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Abstract: Numerical studies have been conducted based on the recently published Deformation 
Field Theory. Effects of pulling rates on displacement waves and volume expansion waves are 
analyzed in a finite element model (FEM) of a solid experiencing a uni-axial tensile load. Without 
relying on empirical data, the model’s numerical results demonstrate empirically known concepts 
that a fracture occurs more easily when the pulling rate is high, and the direction of external load is 
reversed. 
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1. Introduction 

The majority of conventional fracture mechanics analyses begin with a crack-tip already 
introduced in the model or specimen [1,2]. In strength of materials, stress strain curves are designed 
mostly from empirical methods often associated with a specific strain rate. Neither approach predicts 
where and when a fracture will occur in a solid, until a crack appears. However, Deformation Field 
Theory [3,4] provides a physics based theoretical framework that describes all stages of deformation 
comprehensively. Within this same theoretical foundation, Deformation Field Theory derives field 
equations that describe the local deformation behavior as wave dynamics. Thus, we can describe 
deformation in solids, in terms of wave dynamics of deformation fields. When studying deformation 
as waves propagating through materials, we can provide a thorough analysis of the translational and 
rotational dynamics a solid is experiencing. 

In this study we use Deformation Field Theory to model the effect of pulling rates on the 
deformation behavior of a specimen. Empirically it is well known that the pulling rate alters the 
ductile-brittle transition behavior of steel [5,6]. We propose that when a solid is experiencing a uni-
axial tensile load at a strain rate, such as 1 × 10  s−1, a faster pulling rate causes the material to 
undergo more concentrated volume expansion. From the Deformation Field Theory perspective, the 
deformation wave velocity, of a solid experiencing plastic deformation, does not depend on the 
pulling rate. Consequently, if the pulling rate is slow the material has time to redistribute the stress 
via wave propagation. Conversely, if the pulling rate is fast the material does not have time to 
redistribute the stress via wave propagation, leading to fracture more easily. 

We developed a finite element model (FEM) of a solid experiencing a uni-axial tensile load, 
studying three pulling cases; intermediate (1 × 10  s−1 in strain rate) and comparatively fast and 
slow. Using the field equations of Deformation Field Theory, we derived an equation of motion, 
expressed it in the form of a wave equation, and solved it as a two-dimensional partial differential 
equation, over the area of the modeled specimen. We introduced a new parameter, , to describe the 
degree of plastic deformation [7]. Without using empirical data acquired from stress strain analysis, 
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our model can demonstrate deformation concepts already known in a phenomenological sense. 
Specifically, fast pulling tends to tear solid objects more easily and often a fracture occurs when the 
direction of the applied force is reversed. 

2. Field theory of Deformation and Fracture 

2.1. Field Equations 

Details of the present field theory can be found elsewhere [3,4]. In short, this theory describes all 
stages of deformation based on two postulates. The first postulate is that at any stage of deformation 
it is possible to find local regions in solids where the deformation obeys the law of liner elasticity 
(Hooke’s law). Those local regions are called the deformation structural elements. The second 
postulate is that nonlinear dynamics in the plastic regime can be formulated through a compensation 
field that logically connects deformation structural elements so that Hooke’s law can be satisfied at 
the global level. The irreversibility in the plastic regime is described through energy dissipative 
interaction between the deformation structural element and the compensation field. Fracture is 
characterized as the final stage of deformation where the compensation field is unable to connect 
deformation structural elements, and therefore the solid is no longer a continuum medium.  

Hooke’s law is an orientation preserving law [8] as the elastic force and resultant displacement 
are parallel to each other. Therefore, in order to describe deformation with Hooke’s law at the global 
level, it is necessary to align all deformation structural elements in the same direction. The role of the 
compensation field is to make this orientation recovering alignment. This effect is conveniently 
expressed as a vector potential. With this formalism, solids under deformation can be viewed as being 
made up with a number of elastic entities connected with the vector potential.  

