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Abstract: Directional stability is an important performance criterion for alpine skis and has been 
shown to correlate with the second moment of running surface pressure distribution. However, this 
stability index is complex to measure while skiing and is not practical for testing many skis. It 
therefore remains unclear what range one can expect in the variation of stability between 
commercially available skis. In this study, the mechanical properties of 179 skis were measured and 
the ski deformation was simulated during a steady-state turn to evaluate the stability index. The 
resulting data provide insight as to what values of stability, which ranged from 0.1 to 98 N m², are 
to be expected. A novel parameter, the product of the force required to flatten a ski and the square 
of its sidecut length, was introduced. Its high correlation with a ski’s stability suggests it can be used 
as an accurate predictor of stability. 
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1. Introduction 

It is widely accepted that directional stability is a decisive criterion in determining the 
performance of an alpine ski during a carved or skidded turn [1–4]. This stability is correlated with 
the way the pressure is longitudinally distributed along the base of the ski at the ski/snow  
interface [1,3]. One proposed quantitative performance index to evaluate stability is the second-order 
moment of pressure distribution along the longitudinal axis of the ski [3]. However, this performance 
index is difficult to measure in actual use, requiring specialized and bulky equipment [5]. Further 
complicating matters, on hard snow or ice, the pressure distribution is limited to a very thin area 
along the edge of the ski. At least one study has been conducted to experimentally measure the 
pressure distribution and stability index of skis in a laboratory setting, on a rigid surface [3]. Another 
method of obtaining the stability index of a ski is to numerically simulate the ski deformation and 
resulting snow penetration and interface pressure during a turn. There is a large body of work 
concerning modelling a ski turn on snow using either static [6,7] or dynamic models [8,9]. The ski has 
been modelled using various methods: an elastic beam [6], a set of elastically-connected rigid  
bodies [7–10], or using FEM [11]. The snow has also been modelled in various ways, either using an 
extrapolation of ice-cutting experiments [12], as a linear elastic material [8] or using a 
plastic/hypoplastic law [6,7,9,10,13]. However, simulations require accurate mechanical properties 
which have historically been difficult to obtain, specifically in the case of the bending and torsional 
stiffness profiles. This explains in part the limited number of different skis analyzed in the above 
studies. Recently, a method was developed to quickly and accurately measure these stiffnesses [14]. 
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The aim of this study was to determine the range of stability that can be expected from typical, 
commercially available skis by analyzing, using numerical simulation, a large number of skis 
spanning various disciplines and sizes. A secondary aim of this study was to understand how the 
relevant mechanical properties (ski length, sidecut, camber, as well as bending and torsional stiffness 
distributions) affect this stability. This knowledge would be invaluable to ski designers, enabling 
them to use the stability index as a design goal, selecting an appropriate stability target and sizing 
the ski’s properties to attain this goal. For consumers, knowledge of the preferred stability level for 
one’s own abilities and style would facilitate the ski selection process by quickly eliminating skis 
exhibiting inappropriate stability values. 

To fulfill these objectives, the mechanical properties of 179 different skis were measured using 
the SMAD method [14]. Section 2 describes the numerical model used to simulate the ski deformation 
and pressure distribution. In Section 3, the results obtained from this model for the measured skis are 
analyzed. The effect of linear and hypoplastic snow deformation laws on stability are compared. The 
effect of a ski’s mechanical properties on stability are also investigated and a simple parameter 
encompassing a ski’s various mechanical properties is proposed to quickly estimate stability. 

2. Materials and Methods 

2.1. Selected Skis 

In this study, the sidecut, camber and bending and torsional stiffness profiles were measured 
for 179 different skis using the SMAD method. Using this method, the stiffness profiles were obtained 
with an accuracy of approximately 5% [14]. The skis measured were all commercially available 
models spanning a range of intended uses, and measuring from 146 to 189 cm in nominal length. The 
width of the skis varied from 64 to 122 mm. The mean bending and torsional stiffness values varied 
from 113 N m² to 369 N m² and 48 to 350 N m², respectively. 

