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Abstract: Discrete Element modelling of concrete requires the precise calibration of model 
parameters that is a long lasting and computationally expensive task in case of complex models. 
Present study introduces a method for estimating a model parameter (normal strength of parallel 
bonds) for concretes with different particle size distribution and aggregate type. The parameter 
estimation leads to an optimization problem based on physical measurement data. In the present 
paper, a model and its parameters are proposed to estimate normal strength of parallel bonds based 
on the density and compressive strength of concrete. 
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1. Introduction 

Present research introduces a method for estimation of model parameters in a Discrete Element 
model, which can be applied for concretes with various aggregate type and particle size distribution, 
even for no-fines concrete. 

No-fines concrete is obtained by eliminating the fine aggregate fraction from the normal concrete 
mix [1]. The coarse aggregates are surrounded and held together by only a thin layer of cement paste, 
which makes no-fines concrete economically and environmentally beneficial. In the presented 
research no-fines concretes made from different aggregates and with low cement amount were casted 
and tested for compressive strength. Crushed limestone, quartz gravel and expanded clay 
(lightweight aggregate) were used as aggregates in the mixes. Three different aggregate size 
distributions were applied in the mixes. The first distribution was close to the standard grading curve 
A (containing smaller particles in larger quantities), while the second was close to the standard 
grading curve C (containing higher amount of larger particles). The third was a no-fines concrete 
containing only coarse aggregate. Standard size (150 mm edge length) concrete cubes were casted 
from every mix and were subjected to uniaxial compressive strength test. The materials and the test 
were modelled using Discrete Element Method (DEM). In DEM the most challenging task is the 
calibration of the model parameters which can be supported by models estimating the DEM model 
parameters based on physical measurement data. In the present study the authors aim to give a 
calibration supporting function which can be applied for concretes with different particle size 
distribution and aggregate type. 
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2. Materials and Methods 

2.1. Concrete Mixes and Laboratory Experiments 

Seven different concrete mixes were designed for the experiments. The type of cement was the 
same for every mixes: CEM I 42.5 N and the water-to-cement ratio was the same as well (w/c = 0.67). 
The main differences among the mixes were the type and distribution of aggregates. Four nominal 
grading fractions according to European Standard EN 12620:2002 + A1:2008 [2] were used: fine sand 
0/0.5, sand 0.5/4 mm, small gravel 4/8 mm and medium gravel 8/16 mm. The maximum particle size 
was 16 mm in case of gravel and crushed stone aggregate, while it was 8 mm in case of lightweight 
aggregate. Table 1 summarizes the different mixes and their corresponding particle size distribution. 

Table 1. Particle size distribution (given in percentage (%)) of the concrete mixes. 

Name/Particle Size (mm) 8/16 4/8 0.5/4 0/0.5 
Gravel C 1 15 15 30 40 
Gravel A 1 30 30 25 15 
Gravel N 1 50 50 0 0 

Light N 0 100 0 0 
Crushed C 15 15 30 40 
Crushed A 30 30 25 15 
Crushed N 50 50 0 0 

1 C—grading curve C; A—grading curve A; N—no-fines. 

Crushed stone and gravel aggregate were applied in the mixes with different particle size 
distribution according to grading curves C and A. Grading curves A and C are the limits of particle 
size distributions, between which normal concrete can be produced. In case of gravel aggregate the 
ideal particle size distribution is according to curve A generally (in case of self-compacting concrete 
according to curve B). Besides that a no-fines (N) concretes were mixed from both normal weight 
aggregate. A lightweight aggregate mix (Light N) containing expanded clay was produced as well. 
From every mix standard size (150 mm edge length) cube samples were casted and uniaxial 
compressive strength test was performed on them. The compressive strength of the concretes was 
determined at 28 days of age after wet curing of the 150 mm edge length specimens according to 
European Standard EN 12390-3:2009 [3]. The test was performed using an Alpha 3-3000 S hydraulic 
press with 11.25 kN/s (static) loading rate. Young’s modulus of the samples was measured as well, 
however it was not considered later in the study, because it was almost the same for all mixes. 

