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Abstract: Fluorescently targeted proteins are widely used for studies of intracellular organelles
dynamic. Peripheral proteins are transiently associated with organelles and a significant fraction of
them are located at the cytosol. Image analysis of peripheral proteins poses a problem on properly
discriminating membrane-associated signal from the cytosolic one. In most cases, signals from
organelles are compact in comparison with diffuse signal from cytosol. Commonly used methods
for background estimation depend on the assumption that background and foreground signals are
separable by spatial frequency filters. However, large non-stained organelles (e.g., nuclei) result
in abrupt changes in the cytosol intensity and lead to errors in the background estimation. Such
mistakes result in artifacts in the reconstructed foreground signal. We developed a new algorithm
that estimates background intensity in fluorescence microscopy images and does not produce artifacts
on the borders of nuclei.
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1. Introduction

The development of technologies for creating genetically encoded chimeric conjugates of proteins
of interest with fluorescent proteins opened a new era in study of intracellular processes by means of
quantitative fluorescence microscopy [1], and it is widely used in studies of spatio-temporal dynamics
of intracellular organelles in live and fixed cells [2–4]. Several approaches for the quantification
of cytosolic and membrane-bound proteins have been developed. However, most of them fail
when applied to cases where the existence of large non-stained organelles (e.g., nuclei) produce
sudden changes in the cytosol fluorescent intensity. Many peripheral membrane proteins dynamically
switch between cytosolic and membrane-bound state. Whereas, they generate compact fluorescent
images of intracellular organelles when they are in membrane-bound state, fuzzy fluorescent
background is generated when they are in cytosolic state. As an example of such peripheral
membrane proteins, we analyzed images of the small GTPase Rab5 conjugated with Green Fluorescent
Protein (GFP), which dynamics orchestrates intracellular endocytic transport [5]. Quantitative
analysis of endosome-associated proteins requires discrimination of fluorescent endosomes from
fluorescent cytosolic background (Figure 1a). The problem of discriminating high spatial frequency
(bright compact) structures, i.e., endosomes, from low-frequency (cytoplasmic) background has
been extensively studied and many solutions (using heuristic as well as Bayesian approaches) have
been developed. However, they mostly rely on the assumption that background corresponds to
low-frequency signal, which is not the case of peripheral proteins. Usually, images of peripheral

Proceedings 2019, 33, 22; doi:10.3390/proceedings2019033022 www.mdpi.com/journal/proceedings

http://www.mdpi.com/journal/proceedings
http://www.mdpi.com
http://www.mdpi.com/2504-3900/33/1/22?type=check_update&version=1
http://dx.doi.org/10.3390/proceedings2019033022
http://www.mdpi.com/journal/proceedings


Proceedings 2019, 33, 22 2 of 8

proteins (Figure 1a) show large dark areas with sharp boundaries, which are imprints of nuclei in the
fluorescent cytoplasm. Multiple unlabeled organelles are observed as dark areas in the cytoplasm
with spatial frequencies similar to those of endosomes. This spatial frequency similarity is exemplified
by the intensity profile along yellow line on Figure 1a, which is presented on Figure 1b (black line).
In a recent study [6], the problem of non-smooth background was addressed for time series (live
cell imaging) by using conditional random fields to estimate the background as well as to segment
the motile organelles. However, this algorithm is not applicable for single images. Unfortunately,
state-of-the-arts algorithms for background estimation on single fluorescence microscopy images
[7–9] explicitly rely on the smoothness of background signal and in this respect are not better than
textbook "rolling ball" algorithm [10]. All of them produce artefacts (false-positive foreground rim) on
border of cell nucleus (see Figure 1b,c). In present work we proposed new algorithm (TBL) based on
probability distribution for two background levels: one in cytosol and another in possibly presented
"dark" nucleus, each background is smooth, but transition between them could be abrupt.

