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Abstract: An important part of a building energy consumption is related to the domestic hot water 
consumption of its occupants. Predictive controllers are often considered as having the potential to 
reduce the energy consumption of hot water systems. In this work, a recurrent neural network is 
trained from the measured domestic hot water consumption of a 40 unit residential building in 
Quebec City, Canada, to predict the future consumption. It is found that the water consumption 
profile of the building changes from day to day throughout the year and has an important noise 
component. A predicting model is developed in this work and is obtained by pairing a recurrent 
neural network to predict the filtered domestic hot water demand with a random forest to predict 
the noise signal. The evaluated performances indices for the prediction of the next demand are 
satisfying (i.e., RMSE of 142.02 L/h and R2 of 0.71). In addition, it is found that the predictions made 
over the following hour using the same predicting model are accurate and could likely be used in a 
predictive control context. 
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1. Introduction 

To increase building energy efficiency, smart control strategies such as model predictive control 
(MPC) have been gaining a lot of interest recently [1]. Different studies revealed that advanced 
control of HVAC&R systems has the potential to produce energy savings compared to more 
traditional control strategies such as PIDs and rulebased controllers [1]. Additionally, these control 
strategies are particularly well suited for demand side or peak demand management. An example of 
such system who could benefit from predictive control are domestic hot water (DHW) systems. For 
example, it was found in [2] that a predictive controller could provide energy savings around 5% 
when applied to a DHW heating system compared to a reference control strategy.  

To better manage the energy consumption of a water heating system while providing enough 
DHW to the occupants and respecting the system’s constraints [3], an MPC could optimize the water 
flowrate supplied to the water heater, the amount of hot water stored in the tank, and the water heater 
temperature setpoint. In order to do so, the MPC requires predictions of the future DHW demand 
over a given prediction horizon. These predictions are produced by a predicting model that can either 
be a white box model (e.g., based on the physics of the system), a black box model (e.g., based on 
machine learning strategies), or a grey-box model (e.g., a mix of white and black box models) [4].  

The purpose of the present work is to develop a predicting model for DHW demand with the 
help of a recurrent neural network (RNN) (i.e., black box model). As mentioned above, such model 
could eventually be used in a predictive controller.  
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2. Case-Study 

The DHW consumption of a 40 unit residential building in Quebec City, Canada, has been 
measured every 10 min from October 2015 to August 2018. This corresponds to a dataset of 132,600 
points, approximately.  

The DHW system can be considered as centralised (i.e., a water heater and hot water tanks 
supplying the whole building), thus only the total consumption of the building is considered here. 
The total volume of the tanks is 1800 L and the available effective heat transfer rate is 300 kW.  

3. DHW Consumption Profile 

In order to demonstrate the necessity of using an advanced predicting method, such as the one 
developed in this work, instead of hourly demand schedules such as those proposed for energy 
simulations, for example by ASHRAE [5], the DHW demand distribution is first analyzed.  

Given the average demand value of 247.38 L/h and the standard deviation of 262.2 L/h, it is clear 
that the values are spread over a large interval of possible values, and, thus, could prove difficult to 
predict from a schedule.  

The hourly DHW demand has been averaged for every hour of the day throughout the entire 
measured dataset and is reported in Figure 1 as a function of the time of the day. From the analysis 
of the standard deviation (σ), it can be seen that the total water consumption of the case-study 
building varies significantly from day-to-day. Thus a static schedule is not adequate to produce 
accurate predictions and a more advanced predicting model is developed in the following section.  

  
Figure 1. Mean domestic hot water demand profile throughout the day. 

4. Predicting Future DHW Demand 

To predict the total DHW demand during the next time step of 10 min, a recurrent neural 
network (RNN) is trained using the measured data from the case-study building. More precisely, an 
RNN is a “family of neural networks for processing sequential data” [6]. It is recurrent because each 
hidden layer has a recurrent connection, allowing it to remember information from previous states. 
They can be used for regression purposes for time-series data, such as predicting the next DHW 
demand.  

The selected RNN inputs for the prediction of the next DHW demand are as follows: (1) year, 
(2) month of the year, (3) day of the month, (4) day of the week, (5) hour of the day and (6) current 
DHW demand. The year where the measurement is made is considered to affect the DHW demand 
since it is a residential building (apartments) and occupants can vary from year to year. In addition, 
the recurrence adds the information available from the five previous time steps. The prediction target 
value for the training of the RNN is the next measured demand (10 min later). 
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Based on the recommendations of [7], the RNN is composed of two hidden layers containing 13 
neurons each. Indeed, it is stipulated in [7] that neural networks with two to three hidden layers can 
approximate any practical function. For the hidden layer size, it is usually recommended to have a 
minimum of 2n + 1 neurons per hidden layer [8], where n is the amount of inputs. To reduce 
computational time and with six inputs, the smallest neural network is produced with two layers of 
13 neurons each.  

