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Abstract: In this work, we present a new approach to detect materials with known spectral
emissivity, in data acquired by thermal infrared hyperspectral systems. The method takes into
account the spectral variability of the downwelling radiance, commonly neglected in most target
detection techniques. We address such variability supposing that the downwelling radiance spans a
low-rank subspace, whose basis matrix is learned off-line by means of MODTRAN. We evaluate the
performance of the method with simulated data, and present results that show the effectiveness of
the proposed algorithm.
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1. Introduction

In LWIR hyperspectral systems, target detection is accomplished exploiting the spectral emissivity
of the target-of-interest (TOI) [1]. The signal processing chain that leads to detect the TOI within the
monitored scene may be split in three steps: atmospheric correction, downwelling spectral radiance
estimation, and target detection. Atmospheric correction consists in estimating the ground leaving
radiance by removing the contributions due to the spectral transmittance and upward radiance [2].
The task of estimating the downwelling radiance is often difficult, because a down-looking sensor
cannot acquire knowledge of the atmosphere above the platform, this is especially true for airborne
sensors [3]. A valuable solution was proposed in [4]. The third step is the application of a target
detection technique, which can be applied in the spectral emissivity domain [1], or in the spectral
radiance domain [5]. Generally, the papers published in this field commonly exploit the hypothesis
that the atmosphere is known [6–9]. In this work, we present a new target detection algorithm that
accounts for the spectral variability of the downwelling radiance by means of a subspace-based model
(we suppose that the atmospheric correction has been already accomplished). The method performs
the task in the radiance domain, i.e. the TOI spectral emissivity is transformed in TOI spectral radiance
accounting for the downwelling radiance estimate. The proposed approach does not require the
accurate knowledge of the downwelling radiance vector, and assumes that such vector belongs to a
subspace having rank lower than the number of spectral channels.

2. Materials and Method

2.1. Algorithm Description

We denote as Lgl the Nc × 1 vector whose components are the spectral samples of the
ground-leaving radiance taken at the central wavelengths λ1, ..., λNc of the adopted hyperspectral
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sensor. In the LWIR, the at-sensor radiance vector Lgl can be expressed by the following Radiative
Transfer Model (RTM) [3]

Lgl = DεεεLBB (T) + [I−Dεεε] L↓ + N (1)

where Dεεε represents the Nc × Nc diagonal matrix whose diagonal entries are the samples of the
material spectral emissivity εεε, LBB (T) and L↓ are the Nc × 1 vectors of the spectral radiance of a
blackbody at temperature T (Planck’s law), and the spectral downwelling radiance, respectively; I is
the Nc × Nc identity matrix. N is the Nc × 1 noise vector after atmospheric correction. The latter can
be modeled as described in [2].

We exploit the signal model to formulate the detection task as a one-class classification problem.
Specifically, we decide the presence of the TOI comparing the observed ground-leaving radiance with
its model reconstruction obtained according to Equation (1), exploiting the emissivity spectrum we
want to detect. To accomplish the task, we use the Relative Error (RE) defined as:

RE
[
ε̄εε, T, L↓

]
= ‖Lgl − L̂gl

(
ε̄εε, T, L↓

)
‖2 / ‖Lgl‖2 (2)

where ‖ · ‖2 denotes the l2-norm and L̂gl
(
ε̄εε, T, L↓

)
is the reconstruction of Lgl, obtained exploiting

the model in Equation (1) by setting εεε = ε̄εε, with ε̄εε the emissivity spectrum of the TOI. We claim the
presence of the TOI if RE is lower than a given threshold. Unfortunately, T and L↓ in Equation (2) are
uknown, and must be replaced with their estimates obtained by the observed Lgl. Supposing εεε known,
the estimate represents an ill-posed problem, because the number of unknowns (Nc + 1) is higher than
the number of observations (Nc). To solve the indeterminateness, we suppose that the vectors L↓ span
a linear subspace featuring a rank K < Nc, i.e. L↓ = Ab, where A ∈ IRNc×K is the basis matrix of such
a subspace, and b ∈ IRK×1 is the vector of the coefficients of L↓ with respect to A. The latter subspace
model (assumed as known) allows us to reformulate the unknown problem so as to have T and b as
unknowns, given Nc > K + 1 observations:

RE [ε̄εε, T, b] = ‖Lgl − L̂gl (ε̄εε, T, b) ‖2 / ‖Lgl‖2 (3)

We obtain T and b solving the following minimization problem:[
T̂
b̂

]
= arg min

η∈[TL ,TH ]

[
min

βββ
RE [ε̄εε, η, βββ]

]
(4)

where βββ is chosen within IRK×1, and η selected within a given temperature interval [TL, TH ]. Equation
(4) can be simplified observing that given a guess of the target temperature η̄, the optimum estimate of
b is obtained from the observed radiance as least square solution as follows:

b̂ (η̄) = A+Linv
↓ (η̄) (5)

where A+ is the pseudo-inverse matrix of A, and Linv
↓ (η̄) is

Linv
↓ (η̄) = [I−Dε̄εε]

