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Abstract: One of the most advanced technologies of Metal Additive Manufacturing (AM) is the 
Laser Powder Bed Fusion process (L-PBF), also known as Selective Laser Melting (SLM). This 
process involves the deposition and fusion, layer by layer, of very fine metal powders and structure 
and quality of the final component strongly depends on several processing parameters, for example 
the laser parameters. Due to the complexity of the process it is necessary to assure the absence of 
defects in the final component, in order to accept or discard it. Thermography is a very fast non-
destructive testing (NDT) technique. Its applicability for defect detection in AM produced parts 
would significantly reduce costs and time required for NDT, making it versatile and very 
competitive.  
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1. Introduction 

Additive manufacturing (AM) is a relatively new technique wherein objects are gradually 
created based on the design of a computer model. In the case of powder bed fusion processes, a layer 
of powder is deposited and then fused with the underlying layer. This process is repeated layer by 
layer, and in this way the component is built. In particular, in most cases AM is used to build small 
and complex objects as a single piece. Today, plastics, ceramics and metals are already being 
produced with AM. However, the quality does not always live up to the requirements. Highly 
stressed components are only considered as safe if they have no defects or if any existing defects do 
not exceed a certain dimension. A variety of methods can be deployed to measure and ensure the 
accuracy and integrity of parts. Non-destructive testing (NDT) is commonly used to inspect parts for 
defects or irregularities. Fluorescent penetrant inspection (FPI) is one NDT method used for detecting 
surface anomalies like cracks being open to the surface. Given the layered nature of AM processes, 
internal cracks and microcracking cannot be detected with FPI. The volume of parts can be inspected 
non-destructively with ultrasonic, radiography and CT.  

Alternatively, passive and active thermography can be applied. It could be a promising choice 
both for on-site control (passive thermography) and offline (active thermography) due to its 
versatility, costs and the time required for testing and analysis, which are remarkably competitive 
with other methods of NDT. 
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One of the most advanced technologies of metal AM is the Laser Powder Bed Fusion process (L-
PBF), also known as Selective Laser Melting (SLM). In the following study, several components made 
of AISI 316L steel have been produced by means of the L-PBF technique, varying the process 
parameters at certain positions within the component in order to induce the presence of typical 
defects of different size, shape, thickness and depth. High and low energy settings of the laser were 
used to induce different types of porosity (keyhole and lack of fusion pores).  

The test specimens were examined afterwards using pulsed and stepped thermography and the 
algorithms for post-processing analysis enabled the detection of the different defects [1–4].  

2. Materials and Methods 

Active thermography needs an external heat source to stimulate non-stationary heat diffusion 
inside the test object for inspection. Pulsed (PT) [1–6] and Stepped Thermography (ST) [7,8] are the 
techniques most used in literature and they differ in the technique used for heating the material. PT 
employs a short thermal stimulation to produce a thermal perturbation at the surface of the test 
object. 

The presence of a defect can be revealed by monitoring the surface temperature decay of the 
specimen. In fact, the defect appears at the surface as an area of different temperature with respect to 
a reference sound area and it produces a different behaviour of the temperature decay curve. As 
known [4], the presence of a defect at depth z changes the temperature decay at the surface T (z, t), 
whose analytical formulation is: 𝑇(𝑧, 𝑡) = 𝑇଴ + 𝑄𝑒√𝜋𝑡 exp (− 𝑧ଶ4𝛼𝑡) (1) 

where 𝑒 is the effusivity, α is the thermal diffusivity and 𝑄 is the absorbed energy density. Here, 
the purely one-dimensional case, neglecting finite pulse duration effects and thermal losses, is 
considered. In the case of a Dirac pulse, the temperature trend is described by the Equation (1) and 
can be considered still valid also for finite short pulse duration. However, this equation is only valid 
in the case of very large defects in relation to defect depth and if the defect is filled with air. 

The temperature decay process is generally not sufficient by itself to obtain information about 
the size and depth of defects, but a postprocessing is needed such as, for example, Thermal Signal 
Reconstruction TSR® [5] and Slope and Square Correlation Coefficient R2 [1].  

Unlike the pulsed approach, during the step heating (using an extended heating pulse duration), 
very often the thermal wave reaches the defect during the heating phase [7]. If the sound area is more 
thermally diffusive than the defect, at the end of heating, the surface above the defect is warmer than 
the sound material, and exchanges heat by conduction and convection more quickly than the sound 
material. Similar to the pulsed approach, the difference in temperature reached during the heating 
and the following cooling behavior will depend on the different thermo-physical properties between 
defective and sound material as well as on the depth and type of defect.  