(a) (b)

(c)

Figure 1. (a) A431 cells with GFP-tagged Rab5a. The cytosol is labelled by soluble fraction of GFP-Rab5a.
Bright structures of different size and shape are endosomes, which are labelled by membrane-bound
GFP-Rab5a. Images were obtained by spinning disk microscope (Andor-Olympus-IX71 inverted stand
microscope; scan head CSU-X1 Yokogawa, objective Olympus UPlanSApo 63x 1.35oil, Optovar 1.6).
Letters N denote nuclei. Yellow line marks the intensity profile presented on panel b. (b) Intensity
profiles along the yellow line (Figure 1). Black curve is intensity of original image. Red, green, blue and
cyan curves are background estimation by “rolling ball” [10], Gaussian, median and FMOR [7] filters
respectively. (c) Difference between original intensities and estimated background. Green, blue and
red curves correspond to background estimation by Gaussian, median and FMOR filters respectively.
Filter window was 4µm for all filters.
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2. Two Background Level Estimation (TBL) Algorithm

2.1. Probabilistic Model of Intensity

Images of fluorescence microscopy are dominated by Poisson noise of photo-electron flux in
photomultiplier tube (PMT) or CMOS/CCD camera. Probability to detect n photo-electrons is P(n) =
λne−λ

Γ(n+1) . Assuming that intensity I linearly depends on number photo-electrons, we got I = α · n + I0,
where offset I0 can be as positive as negative, dependent on microscope settings. Therefore, variance
of intensity σ2 = α · I + ζ, where ζ = ε2 − α · I0 and ε2 is variance of zero-mean Gaussian noise of
electronic circuits.

First, we found parameters α and ζ for a single image as it was described in [11]. In most
practical cases ε2 is small, therefore we approximated I0 = − ζ

α and subtracted it form the image:

Ji = max
(

0, Ii +
ζ
α

)
. Second, we calculated estimation of variance σ2

i for each pixel. Third,
we approximated Poisson noise distribution by truncated Gaussian distribution (since it allows get
integrals analytically):

Therefore, probability of intensity in absence of foreground, given background intensity Bi,
was approximated as:
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where P (Fi) is prior of foreground. By maximum entropy principle, we chose prior distribution
for foreground

P (Fi|µi) =
1
µ

e−
Fi
µ (3)

The parameter of the prior (mean expected amplitude of foregroundµ) was found outside of the
analyzed pixel (see Appendix A).
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2.2. Probabilistic Model of Two Background Levels

Assuming that background is slow varying signal, we approximate it by constant in the vicinity
of the pixel i. The vicinity window is defined by characteristic scale discriminating background and
foreground. We introduced latent variables zi,k, k = 1, 2, 3, 4 to define 4 possible states of pixel intensity:
background B1, background B2, background B1 with foreground and background B2 with foreground.
Then probability of intensities in the vicinity window Ω In the pixel having two background levels in
the vicinity window, the probability of intensities we got:
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where β0 is prior probability of presence of foreground in the pixel (see Appendix A). If B
σ > 1 , then

the expression can be simplified as:
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(6)

We used EM algorithm to maximize likelihood L (B1, B2| {Ji, zi} , {σi}) over backgroundsB1, B2.
Resulting backgrounds are presented on Figure 2a.

(a) (b)

(c)

Figure 2. (a) Original intensity (as on Figure 1) curve (black) and two estimated background levels (red
and green curves). (b) Original intensity curve (black) and background estimation by TBL (blue) curve.
(c) Difference between original intensities and TBL background.
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Then we calculated probability of presence of foreground in the pixel i (assuming B2 > B1without
loss of generality):

psignal
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

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, Ii > B2
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(
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(
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+ Ψ
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(
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) (
Ψ
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)
+ Ψ

(
− Bi,2
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)) (10)

Assuming that each pixel in the vicinity window exclusively belongs to only one background
level, we got probability of background levels: Assuming that each pixel in the vicinity window
exclusively belongs to only one background level, we got probability of background levels:

Pj,1 =
N

∑
i=1


(pi,1 + pi,2) · psignal

i · psignal
j + pi,1 ·

(
1− psignal

i · psignal
j

)
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
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)




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Finally consensus background intensity in the pixel of interest was calculated as weighted mean:

B =
B1P1 + B2P2

P1 + P2
(13)

The estimation of variance of background intensity:

σ2
b = VarB1

(
P1

P1 + P2

)2
+ VarB2

(
P2

P1 + P2

)2
+ (B1 − B2)

2 P1P2

(P1 + P2)
2

1
N

(14)

Final background was calculated by formula (14) (Figure 2b). Difference between original
intensities and estimated backgrounds has residual “nuclei border artifact” within estimated
uncertainty (Figure 2c).

