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Abstract: The Bayesian approach Maximum a Posteriori (MAP) is discussed in the context of 
solving the image reconstruction problem in nuclear medicine: positron emission tomography 
(PET) and single photon emission computer tomography (SPECT). Two standard probabilistic 
forms, Gibbs and entropy prior probabilities, are analyzed. It is shown that both the entropy-based 
and Gibbs priors in their standard formulations result in global regularization when a single 
parameter controls the solution. Global regularization leads to over-smoothed images and loss of 
fine structures. Over-smoothing is undesirable, especially in oncology in diagnosis of cancer 
lesions of small size and low activity. To overcome the over-smoothing problem and to improve 
resolution of images, the new approach based on local statistical regularization is developed. 
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1. Introduction 

Emission tomography techniques, including (PET) and single photon emission computer 
tomography (SPECT), produce images which are used for clinical diagnosis. Image quality depends 
substantially on applied reconstruction methods. The deterministic filtered back projection (FBP) 
method was used for image reconstruction up to the 90-th. Later, statistical iterative methods based 
on the maximum likelihood principle, entered the nuclear medicine. Statistical algorithms, such as 
the Maximum Likelihood Expectation Maximization (MLEM) and its accelerated version - Ordered 
Subsets Expectation Maximization (OSEM)—take into account the stochastic properties of the 
observed data and provide more accurate images in comparison to FBP method. At the moment, 
OSEM is the standard algorithm in PET and SPECT systems all over the world. However, OSEM 
algorithm has fundamental limitations in solving reconstruction problems and unexpected artifacts 
may arise in the obtained images. These limitations are due to the fact that from the mathematical 
point of view, image reconstruction belongs to the class of ill-posed inverse problems and 
regularization is necessary for its correct solution. Regularization is the process of introducing an 
additional a priori assumption about the solution to obtain a well behaved inverse [1]. Initially, the 
regularization method was developed by using the deterministic form of prior information. 
However, the deterministic form of prior information has limitations with the drawback to lead to 
excessively over-smoothed solutions. The stochastic nature of the observed data requires the 
probabilistic approach for assigning prior information. V. Turchin suggested to use the Bayesian 
method of Maximum a Posteriori (MAP) for solving ill-posed problems with stochastic data, naming 
this approach ‘statistical regularization’ [2]. The statistical regularization method introduces the 
prior information in the form of a probability distribution. Two basic probabilistic forms of prior 
information, widely used in reconstruction tomography, are: Gibbs prior and entropy prior. Both 
deterministic and statistical regularization methods were developed as ‘global regularization’, in 
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which a single parameter controls the solution in the whole solution’s area. It was expected, that the 
regularized MAP algorithms should provide more accurate reconstruction of fine structures in 
comparison to the non-regularized OSEM. However, in [3], rather minor differences between the 
images obtained by the OSEM algorithm and MAP algorithm with Gibbs prior (MAP-Gibbs) were 
found. In [4], numerical simulations have shown that by using the entropy-based MAP algorithm 
(MAP-ENT), the reconstruction errors decrease monotonically with excellent stability, in contrary, 
the OSEM algorithm behavior was unstable. The OSEM reconstructed image was obtained by 
stopping the iteration process at the point of minimal error and similarly to the resulting MAP-ENT 
image. We assume that the cause of the minor difference between OSEM and MAP images is due to 
the global regularization method, applied in both MAP algorithms. Global regularization smoothes 
the solution too strong and therefore fine structures may be over-smoothed or lost. Local 
regularization is needed to improve image quality. The idea of local regularization for statistical 
MAP approach has not been considered in literature. 

The aim of this paper is the theoretical analysis of local regularization method in the frame of 
statistical Bayesian MAP approach. 

2. Methods  

2.1. Bayesian Approach for Solving Tomographic Problems in Nuclear Medicine 

In SPECT and PET diagnostic procedures, a patient is administered a radiolabeled 
pharmaceutical which is distributed with the concentration ( )n q  in various regions of the body ( q  
is the space coordinate). The function ( )f q  describes the density of gamma photons produced 
through radioactive decay. It is assumed that ( )f q  is a random value which follows the Poisson 

distribution with mean f  which is proportional to the radiopharmaceutical concentration n . The 
image reconstruction problem is presented as linear equation: 

Af g=  (1) 

A  is a system matrix which describes data acquisition process and g  are registered 
stochastic data. Gamma photons are emitted by the radiopharmaceutical and are registered by 
gamma camera. Gamma camera rotates around the patient body and collects gamma photons from 
different angles. The registered raw data are called projection data. In myocardial perfusion SPECT 
imaging the data are obtained from 32 or 64 views. An example of clinical raw projection data is 
shown in Figure 1. The data of 3 from total 64 views are shown. 