The present field theory identifies Lagrangian associated with the local elastic energy and 
potential energy associated with the vector potential. By applying the Lagrangian principle, the 
theory derives the following set of field equations.  ∇ ∙ = − , (1) ∇ × = , (2) 

∇ × = − 1 − ., (3) ∇ ∙ = 0. (4) 

Apparently, the above field equations yield wave solutions. This is the source of the wave 
dynamics of deformation fields. In the field equations,  is the temporal derivative of displacement 

 at a given point in the global coordinate system ( = ),  is the rotation ( = ∇ × ), and  is the 
wave velocity.  and  are the quantities that describe temporal and spatial interaction of the local 
elastic dynamics with the compensation field. Equation (3) can be put in the following form, which 
explicitly indicates that this equation is in fact the equation of motion for the unit volume whose mass 
is .  

= − (∇ × ) − . (5) 

In the form of Equation (5), (∇ × ) and  can be interpreted as representing shear and 
longitudinal resistant forces that the solid exerts in response to the external load. Each regime of 
deformation can be characterized by a specific form of the resistant force as indicated in Table 1, and 
briefly described as follows. 

1. Linear elastic regime 

For this regime, material rotation  represents rigid-body rotation. In other words, the 
entire object is represented by the same  vector, hence, ∇ × = 0. The elastic force is 
proportional to the volume expansion via the Lamé’s parameters  and . 
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2. Elasto-plastic regime 1 

In this regime, the number and size of defects become significant, making different parts of 
the object undergo different rotations. Consequently, ∇ × ≠ 0. In addition, these defects 
move causing friction against surrounding atoms. This energy dissipative force is expressed 
via a material constant, , as (∇ ∙ ) . The solid is still under the influence of elastic 
force, ∇( + ) ∇ ∙ . 

3. Elasto-plastic regime 2 

When deformation advances to the next level, the number and size of defects become so 
high that the solid is no longer under the influence of elastic force, ∇( + ) ∇ ∙ . 
However, it is still influenced by rotational elastic force, (∇ × ).  

4. Pre-fracture regime 

When deformation develops further, the shear stress becomes so significant that a so-called 
shear band appears at the location of maximum shear stress [3]. At this stage, ∇ ×  
becomes uni-directional . The elastic force term is due to a higher order term of the 
Lagrangian, representing elastic energy. Note that the equation of motion yields solitary 
waves in this regime. 

Table 1. Resistive force for each regime of deformation. 

Deformation Regime Resistive Force Expression 

Linear elastic ∇( + ) ∇ ∙  

Elasto-plastic 1 − (∇ × ) − (∇ ∙ ) + ∇( + ) ∇ ∙  

Elasto-plastic 2 − (∇ × ) − (∇ ∙ )  

Pre-fracture 1 −  

1 The first term comes from a higher order term of the Lagrangian.  is the Young’s modulus. 

2.1. Wave Equations 

From Table 1, the equation of motion (5) for Elasto-plastic 1 regime can be put as follows. 

+ ( ∙ ) = − (∇ × ) + + ∙ . (6) 

Similarly, the equation of motion for Elasto-plastic 2 becomes  

+ ( ∙ ) = − (∇ × ). (7) 

The last term of Equation (6) indicates that as deformation develops from Elasto-plastic 1 to 
Elasto-plastic 2, the coefficient of the linear elastic force term changes from +  to 0. This indicates 
that the degree of plastic deformation cab be expressed by parameter  defined as follows. 

+ ( ∙ ) = − (∇ × ) + ∙ . (8) 

Here,  changes from = ( + )/  for Elasto-plastic 1 to = 0 for Elasto-plastic 2. 
With the identity ∇ × = ∙ − ,  can be eliminated from Equation (8) as follows. 

+ ( ∙ ) = − ∙ + ∙ = + ( − 1) ∙ . (9) 
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3. Modeling 

3.1. Partial Differential Equation 

In the present study, the above equation of motion is solved as a FEM of two-dimensional, partial 
differential equation. Equation (9) can be viewed as a wave equation of the following form. 

+ ( ∙ ) − = ( − 1) ∙ . (10) 

Here ( ∙ ) can be viewed as a damping coefficient, /  as the square of the wave velocity, 
and ( − 1)( / ) ∙  as the source term. Based on the argument made above, the transition from 
Elasto-plastic 1 to Elasto-plastic 2 in association with the change in  can be viewed as the 
corresponding change in the coefficient of the source term. 