2.2. Numerical Simulation 

Discrete Element Method (DEM) was used to model the concrete samples and their compressive 
strength test. In DEM the material is built up from rigid particles and contacts among the particles. 
The material model is described by the contacts and the rigid elements represent the aggregate of the 
concrete (the binder is not modelled by particles, its effect is taken into account by the contacts). The 
term DEM refers to a group of numerical methods. One of these methods is the distinct element 
method, introduced by Cundall, which is applied in present research [4]. This method uses only 
spherical particles to describe the material, however by using a clump logic, the method supports the 
creation of super-particles of arbitrary shape. Hence, a clump consists of a set of overlapping spherical 
particles, and behaves as a single rigid body with a deformable boundary. It was aimed to observe 
the effect of different particle shape (of the real material) on the parameters of the model. The quartz 
gravel aggregate in shape is closer to the modelled spherical particles, than the angular crushed stone. 
These differences can be taken into account in the model parameters. The particle size distribution of 
the aggregate can be considered in the model too, thus it was possible to investigate the effect of 
different particle size distribution as well, as it can be seen in Figure 1. From every mix at least 5 
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models with random particle arrangements were generated to take into account the effect of different 
failure modes in case of different geometrical arrangements of particles [5]. 

 
Figure 1. Discrete Element model of a 150 mm edge length concrete cube. Each color marks a different 
fraction (green: 0/4; red: 4/8; cyan: 8/16). 

In the DEM model, the particles can have a density, which makes it possible to consider the 
lightweight and recycled aggregate as well. The most challenging part is the calibration of model 
parameters. To set up DEM model parameters, usually an iterative approach is used, during which 
the chosen parameter is changed and its effect is observed on the outcome of a chosen material test 
(in our case on the compressive strength test). The iteration process has the following steps: 

1. Set the parameters (in our case the strength of parallel bonds) of the model to a given value. 
2. Generate the model with a dense packing. 
3. Run a uniaxial compression test. 
4. Compare the value of the test with the result of the laboratory tests. If the difference between the 

model and the laboratory results is smaller than a given threshold then the model is considered 
to be set up. 

However, in DEM the most time consuming task is to generate a new model with dense packing, 
which has to be done in every iteration step. Depending on the size of the model (the number of 
particles) it could take a long time, which strongly decreases the productivity of the method. 
Therefore, it is beneficial if the model parameters could be estimated to calibrate the model. 

Most of the calibrations are performed using a “trial and error” method [6]. However, most 
researchers develop a systematic method to vary each input parameters, and some of them developed 
sophisticated calibration strategies [7]. As an example, in the study of Kulatilake, et al., the calibration 
of the model against the laboratory test data was done by making an initial guess that the contact 
normal stiffness of the model (kn) is proportional to the Young’s modulus (E) of the rock [8]. The 
guess was that E = kn × 4R, where R is the particle radius. Based on this assumption they carried out 
a parametric study to introduce calibration curves to select the optimal contact parameters. Similar 
method was presented by Cheung to set up a DEM model of a reservoir sandstone [9]. Besides that, 
there were studies that dealt with the calibration of rocks in DEM and illustrated that the rock mass 
response strongly depends on the particle size distribution [10–12]. Other approaches that proved to 
be useful in other areas, like Design of Experiment (DOE) method, were applied to DEM model 
calibration as well [13,14]. DOE is a well organized approach to determine the relationship between 
parameters affecting a process and the outcome; it was used by Favier to calibrate a DEM model of 
unbonded particles. 

Potyondy and Cundall (2004) studied which parameters have the most significant influence on 
the overall material response for a bonded particle model [15]: 
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• particle size distribution, 
• packing of the particles 
• and the contact model. 

In the present study the particle size distribution of the material was followed in the model, a 
sufficiently dense packing was applied and the contact model was calibrated against physical tests. 
The system of a DEM contact model is complex and many parameters influence it and there can be 
even interaction between the various parameters. However, it can be determined which parameters 
have major and minor effects on the outcome of a given test. For example the main parameter in DEM 
affecting the compressive strength of the modelled material is the mean normal strength of the parallel 
bonds. In our research the normal strength of the parallel bonds was modified in every iteration until 
the modelled compressive strength did not match with the measured. 

2.3. Parameter Estimation 

Present study aims to find a way to estimate the normal strength of the parallel bonds of the 
DEM model based on the compressive strength and the density of the real material. A set of 
parameters are applied, which has to be optimized based on the experimental data. The solution of 
the optimization problem is the estimated parameter values set. Numerous methods can be found in 
the literature to solve a multi-parameter optimization problem [16]. The most widely used methods 
are Nonlinear Least Squares method, Gradient Descent method and Simplex search method. All these 
estimation methods minimize a cost function (an error or objective function, which is the measure of 
the difference between the simulated and measured response) like the sum of squared errors (SSE) 
or the sum of absolute errors (SAE). The optimization is performed on an iterative way, where in 
every iteration step the parameters are tuned (based on the minimized cost function) to obtain a 
simulated response that tracks the measured response. Based on the knowledge on the system the 
initial state, limits and constraints of the parameters could be approximated. Appropriate choice of 
these could lead to better performance and less iteration steps. Optimization terminates when 
successive parameter values change less than the parameter tolerance (a predefined threshold value) 
or the maximum number of iteration is reached. In the present research Nonlinear Least Squares 
(Levenberg-Marquardt) method were used, applying SSE cost function. 