 
Figure 1. Clinical SPECT projection data. The data are demonstrated for three selected views: 
anterior (a), left anterior oblique (b) and left lateral (c) projections. 

The data are obtained in Meshalkin National Medical Research Center (Novosibirsk) by using 
GE Infinia Hawkeye SPECT/CT system. 

The data are assumed to be distributed according to a Poisson law:  
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The reconstruction problem (1) is formulated as a classical problem of mathematical statistics: 
what is the probability density ( | )P f g  for the solution f  with given data g ? By using the 

Bayesian Maximum a Posteriori (MAP) theorem, ( | )P f g  is determined as:  

( ) ( | )( | )
( ) ( | )
P f P g AfP f g
P f P g Af df

=


 (4) 

where ( )P f  is a prior probability density function and ( | )P g Af  is the likelihood distribution of 

the observed data. The most probable MAP estimation is obtained by maximizing ( | )P f g  in 
logarithmic form: 

max {ln ( ) ln ( | )}ff P f P g Af= +  (5) 

For applications in nuclear medicine, the likelihood distribution in logarithmic form is defined 
in accordance to (2): 

ln ( | ) ln ln !P g Af g Af Af g= − −  (6) 

2.2. Maximum-Likelihood-Based Image Reconstruction Method 

When a researcher does not have any prior information the simple way is to assume that all 
possibilities are equally probable and Bayesian estimation reduces to the Maximum Likelihood 
(ML) solution: 

arg max{ln ( | )}ff P g Af=   (7) 

In practical PET and SPECT applications reconstruction problem is usually discretized. The 
reconstruction area is assumed to be divided into J  voxels in which the unknown source function 
f  is distributed with a discrete density jf . The projection data are presented in the discrete form 

as a system of the linear algebraic equations: 

i ij j
j

g A f=  (8) 

where ig  are the measured data in the i -th detector cell, matrix ijA  is the system matrix 

describing the possibility that photon emitted in the j -th voxel will be detected in i -th ‘detector’. 
The ML method (7) provides the following solution: 

1
n
j i ijn

j nij i ij j
i j

f g A
f

A A f
+ =  




  (4) 
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n
jf
  is an estimation of jf  on the n -th iteration step. In clinical systems, the OSEM algorithm 

is used. OSEM is a faster version of ML algorithm. OSEM is not a regularized algorithm, therefore, 
its behavior in iteration process is unstable and the resulted images are dominated by noisy artifacts. 
In the first iterations, the error of reconstruction decreases, then it reaches a minimum and begins to 
increase. At this point a reconstructed image begins to deteriorate. One may think that it is possible 
to obtain visually good OSEM images by stopping the iteration process at the iteration with minimal 
error. Nonetheless, image deterioration progresses more rapidly in the zones with lower count 
statistics. At stopping, a part of the image with low count statistics can become already noisy while 
another part of the image with high statistics did not reach its optimal resolution yet. This problem is 
especially important in oncology: a noise in the low count zones imitates virtual ‘hot spots’ or masks 
the true ‘hot spots’. Currently, stopping of OSEM algorithms is applied in standard SPECT 
myocardial perfusion imaging protocols. In some cases, the stopping rule may be the cause of 
artifacts on images. 

