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Abstract: This paper provides a study on mixed-mode fracture mechanics in thin-walled tube which 
is subjected to tension, shear and torsion loading. This type of loading causes an inclined crack to 
develop and generate a mixture of normal and shear stresses ahead of a crack tip. The stress state 
ahead of a crack tip is frequently based on mixed-mode type of interactions which designate the 
amplitude of the crack tip stresses. The analytical expressions for the stress intensity factors for 
mixed-mode I + II approach are presented. The Paris law for mixed-modes I + II has been discussed. 
Mixed-mode fracture mechanics is used with theoretical models to predict the path of crack growth 
when an inclined crack is subjected to a combination of mode I and mode II deformations. The 
torque at which crack propagation can be expected has been determined. The numerical calculations 
have been carried out by using MATLAB code. The results are good and could be useful for 
companies working with thin-walled circular tubes. 
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1. Introduction 

Production and use of steel structures were found to be accompanied by failures and 
breakdowns of structures such as rails, vessels, large tanks, boilers, bridges and many more. Defects 
in structures may be the main cause of failures and breakdowns. Some problems in thin-walled 
circular tubes occur due to sudden brittle fractures in welded structures. 

The stress field at the tip of the cracks should be studied in order to ensure safety of structures. 
A fracture in real metals is carried out by a process of deformation and local failure at the front of a 
slowly or rapidly propagating crack. Cracks in brittle structures are often governed by linear elastic 
fracture mechanics. Most of the previous studies on structures are focused on the mechanisms of 
crack initiation and propagation of Mode I cracks [1–5]. 

The most common understanding of Mode II failure is that shear mode crack growth is caused 
by a linkage of many small tensile cracks [6,7]. It is believed that at a mixed-mode I + II fracture, the 
crack grows in a direction that maximizes one of the stress intensity factors 𝐾  or 𝐾 , rather than in 
a direction that maximizes both stress intensity factors 𝐾  and 𝐾  simultaneously. 

The stress intensity factor is mostly used as a parameter to evaluate the state of stress near the 
crack tip according to Linear Elastic Fracture Mechanics (LEFM) approach. The inclined propagating 
cracks are analyzed for the direction of propagation of cracks. Numerical methods have many 
advantages to solving the fracture problems [8–11] and this is the approach of this study. 
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2. Mathematical Modeling for the Mixed-Mode I + II 

In this study, a central inclined crack of length 2a in a thin-walled circular tube as shown in 
Figure 1a, is considered. When the tube is loaded biaxially, flaws will be subjected to mixed loading 
as shown in Figure 1b. The stresses are 𝜎   and 𝜎 = 𝑘𝜎  along the y and x directions, respectively. 
Mode I will result in opening of the crack faces while Mode II will cause a sliding motion of the crack 
faces along the length of the crack. 

 
(a)        (b) 

Figure 1. (a) Crack in a tube wall at an angle ∅ with the tube axis; (b) Angled central crack of length 
2a subjected to biaxial loading. 

The stress intensity factors 𝐾  and 𝐾  for the tensile and shear mode [12] are derived using 
Equations (1) and (2) as 𝐾 = 𝐾 + 𝐾 = (𝑠𝑖𝑛 ∅ + 𝑘𝑐𝑜𝑠 ∅) 𝜎 √𝜋𝑎, (1)𝐾 = 𝐾 + 𝐾 = (1 − 𝑘)𝑠𝑖𝑛∅𝑐𝑜𝑠∅ 𝜎 √𝜋𝑎 (2)𝐾 = 0 (3)

where 𝜎   is the hoop stress on the tube and the tensile stress and the shear stress acting on the crack 
are given in the form 𝜎 = 𝜎 + 𝜎 = (𝑠𝑖𝑛 ∅ + 𝑘𝑐𝑜𝑠 ∅)𝜎  and 𝜏 = 𝜏 + 𝜏 = 𝜎 (1 − 𝑘)𝑠𝑖𝑛 ∅𝑐𝑜𝑠∅ 

The longitudinal and hoop stresses in the circular tube are obtained from the equilibrium and 
are given as 𝜎 = 𝑝𝑟2𝑡 (4)

𝜎 = 𝜎 = 𝑝𝑟𝑡  (5)

respectively. Equations (4) and (5) can be used to find 𝑘 = . The stress intensity factors for Mode I 
and Mode II in Equations (1) and (2) become [13] 𝐾 = (𝑠𝑖𝑛 ∅ + 𝑘𝑐𝑜𝑠 ∅) 𝑝𝑟𝑡 √𝜋𝑎 (6)

𝐾 = (1 − 𝑘)𝑐𝑜𝑠∅𝑠𝑖𝑛∅ 𝑝𝑟𝑡 √𝜋𝑎 (7)

The tube is now loaded by a torque T and an axial tensile force F. In this case, it is assumed that 
r >> t so that the curvature of the tube may be neglected when the stress intensity factor is determined. 
The normal stress is given by the axial tensile force, F in the longitudinal direction and the shear stress 
is given by the torque T, as shown in Figure 2a. 
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(a) (b) 

Figure 2. (a) Crack in tube wall at an angle ∅ with the tube axis; (b) Approximate formula for thin-
walled circular tubes. 