Several components made of AISI 316L steel (example depicted in Figure 1) have been produced 
by means of the L-PBF technique, varying the process parameters. 

  
Figure 1. An example of analyzed samples: defect depth 0.4 mm, height 1 mm, defects build in 
keyhole mode. 
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The standard process parameters of the laser used to build this sample are a laser power of 275 
W and a scanning speed of 700 mm/s. The different samples have different defects inside. There are 
some samples with buried regions with keyhole defects, produced by locally increased energy 
density during the build (275 W; 300 mm/s) and there are some other samples with lack of fusion 
defects, produced by locally decreased energy density during the build (150 W; 700 mm/s). The 
samples were produced with defects of different heights (height range 0.25 to 1 mm) and in different 
depths (depth range 0.1 to 0.4 mm). Thus, we used different possible combinations of thermographic 
tests and analysis, in order to identify the defects inside the samples, and to identify the best 
thermographic techniques and parameters to discern the different types of defects. 

The experimental setups for both techniques (pulsed and stepped thermography) used to detect 
the defects inside these components are reported, respectively, in Figure 1 and in Figure 2. The main 
thermographic parameters and the principal distances are reported in Table 1 and in Table 2. The 
samples were coated with graphite before the experiments in order to increase the temperature rise.  

Table 1. Thermographic parameters and set-up distances for pulsed thermography. 

Camera: Infratec ImageIR 8800 
Frame rate 1000 Hz 

Duration 10,000 frames  
Resolution 0.35 mm/pixel 
Quarter Window 160 x 128 

pixels  

Excitation: 
Flash lamps Hensel EH Pro 4 x 6 kJ

Impulse duration 3 ms 

Distances: 
Flash lamps to sample 

25 cm  
Camera to sample 45 cm 

 

 

Figure 1. Setup for pulsed thermography with four flash lamps. 

Table 2. Thermographic parameters and setup distances for stepped thermography. 

Camera: Infratec ImageIR 8300 
hp 

Frame rate 500 Hz 
Duration 10,000 frames 

Resolution 0.15 mm/pixel 
Half Window 256 x 320 pixels 

Excitation: LDM LASER  
Impulse duration 300 ms 

Power 450 W 
Square to phat profile 39 x 39 mm2 

Laser focusing lens 600 mm 

Distances: 
Laser to sample 60 cm 

Camera to sample 
110 cm 

 

 
Figure 2. Setup for stepped thermography using a widened laser beam. 
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3. Results 

For brevity, the obtained results for only one sample, by comparing the two used thermographic 
techniques, are reported. In both cases, the cooling down is analysed by the application of different 
post processing algorithms (the TSR results in terms of 1st and 2nd derivative and slope and square 
correlation coefficient maps are obtained by using a generic MATLAB function routine to provide a 
polynomial fitting respectively of 5 and 1 degree). In order to compare the obtained maps, the signal 
background contrast (SBC) [1] is computed pixel for pixel, by subtracting the mean of the central 
sound area and by dividing by the standard deviation of the same area. For brevity, only the best 
results are reported in both cases in Figure 4. The analysis was computed by choosing different 
truncation window sizes [1] and by analyzing the influence of this choice on the achieved SBC. It is 
necessary to highlighted that the points and regions with very high values (excluding the induced 
defects) are due to the very reflective surface own of the basic material.  

 
a)                         b)                          c)                          d) 

Figure 4. (a) 2nd derivative best maps (frame 132 of 512), TSR, pulsed thermography, (b) slope by 
analyzing the cooling trend with a linear fitting, frame by frame (frame 328), stepped thermography 
(c) R2 by analyzing the cooling trend with a linear fitting, frame by frame (frame 75), stepped 
thermography, (d) 2nd derivative best maps (frame 27 of 512), TSR, stepped thermography. 

3. Conclusions 

In this work, a first approach to use thermographic techniques with the aim of detecting the 
defects produced intentionally by the L-PBF process is shown. It is a comparison of two different 
thermographic techniques and post-processing algorithms of analysis. The SBC obtained by using a 
laser source turns out to be higher than that achieved by heating with flash lamps. A frequency of 
500 Hz was enough to detect the defects created by the increased energy density. It is necessary to 
improve the high spatial resolution as much as possible to see this type of defect; for this reason, the 
results reached with stepped thermography in terms of SBC are better than the pulsed one. 
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