2.3. The Bayesian Image Reconstruction Method with Gibbs Prior 

In the literature devoted to medical emission tomography, Bayesian Maximum a Posteriori 
approach with Gibbs prior is most widely studied. This approach was justified theoretically in [5] 
and was first applied for SPECT by Geman and McClare in 1984 in [6]. Gibbs prior assumes the 
Markov Random Field (MRF) distribution for emitted photons. According to the 
Hammersly-Clifford theorem, the MRF has the distribution which is described by the Gibbs 
probability: 

1( ) exp( ( ))P f U f
Z

β= −  (5) 

where β  is an unknown parameter, ( )U f  is the energy function. Energy function ( )U f  is 
defined as a sum of potentials: 

( ) (| |)j c j i
j c

U f V f f
∈

= −  (11) 

where c  denotes the set of all cliques type, cV  is a potential functions defined on pairwise cliques 
of neighboring voxels. The Bayesian MAP solution (MAP-Gibbs) of the reconstruction problem (1) 
is presented in this case as: 

arg max{ (| |) ln ln !}c j if
i j c

f V f f g Af Af gβ
∈

= − − + − −  (12) 

Gibbs prior provides the reconstruction algorithm that specifies local spatial correlations in the 
source to be reconstructed. A wide range of potential functions cV  have been proposed in the 
literature. For example, edge-preserving Geman’s approximation of the function cV  is defined as 
follows: 

2

2 2

( )

2 ( )
j i

c
j i

f f
V

f fδ
−

=
+ −

 (13) 

δ  is edge-preserving parameter. Unfortunately, the physical nature of cV  is not very clear. 
Huge efforts are aimed at the development of this approach for PET and SPECT applications. 
However, there are unsolved problems that inhibit the implementation of these algorithms on 
commercial systems.  
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2.4. Bayesian Image Reconstruction Method with Entropy Prior 

Another form of prior, based on the entropy principle, was suggested by Jaynes [7–9]. 
Maximum-entropy (ME) approach has been successfully applied in the fields of X-ray-, radio- and 
gamma-astronomy, plasma tomography [10–14], but less in medicine tomography. Applied to 
radio-astronomical data, the maximum entropy algorithm reveals details not seen by conventional 
analysis, but which are known to exist. Applied to solve the problem of astronomical image 
restoring, the Maximum Entropy approach has demonstrated that resolved and unresolved sources 
can be restored with reliability. These results are of interest in the context of the similarity between 
astronomical images and ‘hot spots’ tumor images in nuclear oncology. In the absence of 
correlations the entropy-based method is superior to the Gibbs’ approach in ‘hot spots’ identifying.  

The ME approach goes back to the famous works by Boltzmann and can be formulated as 
follows: distributions of higher entropy have higher multiplicity and can be realized in more ways. 
In order to apply the entropy principle to the SPECT and PET imaging problems, the reconstruction 
area is properly discretized into J  boxes. An image is considered as a set of boxes in which a large 
number of emitting particles are placed. According to the combinatorial theorem, the number of 
different ways of filling the boxes is given by 

0 !
!j

j

N
W

N
=

∏  (14) 

j  is a box index, jN  is the number of particles in the j-th box and 0N  is the total number of 

particles. One usually uses the Stirling approximation to find the entropy equation in the 
logarithmic form. The prior probability ( )P f  of the unknown function is taken to be proportional 

to its multiplicity. The image (the number of emitted photons) jf  is assumed to be proportional to 

the density of the emitting particles and, therefore, one obtains 

1
ln ( ) ln

J

j j
j

P f f fβ
=

= −   (15) 

where β  is a constant associated with the relation between jN  and jf . Maximum a Posteriori 

estimation with entropy prior (MAP-ENT) is written in the discrete form as: 

arg max{ ln [ ln ln !]}j j i ij j ij j if
j i j j

f f f g A f A f gβ= − + − −     (16) 

Unlike Gibbs prior, Entropy form does not introduce correlations in the images, beyond those 
which are required by the data. It is necessary to make the following remark concerning the 
maximum entropy approach. There are two basic approaches using the entropy prior: the 
Maximum a Posteriori algorithm with entropy prior and the constrained Maximum Entropy 
algorithm. A difference between these approaches is as follows: in the MAP algorithm, the data 
enters as a part of quantity to be maximized, ( | )P f g . With the Maximum Entropy method, the 

data are added via Lagrange multipliers exterior to the entropy prior ( )P f  to be maximized. The 
Maximum Entropy yields the smoothest solution among all solutions satisfying to given data. A 
degree of smoothness of the MAP solution is regulated by the regularization parameter. 

