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Abstract: In Hong Kong, there is great abundancy of aged buildings and infrastructures for which
a re-assessment of the current status is needed. Water exfiltrations/infiltrations, deteriorating
insulations, thermal bridges and regions of failure are among the most recurrent symptoms to
be found in existing Reinforced Concrete (RC) structures. Diagnosis of such symptoms, in the
form of thermal infrared anomalies, is usually performed through infrared (IR) image capturing,
followed by qualitative assessment. This paper presents a novel automated computer-vision-based
method for detecting thermal anomalies. Such Computer-Vision (CV) algorithm is tested on different
thermal scenarios including beam elements, roofs and entire façades of RC buildings. Thermal
anomalies related to cases of water leakages, moisture trapping and debonding are successfully
detected. The authors intend to undertake further research for successfully implementing the method
for detecting also other thermal dissimilarities.
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1. Introduction

Assessment of the status of RC buildings in urban areas has become an important research field in
the last few years. Tools such as IR cameras can be used for evaluating thermal scenarios and perform
structural analyses. Pairage of Unmanned Aerial Vehicles with IR cameras enable professionals to
obtain outstanding captured IR photographs and video recordings. Nowadays, the popularity of usage
of drones for building inspections is consistently on the rise due to the great advantages provided in
terms of safety, operation, cost and efficiency. Additionally, through UAV, unique aerial perspectives
can be captured and inaccessible areas can be reached [1]. Furthermore, UAV have no impact on the
environment and they provide more accurate data [2,3]. A research work on automated detection
of thermal heat losses in proximity of windows was proposed by Martinez-De Dios and Ollero [4].
Heat-losses areas were tracked according to a fixed threshold of 7 ◦C. However, such approach
may be prone to infeasibility and errors according to weather conditions and building materials. A
more comprehensive approach utilising thermographic automation was introduced by Mauriello and
Froehlich [5]. In a later research paper, Mauriello et al. highlighted the challenges and problems related
to automation, data quality and technical feasibility [6].
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This paper documents the ongoing research, jointly operated by RaSpect Intelligence Inspection
Ltd. and Infrared Engineering & Consultants Ltd., on a novel automated CV-based algorithm for
detecting thermal anomalies in RC buildings.

2. Prior Considerations

Thermal data are sensitive to weather conditions. Climatic factors such as rain, heavy wind
and snow can considerably affect the outcome of an IR inspection. Moreover, they may not be
the appropriate conditions for flying a drone. Other environmental factors, such as solar radiation,
cloud coverage, wind speed, humidity etc. can affect the external surface temperature. Through a
series of test flights and a literature study, Entrop and Vasenev developed a protocol for usage of
IR-UAVs in the construction domain [7]. Such recommendations are taken as reference for ensuring
high quality of data.

3. CV Algorithm

The algorithm target is to identify regions of thermal anomaly in an automated fashion.
Such anomalies are usually detectable in the form of sharp changes in temperature, hotter or colder
according to heat transfer processes in different seasons. The CV-based algorithm is comprehensive of
the following four stages:

1. Initial Model Calibration: Thermal images (see sample in Figure 1) are post-processed in the
form of two-dimensional matrices, where each cell (representative of a pixel) is associated to
a temperature value. According to a tentative initial Bin Width (BW), the histogram shown in
Figure 2 is obtained. The histogram is likely to show tendency toward cold or hot regions in
distinct materials with different thermal capacitance according to the season. As first assumption,
in case the histogram has a cold tendency, an Anomaly Bin (AB) and an Opposite Bin (OB) are
initially defined as coldest and hottest bin, or viceversa in a hot scenario. Accordingly, an Anomaly
Threshold (AT) (represented with a red line in Figure 2) is defined for temperatures ’entering’ the
AB. BW, AB, OB and AT are key parameters of the algorithm. A dynamic calibration procedure
for such variables is introduced as follows.

Figure 1. IR image of a beam with evident water leakage.
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Figure 2. Histogram of thermal data extracted according to Figure 1.

2. Dynamic Calibration: Let n be the total amount of bins in the histogram of pixels of a thermal
image, then AT, AB and OB are adjusted by filtering off eventual false positives. The three
operations leading the dynamic calibration are listed in the following:

• It is assumed that if the amount of pixels in the OB is less than a significance lower bound
α, then such data are probably irrelevant particulars and they are filtered off. Accordingly,
the AT is shifted by BW and the neighbour bin becomes the ’new OB’. Such procedure is
repeated until the condition OB ≥ α is satisfied.