2.2. Ski Model 

Two reference frames are used throughout this study: N , the normal-tangential reference frame 
with respect to the ski trajectory (assumed to be circular and of radius R ), as well as S , a reference 
frame aligned with the ski. Starting from N , S  can be obtained from 3 successive rotations. Firstly, 
the ski, initially resting on the snow surface, is rotated around  yS  by an angle  , which is the angle 
of attack of the ski with respect to its trajectory. Then, the ski is rotated around  xS  by an angle  , 
which represents lateral lean. Finally, the ski is rotated around  zS  by an angle  , which represents 
fore/aft lean. Figure 1a illustrates the orientation of these references frames for a typical ski turn. 

 
Figure 1. (a) Bent ski during a turn with reference frames; (b) Ski sidecut length, radius and depth;  
(c) Ski bending deformation due to sidecut ( scy ) when on edge. 

A single ski is modelled using a set of 31 elastically-connected rigid-body trapezoids. The 
positions of the trapezoidal segments’ vertices are chosen to coincide with the sidecut and camber 
profiles of the undeformed ski. Figure 2 shows a 7-segment ski (for visual clarity) overlaid onto the 
continuous geometry profiles. 
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Figure 2. Segmentation of a ski overlaid on the measured (a) sidecut and (b) camber profiles. 

The segments are rigidly connected in translation at nodes located on the center of the common 
edges of the undeformed shape. The lateral bending degree of freedom is blocked, and the bending 
and torsion degrees of freedom are linked by springs whose stiffnesses are calculated from the 
continuous stiffness profiles, ( )EI x  and ( )GJ x , and the segment length, as given by Equation (1) 
[15]:  

/ 2 / 2
, / 2 , / 2( ) ( )i i

i i

x L x L
i x x L Segment i z x L Segmentk GJ x L k EI x L 

    (1) 

2.3. Snow Models 

The snow reaction force on each ski segment is calculated using either a linear elastic or 
hypoplastic constitutive law. In both cases, the force is assumed to be normal to the ski segment. 
Tangential forces such as friction are neglected. Shear resistance of the snow is considered to be 
infinite. In the case of the linear elastic model, the snow force component along 

yN  acting on the 
segment j is given by Equation (2), where Snowk  is the snow surface stiffness. For the hypoplastic 
model, this force is rather given by Equation (3) with 1 0.9s  and 2 0.98s   [9,13]. The force is 
calculated by numerically integrating the penetration over the whole segment, with the maximum 
snow penetration, ( )Maxy r , carrying over from the front-most segments rearwards. Since the total 
snow force is perpendicular to the ski segment surface, it is calculated with knowledge of  , the 
angle between the segment surface normal vector and 

yN  (Equation (4)). The force is applied at the 
segment’s center of pressure. 
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 , , , cosSnow j Snow y jF F   (4) 

2.4. Solver 

A prescribed, constant force is applied perpendicularly to the snow surface ( 
yyF N ) at a node 

positioned on the central segment at the ski center to represent the skier’s weight. The central 
segment’s orientation ( , ,   ) as well as the trajectory radius R , as defined in Figure 1a, are also fixed. 
As such, any dynamic effects (weighting/unweighting, convexities/concavities on the snow surface 
and weight transfer between the two skis) are not considered by this steady-state model. 

The snow forces acting on each individual ski segment, as well as the node and force positions, 
ir


 and ,Snow jFr 


, are used to calculate the nodal moments in the N  reference frame, which are then 
transferred to the segment reference frames (  iS ) with the rotation matrix  

iS NR


, as in Equation (5). 
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Thus, the net moment at each node is the sum of the node internal spring moment and the 
moment due to snow forces, as given by Equation (6). Similarly, the total force normal to the snow 
surface is the sum of the snow forces and the applied force at the ski center and is given by Equation 
(7). An iterative solver is used to find the steady-state ski deformation, which is the solution to 
equation set 8. 
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The solver code was validated by replacing the snow model with boundary conditions 
emulating a 3-point bending test and finding the solution for a constant-stiffness beam. The solution 
was identical to within 3% of the deformation predicted by Euler-Bernoulli beam theory. 

2.5. Pressure Distribution and Stability Index 

The stability index, corresponding to the second-order moment of pressure distribution along 
the longitudinal axis of the ski,  xS , is calculated with Equation (9). In contrast with previous work 
[3], the non-normalized moment is used to compare the absolute stability values. 