In Figure 2b, a thin-walled circular tube is subjected to a twisting moment T. The mean radius is 
given by 𝑟 , a typical small area of length 𝑟𝑑𝜃 and thickness t transmitting an increment of force 𝑑𝐹 = 𝜏(𝑡𝑟𝑑𝜃) are assumed [14]. The moment of the incremental force about the axis of the circular 
tube equals the applied torque T. Therefore [14] 

𝑇 = 𝑟𝑑𝐹 = 𝑟𝜏𝑡𝑟𝑑𝜃 = 2𝜋𝜏𝑡𝑟  (8)

𝜏 = 𝜏 = 𝑇2𝜋𝑟 𝑡 (9)

The two-dimensional Cartesian stress transformation equations [15,16] are given as 𝜎 = 𝜎 𝑐𝑜𝑠 ∅ + 𝜎 𝑠𝑖𝑛 ∅ + 2𝜏 𝑠𝑖𝑛∅𝑐𝑜𝑠∅ (10)𝜎 = 𝜎 𝑠𝑖𝑛 ∅ + 𝜎 𝑐𝑜𝑠 ∅ − 2𝜏 𝑠𝑖𝑛∅𝑐𝑜𝑠∅ (11)𝜏 = 𝜎 − 𝜎 𝑠𝑖𝑛∅𝑐𝑜𝑠∅ + 𝜏 (𝑐𝑜𝑠 ∅ − 𝑠𝑖𝑛 ∅) (12)

For the purpose of this study, the stress 𝜎  gives a normal stress 𝜎 ∅ across the crack which 
then loads the crack in Mode I. The shear stress 𝜏  gives a normal shear stress across the crack 𝜏 ∅ 
which then loads the crack in Mode II, where 𝜎 = 𝜎 ∅ and 𝜏 = 𝜏 ∅. Thus, the stress intensity 
factors 𝐾  and  𝐾  for a small inclined crack can be expressed in the form [17] 𝐾 = 𝜎 𝑓 √𝜋𝑎 = 𝜎 ∅√𝜋𝑎 = √32 𝜏 √𝜋𝑎  

𝐾 = 𝜎  𝑔  √𝜋𝑎 = 𝜏 ∅√𝜋𝑎 = 12 𝜏 √𝜋𝑎  

where 𝑓  and 𝑔  are factors that are equal to 1 and 𝜎 ∅ = √ 𝜏 √𝜋𝑎 and 𝜏 ∅ = 𝜏 √𝜋𝑎  by using ∅ = 30 , 𝜎 = 0 and 𝜎 = 0. 
The maximum circumferential stress criterion [18], is based on the assumption that the crack will 

grow in the direction such that the Model I stress intensity factor is maximized. During a biaxial 
loading cycle, it is crucial to determine the fatigue crack growth direction. Applying the maximum 
tangential stress criterion, the crack extension direction can be given b [18] 

𝜃 = 2𝑡𝑎𝑛 14 𝐾4𝐾 ± 14 𝐾4𝐾 + 8  (13)

where 𝜃 is the crack propagation direction. The equivalent stress intensity factors can be given in 
the form [17,19,20] 𝐾 ( ) = 𝐾 + 𝛼 𝐾 + 4𝑘 + 1 𝐾 .  (14)

𝐾 ( ) = (𝐾 + 𝛼 𝐾 ) .  (15)
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𝐾 ( ) = (𝐾 + 𝛼 𝐾 ) .  (16)

where 𝛼 = 1, 2, 8  for Equations (14)–(16) respectively and ∆𝐾 = 0  for the thin-walled tube. 
Fracture is expected when 𝐾 = 𝐾  if LEFM can be used, therefore the value of the torque can be 
found as 𝑇 = 𝐾 2𝜋𝑟 𝑡𝜋𝑎  (17)

𝑎 = 1𝜋 𝐾 𝑡𝑝𝑟  (18)

where 𝑎  is the critical crack length. Fracture toughness is a measure of the ability of a material to 
resist the growth of a pre-existing crack or flaw, that is, it is a critical value of the stress intensity 
factor 𝐾  at the time of an unstable crack propagation, that is, 𝐾 = 𝐾 . 

