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Abstract: Considering the Mooney–Rivlin hyperelastic model, a semi-analytical approach is 
introduced to analyze the rigid–flexible contact behavior of an inflated membrane balloon between 
two plates with various interface conditions. This approach is based on differential formulation, and 
the coupling properties of equilibrium equations are well-solved. In order to verify the reliability of 
the proposed theoretical model, an experimental test was designed, by which some important 
contact characteristics and patterns (no-slip condition) were obtained. Two special phenomena were 
observed for the meridian stretch ratio with different friction coefficients. One is that the intersection 
points of all curves fall in a small interval, and the intersection of any two curves represents the 
same changing rate of the horizontal ordinate, resulting in the maximum difference. The other is the 
dividing point, where the stretch ratio decreases on the left and increases on the right due to the 
introduction of friction. These results provide solid guidance and support for our understanding of 
the rigid–flexible contact behavior of inflated membrane balloons. 
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1. Introduction 

As a typical membrane structure, inflated balloons have considerable importance in a number 
of scientific studies and technological applications. On the macro scale, they can be used in terrestrial 
and space structures due to their advantages, being light-weight, quick and self-deployed, and 
having compact storage properties [1] (Jenkins, 2001). On the micro scale, they can be used as animal 
or plant cells [2] (Moretti et al., 2004).  

Investigations into the contact behavior of inflated membranes can be summarized as two 
processes: geometry nonlinearity analysis and boundary condition nonlinearity analysis. Geometry 
nonlinearity is carefully considered when solving the membrane inflation problem [3] (Feng and 
Yang, 1970). Moreover, a lot of work has been done to deal with the nonlinearity problem of the 
boundary condition [4] (Feng and Yang, 1973, Johnson, Kendall and Roberts, 1971). Broadly, the 
solution schemes proposed to this problem are divided into two categories: finite element analysis 
and a semi-analytical approach. Based on the finite element method, the membrane’s large 
deformation problems, nonlinear static behavior, inflation and contact characteristics were analyzed 
by Leonard and Verma (1976) [5] and Charrier and Shrivastava (1987) [6]. On the basis of different 
contact models (Yang and Feng, 1973; Patil and DasGupta, 2015) [7], the contact problems were 
simplified to a set of ordinary differential equations, which can be solved by numerical methods. 

In the existing literature, diverse methods are proposed based on variational formulation. The 
coupled normal adhesive force and tangential friction force will increase the difficulty of the solving 
process. To deal with this problem, a semi-analytical method rooted in differential formulation is 
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introduced to extend the modal of Feng and Yang (1973) [8], and more complex contact boundary 
conditions are studied. 

2. Geometry and Constitutive Models 

A spherical balloon with the uninflated radius 0r  and uniform thickness h  (state I the black 

line) is inflated to radius sr  by pressure 0P  (state II the red line). Then two parallel rigid plates are 
pressed by F  into contact with the balloon (state III the green line). Half of the spherical balloon 
and one rigid plate are shown in Figure 1. The inflated spherical balloon before contact is described 

by the spherical coordinates ( sr ,  ,  ). The cylindrical coordinates ( ,  ,  ) are used for the 
spherical balloon after contact.  

 
Figure 1. Contact model of an inflated membrane and rigid plates. 

The governing differential equations are built for the non-contact region and the contact region, 
separately. 

In the non-contact region: according to the geometric relation, the principal stretch ratios for the 

membrane can be written as ,   . Here, the subscripts   and   denote the meridian and 
circumferential directions. 
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The prime in the foregoing and subsequent equations denotes the derivatives with respect to the 
angle  .  

The structure is considered as the non-moment thin shell, which has no bending moment and 
torsion on the cross-section, and the equilibrium differential equations can be expressed due to the 
constitutive relation and the axial symmetry. 
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where nP  = nq  and tP = q  are the external loads acting on the deformed surface in the normal and 
meridian tangential directions. 

Based on the Mooney–Rivlin hyperplastic constitutive model, the equilibrium equations can also 

be obtained due to the newly-defined variables: 
'
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 (Feng and Yang 
(1973)): 
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In the contact region: the complex stick–slip contact condition becomes a frictionless contact 
condition when the friction coefficient becomes zero. If the friction coefficient goes to infinity, it is 
converted into the no-slip contact condition. This contact condition is considered in this paper. As 
the friction coefficient is limited, the material will stick when the interfacial friction is greater than 
the membrane tension, while the others will slip. 
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The equilibrium equation along the meridian tangential direction of the spherical balloon in the 

contact region can be rewritten as 
T TdT

d
  

 


 
. Hence, the equilibrium condition for the critical 

sliding state can be obtained. 

3. Results and Discussion 

3.1. Experiment Verification 

In order to verify the theoretical results, a testing scheme was proposed to measure the patterns 
and some important contact characteristics of the inflated balloon. The detailed material and 
structural parameters are shown in Table 1. 