• It is assumed that if there is more than one pixels peak in the histogram, then the pixels
distribution still contains irrelevant information which may lead to false positives (such
as background sky). In such case, it is very likely that relevant information are lying at
mid-range temperatures. Eventual irrelevant peaks (with an amount of pixel not exceeding
10% of the total pixels) and their bounding pixels are filtered off.

• It is assumed that if the amount of pixels in the AB is greater than a significance upper bound
β, then n and BW are not adequate, therefore n is increased by a pre-defined growth ratio
and BW decreases accordingly. The overall calibration is repeated until the condition AB
≤ β is satisfied.

The dynamic calibration changes the configuration of data shown in Figures 1 and 2 to the one
displayed in Figures 3 and 4. It is now clear that the amount of data has been significantly lowered
and relevant data are not discarded.
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Figure 3. Filtered IR image of the beam shown in Figure 1 after dynamic calibration.

Figure 4. Histogram of thermal data extracted according to Figure 3.

3. Identification of Thermal Edges: In this stage of the algorithm, thermal edges are identified
using a Canny edge detector [8], obtaining the results shown in Figure 5. Irrelevant thermal
edges are filtered off using Otsu Thresholding Method on a gray-level histogram [9], and the
results are displayed in Figure 6. Evidently all irrelevant thermal edges are filtered off whilst
the edges defining the contour of the beam and regions with sharp changes in temperature are
not discarded.
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Figure 5. Thermal edges derived through Canny’s edge detector.

Figure 6. Thermal edges after Otsu’s Thresholding on gray-level histogram.

4. Leakage segmentation: Leakage will lie somewhere close to the identified thermal edges. Regions
of water leakage are identified as follows. A neighborhood relationship is derived for establishing
top, bottom, left and right neighbour pixels of each single pixel [10]. A Neighbours Size (NS) is
assumed for defining the domain of existence of leakage around thermal edges (see Figure 7).
Data is then filtered off according to the adjusted value of AT obtaining results as shown in
Figure 8. In such figure it is clear that a thermal anomaly related to water leakage has been
successfully detected.
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Figure 7. Filtered IR image of the beam shown in Figure 1 after dynamic calibration.

Figure 8. Final output in terms of detected thermal anomalies.

4. Case Studies

Inspection results for other thermal images are shown as follows.
Figure 9 illustrates the case of a beam with small symptoms of water leakage, not clearly detectable

through the IR image. In such case, a large amount of pixels include background sky containing
irrelevant informations. As displayed in Figure 10, the proposed CV algorithm was capable of
successfully filter off the sky and identify the thermal anomaly.

A case of a roof, seen from above, with evident symptoms of debonding of roof substrates caused
by previous water infiltrations or waterproofing layer delamination is shown in Figure 11. In this
thermal scenario, differently from the other cases, the thermal anomalies lie in a mid-range temperature.
The results of the CV algorithm (see Figure 12) show the target area was successfully detected along
with a small region of false positives in the upper part of the figure.

Figure 13 shows an IR image of a portion of façade of a residential building. Windows,
air conditioners and other elements can clearly be distinguished due to thermal differences provided



Proceedings 2019, 27, 18 7 of 10

by different materials. However, as shown in Figure 14, the CV algorithm does not detect any false
positives and does not return any thermal anomaly.

Figure 9. IR image of a beam with non-evident water leakage including large portion of noise caused
by background sky.

Figure 10. Final output in terms of detected thermal anomalies for the case of Figure 9.
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Figure 11. IR image of a roof presenting symptoms of debonding.

Figure 12. Final output in terms of detected thermal anomalies for the case of Figure 11.
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Figure 13. IR image of a façade with no evident symptom of debonding of roof substrates.

Figure 14. Final output in terms of detected thermal anomalies for the case of Figure 13.

5. Conclusions

This paper presents framework and numerical applications of a CV-based algorithm for detecting
thermal anomalies in RC buildings jointly developed by RaSpect Intelligence Inspection Ltd. and
Infrared Engineering & Consultants Ltd. The algorithm makes use of thermal imaging for inspecting
RC buildings, and targets sharp anomalous changes in temperature. The algorithm has been tested for a
set of thermal images, and some of the most significant applications are reported herein. The proposed
solution aims at providing a valid alternative to costly and time consuming qualitative inspections
of RC buildings. The developed approach allows for a fast yet accurate detection of areas of thermal
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anomalies with broad industrial applicability. Future research work will be undertaken on further
improving the existing solution for performing a diagnosis of the problem.
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