

,

q(Θ|K) = D(a|κ̃)
K

∏
k=1
D(π|π̃k) ∏

c∈Cq

p(αkc, βkc| p̃k, q̃k, s̃k, r̃k)N
(

µkc|µ̃kc, η̃−1
kc Σk

)
IW(Σk|γ̃k, Σ̃k) .

Their respective parameters are estimated during the VBE and VBM-steps by developing
expectations EΘ

[
log p(xobs, h|Θ, K)

]
and Eh

[
log p(xobs, h, Θ|K)

]
.
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3.3. Classification and Clustering

According to the degree of supervision, three problems can be distinguished: supervised
classification, semi-supervised classification and unsupervised classification known as clustering.
The supervised classification problem is decomposed into a training step and a prediction step.
The training step consists in estimating parameters Θ given the number of classes K and a set of
training data x with known labels z. Then, the prediction step results in associating label z∗ of a new
sample x∗ to its class k∗ chosen as the Maximum A Posteriori (MAP) solution

k∗ = arg
K

max
k=1

q(z∗ = k|K)

given the previous estimated parameters Θ. In the semi-supervised classification, only the number of
classes K is known and both labels z of the dataset x and parameters Θ have to be determined. As for
the prediction step, the MAP criterion is retained for affecting observations to classes such that

k∗ = arg
K

max
k=1

q(z = k|K) .

Given a set of data x, the clustering problem aims to determine the number of clusters K̃, labels
z of data and parameters Θ. Selecting the appropriate K̃ seems like a model selection issue and is
usually based on a maximized likelihood criterion given by

K̃ = arg max
K

log p(x|K) = arg max
K

log
∫

p(x, Θ|K)dΘ . (4)

Unfortunately, log p(x|K) is intractable and the lower bound in (3) is preferred to penalized
likelihood criteria [8,15,16] since it does not depend on asymptotical assumptions and does not
require Maximum Likelihood estimates. Then according to an a priori range of numbers of clusters
{Kmin, . . . , Kmax}, the semi-supervised classification is performed for each K ∈ {Kmin, . . . , Kmax} and
both zK and ΘK are estimated. Finally, the number of classes K̃ in (4) is chosen as the maximizer of the
lower bound L(q|K) :

K̃ = arg max
K
L(q|K) . (5)

After determining K̃, only zK̃ and ΘK̃ are kept as estimated labels and parameters.

4. Application

In this section, the proposed method is performed on a radar emitter dataset. For comparison,
a standard neural network (NN), the k-nearest neighbours (KNN) algorithm, Random Forests (RdF)
the k-means algorithm are also evaluated. Two experiments are carried out to evaluate classification
and clustering performance with respect to a range of percentages of missing values.

4.1. Data

Realistic data are generated from an operational database gathering 55 radar emitters presenting
various patterns. Each pattern consists of a sequence of pulses which are defined by a triplet of
continuous features (pulse features) and a quartet of categorical features (pulse modulations) listed
among 42 combinations of the categorical features. For each radar emitter, 100 observations (xj)

100
j=1 are

simulated from its pattern of pulses such that an observation xj = (xqj, xcj) is made up of continuous
features xqj and categorical features xcj related to one of the pulses. Extra missing values are added to
evaluate limits of the proposed approach by randomly deleting coordinates of (xqj)

100
j=1 and (xcj)

100
j=1

for each of the 55 radar emitters. Therefore, imputation methods [17] are used to handle missing
data for comparison algorithms. As for continuous missing data, they are handled through the Mean
and k-nearest neighbours imputation methods whereas missing categorical data are handled through
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the k-nearest neighbours and mode imputation methods. These imputation methods are compared
with the proposed approach where missing continuous data are reconstructed through the variational
posterior marginal mean of missing continuous data given by ∀j ∈ {1, . . . , J},

x̃miss
qj = Exmiss

qj

[∫
q(xmiss

qj , uj, xcjzj)∂uj∂xcj∂zj

]
=

K

∑
k=1

r̃jk ∑
cobs∈C

qobs
j

δcobs

xobs
cj

∑
cmiss∈Cqmiss

j

r̃xmiss
c

jkcmiss µ̃
xmiss

q

jkcobscmiss (6)

and missing categorical data are reconstructed through the variational posterior marginal mode of
missing categorical data given by ∀j ∈ {1, . . . , J},

x̃miss
cj = arg max

cmiss∈Cqmiss
j

∫
q(xmiss

cj , zj)dzj = arg max
cmiss∈Cqmiss

j

K

∑
k=1

r̃jk r̃xmiss
c

jkcmiss . (7)