Before the experiment, the speckle pattern on the balloon was reproduced artificially. To increase 
the contrast of the speckle, matte white paint and black paint were sprayed evenly on the balloon 
surface. In the experiment, the balloon with the sprayed speckles was placed on the workbench and 
its position was adjusted so that it was on the compression axis. After that, the balloon was inflated 
by the pump. The displacement load was applied to the balloon, which can be controlled precisely 
by the electronic universal testing machine. This load was noted by a ruler on the machine and the 
internal pressure of the balloon was monitored by the barometer (Figure 2). The deformation of the 
balloon were tested using the digital image correlation (DIC) technology, which is a reliable means 
for measuring displacement fields.  
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Table 1. Material and geometric parameters. 

Parameters Magnitude 
Initial radius (r0) 0.05 (m) 

Thickness of the beam (h) 0.3 (mm) 
Young’s modulus of membrane (E) 6 (MPa) 

Poisson’s ratio ( ) 0.47 

Stretch ratio before contact ( s ) 3 

 
Figure 2. Setup of the contact experiment. 

The maximum displacement of the balloon ( 2
  ) is compared in Table 2 and the deformation 

contours of the balloon are presented in Figure 3. 

 
Figure 3. Three stages of contact (a) before contact (b) just in contact (c) in press. 

Table 2. Experimental and theoretical results of the maximum displacement under different 
displacement loads. 

 Displacement Load (cm) 0.63 2.13 4.25 
Maximum 

displacement ( 0

l
r ) 

Theoretical results 2.05 2.18 2.34 

Experimental results 2.08 2.25 2.50 

When the inflated balloon is just in contact with the plates, the maximum displacement appears 

in the middle ( 2
  ). The tested deformation (10.4 cm) agrees with the theoretical result (10.0 cm), 

with an error around 0.33%. When the displacement load is 4.25 cm, the error reaches the maximum, 
which is 6.8%. 
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3.2. Theoretical Prediction 

As a general case, the results from the stick–slip contact condition are discussed in this section.  
For different friction coefficients, the changing trend of the meridian stretch ratio   with the 

angle   is shown in Figure 4, where the contact angle is 60 .  
Two special phenomena can be seen in Figure 4. One is that the intersection points of all curves 

fall in a small interval, and the other is the dividing point ( angle 1.05   ). The intersection point of 
any two curves appears in the contact region, which represents that materials have the same meridian 
stretch ratio under conditions with corresponding friction coefficients at that point. Moreover, in 

contrast to the condition of 0f  , a dividing point, which is the boundary of the contact and non-
contact regions, appears when friction is introduced.  

 

Figure 4. The changing trend of the meridian stretch ratio   with angle   under different 
friction coefficient conditions. 

To better explain the intersection interval in Figure 4, the relationship between the horizontal 
ordinate and angle is counted in Figure 5a, and the horizontal ordinate difference between the 
introduced friction conditions and the frictionless conditions are described in Figure 5b. In the contact 

region, the relationship 
'

0r
 

 is satisfied. Then the intersection of any two curves represents the 

same changing rate of the horizontal ordinate 0r


, resulting in the maximum difference at that point. 

 

Figure 5. (a) Horizontal ordinate 0r


 and angle relationship with different friction coefficients; (b) the 

horizontal ordinate difference 0r


 between the introduced friction conditions (different coefficients) and 
the frictionless conditions. 

Moreover, a step point appears at angle 1.05    in Figure 4, which corresponds to the 
dividing point between the contact and non-contact regions in Figure 5b. This means the changing 
trend of the meridian stretch ratio is different in the contact and non-contact regions, though this 
stretch ratio changes continuously in these two regions. 
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4. Conclusions 

In this paper, a semi-analytical approach based on the force equivalent method is introduced to 
the Mooney–Rivlin hyperelastic membrane model to characterize the rigid–flexible contact behavior 
of an inflated membrane balloon. In the contact region, the typical stick–slip condition is considered. 
The inflatable and contact process can be tracked using the proposed model. The patterns and 
characteristics before contact, just in contact and in press can be verified by experimental tests.  

Considering the particularity of the stick–slip contact condition, friction plays an important role. 
A small intersection interval appears in the meridian stretch ratio for different friction coefficients in 
the contact region, and the horizontal ordinate changing ratio of any two conditions with different 
friction coefficients remains the same, resulting in the maximum difference of this ordinate. Unlike 
the increasing meridian stretch ratio with the increment of the angle when the friction coefficient is 
zero, a dividing point appears between the non-contact and contact regions when friction is 
introduced. It declines in the contact region and increases in the non-contact region due to the 
interface friction, which prevents the material of the balloon from sliding to the pole.  
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