3. Law of Fatigue Crack Propagation 

In the 1960’s, Paris [21] postulated that the range of stress intensity factor might characterize 
sub-critical crack growth under fatigue loading in the same way that ∆𝐾 characterized fast fracture. 
To analyze the mixed-mode fatigue crack, the Paris law [21] should be redefined by replacing ∆𝐾 
with an equivalent stress intensity factor which takes into account both modes of fracture. Thus, 𝑑𝑎𝑑𝑁 = 𝐶 ∆𝐾 = 𝐶 ∆𝐾 + ∆𝐾  (19)

where Equations (14)–(16) are used, C is the Paris coefficient and m is the slope stress ratio. The 
equivalent stress intensity factors in Equations (14)–(16) are selected for the calculation of the fatigue 
crack growth rate considering relative variation of the 𝐾  and 𝐾 . 

4. Numerical Experimental Procedures 

For this study, the crack propagation is the main parameter for the fatigue damage. A thin-
walled circular tube is made from Ti alloy (Ti-6Al-4V Grade 5) [22] with 𝐾  of 107 MPa√𝑚, yield 
strength 𝜎  of 1200 MPa, elastic modulus E = 119 GPa, the coefficient of Paris law of C = 6.0 × 10  
the internal pressure p = 250 MPa producing a circumferential hoop stress 𝜎  of 360 MPa and the 
Poisson’s ratio 𝑣 = 0.37. The tube has surface flaw oriented at angle ∅ = 60  to the uniform tensile 
hoop stress. The tube was regularly subjected to Nondestructive Testing inspection. The inspection 
showed that the tube contained an angled flaw of length 2a (a = 1.0 mm). The inner radius is 45 mm 
and the outside radius is 50 mm, while the wall-thickness of the tube is  𝑡 = 𝑟 − 𝑟 , and length l = 5 
m. 

5. Calculations and Results 

The results were obtained using the Matlab script. Figure 3a shows the 𝐾  and 𝐾  values that 
have been estimated theoretically and it can be noticed that 𝐾  values are predominant over 𝐾   
values. 
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                (a)  (b) 

Figure 3. (a) Modes I and II stress intensity factor; (b) Torque giving the shear stress. 

Therefore the crack is influenced more by stress intensity factor in Mode I. The torque from 
Equation (17) has been calculated and the value is 145.2 kNm at  𝑎 = 7  mm. The predominant 
Mode loading caused a crack path deviation by 0.83  when Equation (13) was used. The critical 
crack length was obtained to be 7.1987 × 10  m using Equation (18). Figure 4a provides 
theoretically analyzed values of da/dN versus the ∆𝐾  values, while Figure 4b shows theoretically 
analyzed values of da/dN versus the crack length. It can be noticed that the curves of Figure 4a do 
not vary significantly while those of Figure 4b vary slightly significantly. 

In Figure 4c the equivalent stresses of Equations (14) and (15) are plotted against the crack length 
and it can be seen that there is a slight significance between them. In Figure 4d, it can be confirmed 
that the 𝐾 (𝐵) is predominant over both 𝐾 (𝐴) and 𝐾 (𝐶), while 𝐾 (𝐴) is predominant over 𝐾 (𝐶). All  for A, B and C behave the same way as seen in Figure 4d. It is interesting that in Figure 

4c, da/dN B dominates both da/dN A and da/dN C respectively. 

  
(a) (b) 

  
(c) (d) 

Figure 4. (a) Crack growth rate versus equivalent stress intensity factors; (b) Crack growth rate versus 
a (m); (c) Equivalent stress intensity factors versus a (m); (d) Fracture values on the thin-walled 
circular tube. 
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6. Conclusions 

Analysis of an inclined crack on thin-walled circular tube under mixed-mode I + II fracture has 
been studied in the present work. The crack propagation is the main parameter for the fatigue 
damage. The flaw is inclined at an angle to the direction of the hoop stress. So the hoop and 
longitudinal stresses are the most critical stresses. The numerical calculation of K for Mode I and 
Mode II were carried out. The results were obtained using the Matlab script. 

It can be noticed that the values obtained for 𝐾  are predominant over those obtained for 
the 𝐾 . The major results of this study are summarized in the plots. The torque at which a crack 
propagation can be expected has been found and looks reasonable for this study. The angle for the 
crack extension direction has been determined. The results obtained in this study are good and could 
be useful for companies working with thin-walled circular tubes. 
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