This study aims to describe the relationship between the normal strength of the parallel bonds 
(σpb—DEM model variable), the density (ρ) and the compressive strength (σcomp) of the real material. 
The relationship can be formulated as: = ,  (1)

The proposed function can be expressed as follows: = ∙ ∙ ∙ ∙ ∙  (2)

where: 

• fligthweigth is the lightweight factor, taking into account the effect of lightweight aggregate and it is 
expressed as follows: =  (3)

where clightweiht is a parameter. 

• fcrushed is a parameter. 
• fnofines is the no-fines factor, taking into account the effect of the absence of fine aggregate and it 

is expressed as follows: = , (4)

where cnofines is a parameter. 
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• fRatio is a multiplier parameter, which describes the relationship of the bond strength and the 
compressive strength. 

• fDensity is the density factor, taking into account the effect of different densities: =  (5)

where cdensity is a parameter. 
The model parameters below were optimized where the following initial conditions were used: 

• clightweiht —2000 (kg/m3) 
• fcrushed —1 (-) 
• cnofines—2000 (kg/m3) 
• fRatio —1 (-) 
• cdensity —2000 (kg/m3) 

All parameters must be larger than zero by definition. Using the above described model, the 
parameters were optimized. There are many further parameters (size effect, cement type, w/c ratio, 
etc.), which can influence the estimation of DEM model parameters, however present research is only 
aiming to consider different aggregate types and particle size distributions. 

3. Results and Discussion 

Table 2 contains the results of the laboratory experiments and the final mean normal strength of 
the parallel bonds from the DEM model. 

Table 2. Experimental (density and compressive strength) and numerical (Normal strength of parallel 
bonds) results. 

Name/Property 
Density 
(kg/m3) 

Compressive Strength 
(N/mm2) 

Normal Strength of 
Parallel Bonds (N/mm2) 

Gravel C 2257 26.7 20.8 
Gravel A 2343 32.0 24.5 
Gravel N 2095 22.5 21.2 
Light N 1200 16.0 17.5 

Crushed C 2364 53.3 42.3 
Crushed A 2430 40.6 32.4 
Crushed N 1854 10.7 8.9 

Table 2 shows that as it was expected the Gravel A mix has higher compressive strength than 
Gravel C, because in case of quartz gravel aggregate the A curve (containing more fine particles) is 
more beneficial. It can also be seen that no-fines concretes (N) have lower compressive strength 
compared to the other mixes, which is caused by their low cement content. The final values of the 
normal strength of parallel bonds were reached after more than 12 iteration steps. As it can be seen 
from the table, there is no obvious connection between the values of compressive strength and bond 
strength. The model described in Section 2.3 was applied on the results and the parameters were 
estimated. The final values that resulted the best fit are the following. 

By applying the parameters described in Table 3, the error of the estimation (in average) became 
less than 2%, while the maximum error was less than 3.5%. These error values are below the accuracy 
of the physical measurement, which is around 5%. The derived equation with the optimized 
parameters were tested on another data set as well, containing different gravel aggregate concretes, 
lightweight concretes and no-fines concretes. The error of the estimation was less than 8% in this case. 
It is worth to mention that by just random picking the initial value for the mean bond strength of the 
parallel bonds at least 12 iterations were needed to calibrate the model, while using the above 
described estimation model the number of iterations were maximum 4. Thus, the computational time 
was decreased significantly and the application of DEM became more productive. 
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Table 3. Optimized model parameters. 

clightweight fcrushed cnofines fratio cdensity 
2438.1 1.04 2022.9 0.845 2153.9 

4. Conclusions 

In the present study a parameter estimation method was introduced for Discrete Element 
models. The normal strength of parallel bonds was estimated by using an estimation model, which 
is able to consider the effect of different aggregate types and particle size distribution. By applying 
the proposed model the normal strength of parallel bonds can be estimated and thus the number of 
iterations required to calibrate a DEM model can be significantly decreased. It has to be mentioned 
that many further parameters (like size effect, cement type, w/c ratio, etc.) affect the estimation which 
was not taken into account in this study, therefore they are subjects of further research. 
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