The neural network is trained using 106,250 measured data points, with 70%, 15%, and 15% of 
them used for the training, validating and testing of the RNN, respectively. To test the neural 
network’s ability to generalize to new data, the remaining values from the full dataset (around 25,000 
data points) were used to form a second testing dataset. This corresponds to around six months of 
measured data from February to August. The duration of this testing dataset has been chosen in order 
to represent every aspects of the Canadian climate. This dataset is used to measure the performance 
indices presented in this work.  

To avoid overfitting, the early stopping strategy is used in the training of the neural network 
(i.e., after six time steps where the validation error increases, the training is stopped and the selected 
weight values for the neural network are the ones associated with the minimal validation error) [9].  

In order to evaluate the predicting accuracy, two performance indices are evaluated between the 
measured and predicted data: (i) the root mean square error (RMSE) and (ii) the coefficient of 
determination (R2). 

The values obtained by predicting the next demand using the designed RNN are an RMSE of 
197.50 L/h and an R2 of 0.43. The distribution of the predictions is presented in Figure 2. 

  
Figure 2. (a) Distribution of the predictions made and (b) daily consumption profile for a selected day 
with the RNN. 

As can be seen in Figure 2a, the RNN predicts small consumption with better accuracy than the 
high demands. Indeed, for demands over 900 L/h, the prediction quality degrades as the predictions 
are further away from the measured values.  

Functions that fluctuate and vary rapidly such as the measured DHW demand can be difficult 
to predict. Indeed, Figure 2b shows that the measured demand fluctuates with an important 
amplitude and the RNN has difficulties predicting the peak values. These rapid fluctuations will be 
referred to as “noise” for the remaining of this work, although they do not represent only unwanted 
modifications to the measurements and can potentially carry useful information. Nevertheless, it 
should be noted that this noise is introduced to a certain extent by the resolution of the cumulative 
water consumption sensors of the dwelling units. Indeed, the smallest measurable value is 10 L. 
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5. Predicting Noisy DHW Demand  

To avoid the problems brought by the highly noisy component of the DHW demand signal, 
another strategy is to use a Gaussian filter to separate the noise from the demand. More specifically, 
Gaussian filters are commonly used with timeseries such as the DHW demand to smoothen the 
measured signal [10]. The profiles obtained with this approach are shown in Figure 3 for a selected 
day. 

 
Figure 3. (a) Original and (b) filtered DHW demand, and (c) noise signal profiles for a selected day. 

Then, the filtered DHW demand is predicted using the same design of RNN. For the prediction 
of the noise signal, another strategy is employed, as in [11] where the noise in a heating and cooling 
load signal is predicted using a support vector regression. In this work, a random forest (RF) is used, 
as it has been used in previous work [12,13] to predict signals such as the one in Figure 3a. The 
designed random forest uses 100 decision trees that are trained from different parts of the entire 
training datasets to produce predictions of the next noise value. The output of the random forest is 
the mean of the output values of all the decision trees. The same inputs as for the RNN are used for 
the training of the RF, the only difference being the replacement of the current demand by the current 
noise value.  

The results of combining an RNN for the filtered signal and an RF for the noise are summarized 
in Figure 4. As can be seen, the predicting accuracy is increased by filtering the DHW demand profile 
and predicting the separated components. Indeed, the RMSE and R2 are enhanced to 142.02 L/h and 
0.71.  

A more thorough analysis of the prediction is presented in Figure 5, showing how each 
component of the signal is predicted (i.e., the filtered demand and the noise). 

Figure 5 highlights the fact that the filtered demand is predicted very accurately, with RMSE 
and R2 of 29.22 L/h and 0.99, respectively. Thus, the predicting accuracy is limited essentially by the 
prediction of the noise, which appears to vary “randomly”. The RMSE and R2 values for the noise are 
145.20 L/h and 0.78, respectively.  

In addition, it is expected that the real DHW demand profile is potentially closer to the one 
shown in Figure 5a if the resolution of the consumption sensors were lower. Indeed, the resolution 
of the sensors is limited to 10 L/10 min, which is enough for the purpose of evaluating monthly 
consumption, but is inaccurate for small time steps of 10 min. 
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Figure 4. (a) Distribution of the predictions made and (b) daily consumption profile for a selected day 
with the RNN and RF by separating noise from demand signal. 

  
Figure 5. Comparison of the predicted and the measured components for (a) the filtered demand and 
(b) the noise for a selected day. 

6. Predicting the Demand for the Next Hour 

The previous section elaborated a strategy to predict the next short-term demand (i.e., the DHW 
consumption for the next 10 min). However, predictive control also requires predictions for a longer 
prediction horizon. Thus, the noise reducing strategy is used here to predict the DHW demand over 
the following hour (i.e., with a 10-minute time step, it corresponds to six predictions). The same RNN 
and RF design strategies are used, but the outputs of this new model are the DHW demand over the 
next six-time steps. The evolution of the performance indices is shown in Table 1. 