 , ,
2 , ,

( )?
z Snow i Nz

FSnow i N
M F x  (9) 

3. Results and Discussion 

The turn simulations were carried out for boot orientations ranging from 1 to 45° of lateral lean 
and from −10 to 10° of fore/aft lean. Applied normal forces ranged from 196 to 589 N (20 to 60 kg) and 
snow hardness was varied from 1 × 106 to 1 × 109 N/m³. For the hypoplastic snow model, angle of 
attack and trajectory radius were also considered to construct the snow deformation path. These 
parameters were varied from 0 to 5° and 10 to 50 m, respectively. 

3.1. Effect of Torsional Stiffness 

A subset of five skis within the set of studied skis, selected to cover the whole range of torsional 
stiffnesses of the complete set, were modelled with both the model described above and with the 
torsional degree of freedoms blocked. The average difference in the stability index for all the 
simulations was 2.1%, with a standard deviation of 2.9%, which suggests that torsional stiffness has 
a negligible effect on stability. Torsional stiffness was thus neglected from subsequent analyses. 

3.2. Comparison between Linear and Hypoplastic Snow Models 

Because of computational time constraints, two skis were simulated using the hypoplastic snow 
model. Across the whole range of input parameters, the difference between the stability index 
predicted using the hypoplastic and the linear snow model did not exceed 16%. Also, the error 
decreased to under 10% for angles of attack above 2.5°, which is coherent with previous work: at 
small angles of attack, the hypoplastic model predicts that ski tail rides through the groove created 
by the ski shovel, reducing tail pressure [7] and, in turn, the stability index. At larger angles of attack, 
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the ski tail does not track the groove created by the shovel, and the pressure distribution more closely 
resembles that predicted by the linear model. Although previous work [9] has shown that a 
hypoplastic law models snow behavior more accurately than a linear elastic law, this difference in 
stability predicted by the two snow models is small relative to the difference between skis. The linear 
model is therefore used for further analyses to reduce both computing time and the number of inputs: 
for the linear model, angle of attack and trajectory radius are trivial and need not be considered. 

3.3. Fore/aft Lean Angle Effect on Stability 

For all the skis considered in this study, maximum stability for a given snow hardness, applied 
force and lateral lean angle occurs at or very near zero fore/aft lean angle, i.e., leaning forwards or 
backwards has the effect of decreasing stability. This is visible in Figure 3, which shows two typical 
maps of stability as a function of fore/aft and lateral lean angles for both a traditionally cambered ski 
and for a rockered ski. Although the amplitudes and slope of the map vary for different skis, snow 
hardnesses and applied forces, all stability maps retain a similar shape. 

 

Figure 3. Stability maps for (a) a Rossignol Hero Elite E-ST Carbon 166 cm and (b) a Völkl Mantra 177 
cm. Both maps are for an applied force of 392 N and a snow hardness of 1 × 106 N/m³. 

3.4. Comparison of Stability across Different Skis 

The stability index calculated for the 179 skis studied, in all conditions considered, varied from 
0.1 (for rockered skis) up to 98 N m². Since maximum stability is achieved at or near zero fore/aft lean 
angle, other angles were not considered. As can be seen in Figure 4a, decreasing snow hardness has 
the effect of increasing stability while increasing lateral lean angle and applied loads both increase 
stability. However, even for a single hardness, applied load and lateral lean angle, the stability from 
ski to ski varies significantly. This is because the mechanical ski properties also influence stability. 

 
Figure 4. (a) Stability versus snow hardness, lateral lean angle and applied load and (b) stability 
versus snow hardness, F0LSC² and applied load. 

3.5. Stability as a Function of the Force Required to Flatten The Ski 

To gain insight on the effect of a ski’s mechanical properties on the stability index, we think of 
the ski as a simplified, constant-stiffness beam in simply supported, center-loaded bending. 0F , the 
force required to deform such a beam a distance y , is given by Equation (10). 
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In Equation (10), the sidecut length, SCL , is defined as the distance between the widest point of 
the shovel and the widest point of the tail (Figure 1b), and EI  is the ski’s mean bending stiffness. If 
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the ski is pressed onto a rigid surface, the distance y will then be equal to the sum of the ski’s initial 
camber and the additional distance through which the ski must be flexed due to its’ sidecut when it 
is on edge, scy  (Figure 1c). This additional deflection can be calculated from the ski’s sidecut length 
and radius, scL  and scR , and the lateral lean angle, as given by Equation (11) [1]. For rockered skis, 
the camber is negative and is calculated as the vertical distance between the boot center mark and a 
line traced between the widest points of the shovel and the tail. 