2.5. Bayesian Image Reconstruction Method Based on Open System Theory  

Gibbs and entropy forms of prior information result in global regularization method with a 
single regularization parameter. Global regularization produces too smoothed solution therefore 
fine structures may be lost on images. Local regularization is needed to improve image quality. The 
idea of local regularization for statistical MAP approach is considered in this Section. This idea is 
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based on the open systems theory. Open systems are the systems which can be exchanged with 
environment by energy, matter and information and, from this point of view, emitting objects are 
open systems. In SPECT and PET diagnostic procedures a radiopharmaceutical is injected into a 
patient body. Different organs have different metabolism rate for the injected radiopharmaceutical. 
In the same organ, healthy and ill tissues can also have different metabolism rate. Different 
radiopharmaceutical accumulation in the organs is associated with a different metabolic rate, which 
is considered here as a control parameter ‘ a ’. We consider the accumulative model that describes a 
final steady-state non-equilibrium spatial distribution of radiopharmaceutical in a patient body. 
Due to radioactive decay, radiopharmaceutical emits gamma photons, so a patient body can be 
considered as an emitting open system. We assume that processes of nuclear excitation and 
de-excitation occur at the same rate during all the time of patient examination procedure. So, the 
distribution of radiopharmaceutical particles in a patient body can be considered as a steady-state 
open system. The steady-state of the system is defined by a corresponding control parameter. Due 
to low radiopharmaceutical concentration we can consider an open system of N  non-interacting 
classical particles (ideal gas) in the volume V  with the energy E . In an equilibrium system, 
particles are uniformly distributed throughout the volume. Non-uniform spatial distribution of 
particles can occur in the non-equilibrium steady-state systems. Macroscopic states of an ideal gas 
can be described through the possible energy distribution of an individual particle. Following [15], 
in classical case the entropy can be written as:  

( ) ( ), , ln , , dpdqS q p a n q p agn= − +
Δ const  (17) 

,q p  are spatial and pulse coordinates, 6(2 )πΔ =  , g  is a weight factor associated with 
different nuclear states of particles. Assuming that energy (pulse) distributions are the same at each 
point in a discrete physical space, we obtain 

( ) ln ( )j j
j

S gn a n a const= − +  (18) 

( )jn a  is radiopharmaceutical concentration in the j -th voxel of physical space. 

For simplicity, let us focus on one organ, for example, on a liver with the area of healthy tissue 
and some area of ill tissue. Suppose only two cases with the concentration of radiopharmaceutical 
particles in the liver 0( )n a  and 1( )n a . Calculation of entropy can be performed separately for each 
of these two areas in accordance with the Equation (18). However, definition of total entropy by 
using the usual Boltzmann formula is not possible because the mean energies of these two states are 
different. According to Klimontovich S-theorem [16], we can define the total entropy after 
renormalizing of energies: 

( )( ) ( )( )0 1H n a H n a=  (19) 

H is an Hamiltonian function. Integrating (17) by pulses p under condition (19) one obtains the 
renormalized entropy expressions for the healthy and ill liver areas. Taking into account that mean 
f  is proportional to the radiopharmaceutical concentration, we can write the total entropy as: 

( ) ( )ln
k

k j k j k
k j C

S f a f aβ
∈

= −   (20) 

the index k defines the subsystems with different parameter a  (different radiopharmaceutical 
concentration). Maximum a Posteriori estimation with entropy prior based on open system theory 
(MAP-OPEN-ENT) is written in the discrete form as: 

 ( ) ( ){ ln [ ln ln !]max
k

k j k j k i ij j ij j jf
k j C i j j

f arg f a f a g A f A f gβ
∈

= − + − −      (21) 
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In solution of SPECT and PET reconstruction problems by using Bayesian approach, the 
expression (21) leads to local regularization with local regularization parameters kβ . 

3. Conclusions 

The standard approach for solving the ill-posed inverse problem in image reconstruction is 
used in the form of ‘global regularization’, in which a single parameter controls the solution. 
However, in SPECT and PET imaging, global regularization leads to over-smoothed images and loss 
of fine structures. Over-smoothing is undesirable, especially in oncology in diagnosis of cancer 
tumors of small size and low activity. To overcome the over-smoothing problem and to improve 
resolution of images, the new approach based on local statistical regularization is developed in this 
work. The theoretical justification of the new method in which the value of the regularization 
parameter is defined on the base of open system entropy is performed. 
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