Table 1. Performance indices over an hour-long prediction horizon. 

 Position in the Prediction Horizon (min) 
Indices 10 20 30 40 50 60 

RMSE (L/h) 142.0 200.2 212.0 213.4 215.2 216.2 
R2 0.71 0.42 0.35 0.34 0.33 0.33 
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As expected, the coefficient of determination decreases while the RMSE increases with the 
position in the prediction horizon. This is due to the fact that the inputs of the RNN and RF are current 
measurements. By progressing in the prediction horizon, the information provided as inputs to the 
predicting models gets further from the prediction target. Thus, the predicting accuracy is reduced 
with the position in the horizon. 

7. Conclusions  

A tool to predict the domestic hot water demand for predictive control purposes is developed 
in this work. More specifically, a recurrent neural network is trained to predict the DHW demand 
from the year, month, day of the month, day of the week, and previous demand. The best strategy 
requires the filtering of the measured DHW signal to predict separately the filtered demand with a 
recurrent neural network and the “noise” with a random forest. The obtained predicting accuracy is 
acceptable, with an RMSE of 142.02 L/h and a coefficient of determination of 0.71. 

In future work, the prediction model could be implemented in a predictive controller in order 
to control the water heating system of a building. In addition, the design of neural networks is 
considered as much science as art. Thus, the proposed design for the recurrent neural network is not 
the only possible design, and an optimization process of the RNN design could lead to better 
predicting performance. 

Author Contributions: L.-G.M. and L.G. conceived and designed the experiment; L.-G.M. performed the 
experiments; L.-G.M. and L.G. analyzed the data; L.-G.M. wrote the paper and L.G. proofread it. 

Acknowledgments: The first author has received scholarships from the Fonds de recherche du Québec—Nature 
et Technologies (FRQNT) and the American Society of Heating, Refrigerating and Air Conditioning Engineers 
(ASHRAE). 

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design 
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the 
decision to publish the results. 

References 

1. Hilliard, T.; Kavgic, M.; Swan, J. Model predictive control for commercial buildings: Trends and 
opportunities. Adv. Build. Energy Res. 2016, 10, 172–190. 

2. Knudsen, M.D.; Petersen, S. Model predictive control for demand response of domestic hot water 
preparation in ultra-low temperature district heating systems. Energy Build. 2017, 146, 55–64. 

3. Rossiter, J.A. Model-Based Predictive Control: A Practical Approach; CRC Press: Boca Raton, FL, USA, 2003. 
4. Picard, D.; Sourbron, M.; Jorissen, F.; Váňa, Z.; Cigler, J.; Ferkl, L.; Helsen, L. Comparison of Model 

Predictive Control performance using grey-box and white box controller models. In Proceedings of the 
International High Performance Buildings Conference, West Lafayette, Indiana, USA, 11–14 July 2016. 

5. ASHRAE. ASHRAE Handbook—HVAC Applications; ASHRAE: Atlanta, GA, USA, 2015. 
6. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available 

online: www.deeplearningbook.org (accessed on 22 February 2019). 
7. Hagan, M.T.; Demuth, H.B.; Beale, M.H.; De Jesús, O. Neural Network Design; Oklahoma State University: 

Stillwater, OK, USA, 2014. 
8. Ahmad, M.W.; Mourshed, M.; Rezgui, Y. Trees vs Neurons: Comparison between random forest and ANN 

for high-resolution prediction of building energy consumption. Energy Build. 2017, 147, 77–89. 
9. Krisel, D. A Brief Introduction to Neural Networks. 2007. Available online: http://www.dkriesel.com 

(accessed on 22 February 2019). 
10. Blinchikoff, H.J.; Zverev, A.I. Filtering in the Time and Frequency Domains; Scitech Publishing Inc.: Raleigh, 

NC, USA, 2001. 
11. Zhao, J.; Liu, X. A hybrid method of dynamic cooling and heating load forecasting for office buildings 

based on artificial intelligence and regression analysis. Energy Build. 2018. 174, 293–308. 
12. Rubio-Herrero, J.; Chandan, V.; Siegel, C.M.; Vishnu, A.; Draguna, V.L. A learning framework for control 

oriented modeling of buildings. In Proceedings of the 16th IEEE International Conference on Machine 
Learning and Applications, Cancun, Mexico, 18–21 December 2017. 



Proceedings 2019, 23, 6 7 of 7 

 

13. Smarra, F.; Jain, A.; de Rubeis, T.; Ambrosini, D.; D’Innocenzo, A.; Mangharam, R. Data-driven model 
predictive control using random forests for building energy optimization and climate control. Appl. Energy 
2018, 226, 1252–1272. 

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