−1 [Lgl −Dε̄εεLBB(η̄)
]

(6)

Substituting Equation (5) inside Equation (4), the problem is rewritten with T as the only unknown
parameter:

T̂ = arg min
η∈[TL ,TH ]

RE
[
ε̄εε, η, b̂ (η)

]
(7)

Equation (7) can be solved by resorting to a greedy algorithm. RE
[
ε̄εε, T̂, b̂

(
T̂
)]

is the statistic for
the detection task.
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2.2. Determination of the Basis Matrix A

A possible approach to estimate the basis matrix A is the one adopted in [2]. We suppose that in the
portion of the LWIR spectral range, the variability of L↓, due to the atmospheric parameters such as the
integrated water vapor, atmospheric pressure and temperature, can be well represented on a subspace
having a rank K < Nc. Thus, we exploit MODTRAN to construct a dictionary of spectral downwelling
radiances, parameterized with respect to the variation of those parameters, and extract the low-rank basis
matrix A from such a dictionary by means of the Singular Value Decomposition (SVD) algorithm.

2.3. Simulation Strategy

To prove the effectiveness of the detection technique, we derived ground-leaving radiance
data starting from two available online spectral emissivity databases [10,11], for a total amount
of 216 emissivity spectra. We selected 4 materials (Figure 1a), as TOIs to be searched within the
"background", represented by the remaining 212 spectra. We generated L↓ vectors by means of
MODTRAN, considering the standard mid-latitude summer atmospheric model, and by assuming
a nadir-view from an airborne with a flight altitude of 1Km. The downwelling radiance vectors, the
surface temperatures, and the emissivity spectra are combined according to Equation (1) to obtain
the ground-leaving radiances of both the TOI, and of the “background”. The temperatures are
drawn from an uniform distribution in the interval [20◦ − 50◦]C. The Lgl are properly transformed
in the sensor spectral domain accounting for the TASI sensor specifications [1]. We obtained the
noisy ground-leaving radiances considering a Gaussian additive noise with zero mean and diagonal
covariance matrix. The noise has been simulated as suggested in [2]. To give an example, in our
experiments we compare the performance for Noise Equivalent Delta Temperature (NEDT) equals to
0K (noise-free radiance), and NEDT = 0.1K (moderate noise level). To discuss the results, we use the
Receiver Operating Characteristics (ROC) curves. Specifically, we generated M realizations of Lgl for
both the TOI and the "background", by simulating M different sets of noise vectors for each selected
value of NEDT, and M different sets of integrated water vapor values w, to simulate the L↓ variability.
The values of w are extracted from a uniform distribution within the interval [0.5− 3.5] gr/cm2. The
algorithm proposed in Equation (3) is then applied to each set of noisy radiances to obtain the detection
statistic. The presence of the TOI in the observed surface is declared if the statistic is lower than a given
threshold. Instead, the surface is assigned to the class "background" if the statistic is higher than the
threshold.

3. Results and Discussion

For this example, we consider the detection algorithm where the basis matrix A has a rank K = 3.
Figure 1b, 1c, and 1d show the ROC curves for the evaluated materials: aluminum-painted sandpaper,
black aluminum disk, and black plastic box. Since there were no false alarms, the ROC curve for
aluminum-zinc is not shown. The spectral variability of the aluminum-zinc signature allows us to
always detect the material against the simulated "background" spectra. At NEDT = 0K, the three
materials can be always detected with respect to the simulated "background". At NEDT = 0.1K, as
expected, the worse performance are obtained for the black plastic box, due to its completely flat
spectral shape (Figure 1a). In fact, this feature makes the material spectral emissivity easy to confuse
with some other spectrum. However, for probabiliy of false alarm PFA = 5 · 10−2, black aluminum
disk and aluminum-painted sandpaper feature a probability of detection PD = 1, and black plastic box
PD ' 0.9, proving the effectiveness of the proposed algorithm
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Figure 1. ROC curves: (a) spectral emissivities of the materials (b) aluminum-painted sandpaper; (c)
black aluminum disk; (d) black plastic box.

4. Conclusions

In this paper, we have presented a new approach to target detection of materials with known
spectral emissivity, in the framework of LWIR hyperspectral systems. The proposed method takes into
account the spectral variability of the downwelling radiance by means of a subspace-based approach.
The preliminary analysis, carried out with simulated data, has shown that the algorithm may robustly
detect materials whose emissivity exhibits high spectral variability. Instead, detection performance
with materials whose emissivity has low spectral variability, is sensibly affected by the noise level.
Future work will be focused on extending the analysis to a larger set of surface spectral emissivities,
and the application of the technique to a real hyperspectral image.
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