For Elasto-plastic 1, = + . According to continuum mechanics,  and  are related via 
Poisson’s ratio, , as ⁄ = 2 (1 − 2 )⁄ . With a typical value = 0.3, the coefficient of the source 
term in Equation (10) becomes − 1 = ⁄ = 1.5. For Elasto-plastic 2, = 0 makes the coefficient − 1 = −1. With these two coefficients, wave Equation (10) can be solved with boundary conditions. 

3.2. Boundary Condition 

The upper illustration in Figure 1 shows the specimen with the mesh used for our FEM analysis. 
The left end of the planar specimen is fixed both vertically and horizontally. The right end is pulled 
by a tensile machine with zero vertical freedom. The top and bottom ends are assumed to be free. 
The lower plots in Figure 1 show the three boundary conditions used for the right end.  

 

(a) (b) (c) 

Figure 1. The specimen and three pulling rates used in FEM: (a) slow; (b) intermediate and (c) fast. 

4. Results and Discussions 

In the present study, the focus is on the effect of pulling rate on the wave behaviors for Elasto-
plastic 2 ( =  in Equation (10)). Figure 2 shows the computed  (the displacement component in 
line of the external pulling load) waves and ∙  (volume expansion) waves for the slow (left 
column), intermediate (middle column) and fast (right column) pulling rates. The top graphs are the 

-waves and the bottom graphs are the ∙ -waves.  
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Figure 2. –waves (top three plots) and ∙ –waves (bottom three plots) observed at three pulling 
rates: slow (left); intermediate (middle) and fast pulling rates (right). 

The following observations can be made.  

1. The effect of pulling rate is more prominent in the volume expansion waves than the 
displacement waves. This indicates that the volume expansion part of ∇ × = ∇ ∇ ∙ − ∇  is 
more sensitive to the pulling rate. 

2. The effect of pulling rate is more prominent in the second half (the descending half of Figure 2) 
than the first half (the ascending half of Figure 1). Fracture is induced by strain concentration. 
This observation indicates that fracture occurs when the direction of the applied force is reversed. 
It also indicates that the deformation dynamics is more influential to strain concentration than 
the average strain. Notice that the pulling is symmetric in time so that the average strain is 
symmetric in the ascending and descending halves.  

3. The fast pulling case indicates more concentrated volume expansion. This can be interpreted as 
follows. When pulled slowly, the solid has time to redistribute the volume expansion. 
Conversely, when pulled fast, at a certain peak in  or ∇  is more prominent than the others. 
In other words, the solid tends to have strain concentration more easily when pulled faster. This 
and Observation 2 are consistent with our intuition that when we try to break a solid object we 
tend to apply a force in one direction and reverse the direction fast.  

The above observations indicate the interaction between the deformation waves and the end of 
the solid that the uni-axial tensile load is applied. Figure 3 shows the motion of the largest peak of 
the -wave as a function of time. It is clearly seen that the wave’s motion deviates from linearity 
more clearly when pulled slowly and in the descending part of the pulling action. Notice that the 
wave Equation (10) uses a constant wave velocity ( / ). Therefore, without the interaction with the 
pulling at the boundary, the motion of the peak should be constant. The dashed line in the middle 
plot of Figure 3 indicates the constant velocity.  
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Figure 3. Peak location of –waves v.s. time: (a) slow; (b) intermediate and (c) fast pulling rates. 

5. Conclusions 

The present study demonstrates, via wave dynamics of deformation, empirically known 
concepts that it is more likely fast pulling leads to a fracture and that a fracture tends to occur when 
the direction of the applied load changes. Although the current FEM does not model the pre-fracture 
regime (Table 1), it is possible to argue that the prominent peak observed in the fast pulling case 
transforms to a solitary wave. Deformation Field Theory predicts that a fracture occurs when and 
where a solitary wave stops travelling. Modeling of the transition from a continuous wave to a 
solitary wave and of the mechanism that makes a solitary wave stationary are two most important 
subjects of our future study.  
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