4.2. Classification Experiment

The classification experiment evaluates the ability of each algorithm to assign unlabeled data to
one of the K classes trained by a set of labeled data. Since comparison algorithms do not handle datasets
including missing values, a complete dataset is used to enable their training. During the prediction
step, incomplete observations are completed thanks to the mean and KNN imputation methods and
the posterior reconstructions defined in (6) and (7). For the classification experiment, results are shown
in Figure 1. Without missing data, both algorithms cannot perfectly classify the 55 radar emitters for
the 2 datasets. Indeed, both algorithms reach accuracies of 90% for the continuous dataset and 98% for
the mixed dataset. These performance can be explained by the non total separability of continuous
and categorical datasets since the 55 emitters share 42 combinations of categorical features and some
intervals of continuous features. Nonetheless when mixed data are taken into consideration, the dataset
becomes more separable leading to higher performance of both algorithms. When the proportion of
missing values increases, the proposed model outperforms comparisons algorithms for each dataset.
It achieves accuracies of 80% and 95% for 90% of deleted continuous and mixed values whereas
accuracies of comparison algorithms are lower than 65% and 75% with missing data imputation from
standard methods. These higher performance of the proposed model reveal that the proposed method
embeds a more efficient inference method than other imputation methods. That result is confirmed
on Figure 1 when comparison algorithms are applied on data reconstructed by the proposed model.
Indeed when the proposed inference is chosen, comparison algorithms share the same performance
than the proposed model and manage to handle missing data even for 90% of deleted values.

Then, effectiveness of the proposed model can be explained by the fact that missing data
imputation methods can create outliers that deteriorate performance of classification algorithms
whereas the inference on missing data and labels prediction are jointly estimated in the proposed
model. Indeed, embedding the inference procedure into the model framework allows properties of
the model, such as outliers handling, to counterbalance drawbacks of imputation methods such as
outlier creation.
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Figure 1. Classification performance are presented for the proposed model (PM) in blue, the NN in red,
the RnF in green and the KNN in cyan. For each figure, solid lines represent accuracies with a posteriori
reconstructed missing data, doted dashed lines stand for accuracies with mean/mode imputation
whereas dashed lines show accuracies with KNN imputation for the comparison algorithms.

4.3. Clustering Experiment

The clustering experiment tests the ability of each algorithm to find the true number of clusters
K̃ among {35, . . . , 85}. The lower bound (3) and the average Silhouette score [18] are criteria used to
select the optimal number of clusters for the proposed model and the k-means algorithm. Results of
the clustering experiment are visible on Figure 2 which presents numbers of clusters selected by the
lower bound and average Silhouette scores for the proposed model and k-means algorithm according
to different proportions of missing values and imputation methods. Without missing data, the correct
number of clusters (K = 55) is selected by the two criteria for the k-means algorithm and the proposed
model when continuous and mixed data are clustered. In presence of missing values, the average
Silhouette score mainly selects K = 65 when the k-means algorithm is run on the 2 datasets completed
by standard imputation methods. When, the k-means algorithm performs clustering on the posterior
reconstructions, the average Silhouette score correctly selects K = 55 until 60% of missing values for
continuous data and 40% of missing values for mixed data. Eventually when the proposed model
does clustering, the two criteria select the correct number of clusters K = 55 until 70% of missing
values for continuous and mixed data. These results show two main advantages of the proposed
model. As previously, the proposed model provides a more robust inference on missing data since the
average Silhouette score chooses more representative number of clusters when the k-means algorithm
is run on the posterior reconstructions than on data completed by standard imputation methods.
Furthermore, since the lower bound criterion also selects the correct number of clusters as the average
Silhouette score, it can be used as a valid criterion for selecting the optimal number of clusters and does
not require extra computational costs as the Silhouette score since it is computed during the model
parameter estimation. Finally, the proposed approach provides a more robust inference on missing
data and a criterion for selecting the optimal number of clusters without extra computations.
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Figure 2. Estimation of the number of clusters using the lower bound (LB) and the silhouette score (S)
for the proposed model and only the silhouette score (S) for the k-means algorithm.

5. Conclusions

In this paper, a mixture model handling both continuous data and categorical data is developed.
More precisely, an approach based on the conditional Gaussian mixture model is investigated
by establishing conditional relations between continuous and categorical data. Benefiting from a
dependence structure designed for mixed-type data, the proposed model shows its efficiency for
inferring on missing data, performing classification and clustering tasks and selecting the correct
number of clusters. Since the posterior distribution is intractable, model learning is processed through
a variational Bayesian approximation where variational posterior distributions are proposed for
continuous and categorical missing data. Experiments point out that the proposed approach can
handle mixed-type data even in presence of missing values and can outperform standard algorithms
in classification and clustering tasks. Indeed the main advantage of our approach is that it enables
the counterbalance of imputation methods drawbacks by embedding the inference procedure into the
model framework.
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