Result of TBL algorithm is presented on Figure 3a,b.
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(a) (b)

Figure 3. (a) Original image. (b) Image after subtraction background by TBL.

3. Conclusions

We developed a new algorithm (TBL) to estimate cytoplasm fluorescence (background) in
conditions where high spatial frequency is present in both background and foreground signal.
TBL avoids artefacts that are characteristic for state-of-the-arts background subtraction algorithms in
presence inhomogeneous background with sharp transition between levels.
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Appendix A. Estimation Prior Parameters µ and β

It is reasonable to assume that most of pixels have only one background level in their close
vicinity. Fluorescence microscopy images of intracellular organelles have majority of pixels belonging
to background. Therefore, median filter, which is insensitive to outliers (foreground), could be used as
crude estimation of background. However, given that intensity is not normally distributed, median
is shifted relative to mode. In our cropped Gaussian approximation, the median Mi is solution of
equation:

er f
(

1√
2

Mi − Bi
σi

)
=

1
2

er f c
(

1√
2

Bi
σi

)
, Bi ≥ 0 (A1)

Therefore, we first calculated median {Mi} over vicinity window for image for image{Ji, σi},
where Ji denote intensity after offset subtraction Ji = Ii +

ζ
α , then calculated {Bi} by numerical solution

of equation A1 and, finally, constructed image
{

ui =
Ji−Bi

σi

}
, where in absence of foreground image

has intensity distribution

pb (u|b, µ, σ) =

√
2
π

e−
1
2 u2

er f c
(
− b√

2σ

) (A2)

In presence of foreground image has intensity distribution
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p f (u|µ, σ, b) =
σ
µ e−

σ
µ uer f c

(
1√
2

(
σ
µ − u

))

e
b
µ er f c

(
1√
2
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σ
µ + b

σ

))
+ e−

1
2

(
σ
µ

)2

er f c
(
− b√

2σ

) (A3)

Therefore ratio fraction of pixels with intensity in the interval [t, ∞] to the number of pixels with
intensity in the interval [0, 1] for distribution (A2) is:

b =

∫ ∞
t pb (u|b, µ, σ) du
∫ 1

0 pb (u|b, µ, σ) du
=

1− er f
(

t√
2

)

er f
(

1√
2

) (A4)

For distribution (A3) the ration is:

f =

∫ ∞
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∫ 1

0 p f (u|b, µ, σ) du
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σ
µ ter f c
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σ
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+ e−
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(
σ
µ

)2
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t√
2

)
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(
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σ
µ
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σ
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2
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1
2 η2 er f

(
1√
2

) (A5)

The integration f with Jeffreys prior 1
µ gives:

< f >= lim
A→∞

1
A

∫ A

0
f

1
µ

dµ ≈ 1.47− 0.009t (A6)

Then we calculated ratio R of number of pixels with intensities above u > t to number of pixels
with u ≤ 1 in the image:

R =
b(1+ < f >) + β(< f > −b)

1+ < f > −β(< f > −b)
(A7)

The ratio (A7) was calculated for set of thresholds t (t = 1, 2, 3). The resulting overdetermined
system was solved in least square sense w.r.t β, which is probability of presence foreground signal in
the pixel.

Expectations of mean value of pixels with intensities u > t are:

〈
mb,u>t

〉
=

∫ ∞
t upb (u|µ, B, σ) du∫ ∞
1 pb (u|µ, B, σ) du

=

√
2
π
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1
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(
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2

) (A8)

〈
m f ,u>t

〉
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σ
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√
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µ
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t√
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2

) (A9)

Therefore expected mean value of pixels with intensities u > t is: 〈mu>t〉 = β
〈

m f ,u>t

〉
+

(1− β)
〈
mb,u>t

〉
.

We calculated experimental mean value M of pixels with intensities u > t for a set of thresholds t
(t = 1, 2, 3):

M = β
(η + t) e

1
2

(
σ
µ−t

)2
− 1

2 t2

er f c
(

t√
2
(η − t)

)
+
√

2
π e−

1
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+ ηer f c
(

t√
2

)

e
1
2 (η−t)2− 1

2 t2 er f c
(

t√
2
(η − t)

)
+ er f c

(
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2
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√
2
π
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1
2 t2

er f c
(
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2

) (A10)

and solved the overdetermined system in least square sense w.r.t. η. Then parameter µ was estimated
as: µ = η · 〈σ〉
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