From this simple ski model, we then introduce the parameter 2
0 SCF L  (since stability varies with 

the square of the length), as given by Equation (12). Figure 4b shows the stability index as a function 
of this simplified parameter, snow hardness and applied force, for all skis at all lateral lean angles. 

     
2

1tan 1 cos sin tan 1 1 tan
2 2

SC SC
SC SC SC SC

SC SC

L L
y d R R

R R
  

                            

 (11) 
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A model was fitted to this data to evaluate the goodness of the fit when using 2
0 SCF L  as a 

predictor of stability. Negative values of 2
0 SCF L  were considered to be equal to zero for the data 

fitting, since a ski cannot be flexed downwards by the snow surface. Equation (13) presents the fitted 
model ( 2 0.891R  ). 

           
1 3 1 31 12 22 22 23 3

2 0 0 02.5472 0.1541 0.0099     ,    F 0SC y Snow SC y SnowM F L F k F L F k
      (13) 

The high coefficient of determination suggests that 2
0 SCF L  is adequate to quickly estimate the 

stability of a ski. Furthermore, it is the only fit parameter that depends on the ski’s properties, which 
indicates it is, by itself, sufficient to compare stability between skis. Deviation from the fit can easily 
be explained by the fact that this simplified parameter makes use of many simplifications: we assume 
that the maximum camber, the sidecut and the applied load are all centered on the ski and that the 
ski is a constant beam with stiffness equal to the mean bending stiffness. The actual camber and 
sidecut profiles, the stiffness distribution and the boot center mark location will all influence the 
stability index. These effects are taken into account by the steady-state turn model but not by 2

0 SCF L . 
The correlation between stability and 2

0 SCF L  is of importance since calculating this simple 
parameter does not require numerical simulation or on-snow tests; it is sufficient to have a ski’s 
design data or to measure it using a relatively simple machine [14]. It could therefore easily be 
calculated for all existing skis, enabling one to directly compare skis on the basis of a performance 
parameter instead of relying on the underlying mechanical properties. Amongst the 179 skis studied,

2
0 SCF L  varied from −144 to 112 Nm² at zero lateral lean angle and from −21 to 324 N m² at 45°. Also, 

the fitted model in equation 13 makes it possible for a designer or consumer to quickly estimate a 
ski’s stability index for a given set of turn conditions (lean angle, snow hardness, force applied on the ski). 

4. Conclusions 

The aim of this study was to determine the range of stability of commercially available alpine 
skis, as determined by the second-order moment of the pressure distribution along the longitudinal 
axis of the ski. A secondary aim of this study was to gain insight on the effect of a ski’s mechanical 
properties on stability. The sidecut, camber and bending and torsional stiffness profiles of 179 skis 
were measured. These were fed into a steady-state turn model for various snow hardnesses, applied 
forces, and ski orientations. The results show that the stability index varies from almost 0 (for some 
rockered skis) to 98 N m² for snow hardnesses of 1 × 106 to 1 × 109 N/m³, applied normal forces of 196 
to 589 N and lateral lean angles of 1 to 45°. A simplified parameter, 2

0 SCF L , was introduced and was 
shown to be an accurate predictor of stability. Since this parameter depends only on a ski’s 
mechanical properties and is independent of snow and turn conditions, it can easily be calculated 
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and made available for consumers to compare models and select an appropriate ski based on the 
desired level of stability. It could also allow designers to size a ski’s mechanical properties to obtain 
a stability level coherent with the ski’s intended use. 

Supplementary Materials: The list of skis used in this work is available online at www.mdpi.com/2504-
3900/2/6/315.  

Acknowledgments: This research was supported in part by grants from the Natural Sciences and Engineering 
Research Council of Canada (NSERC) and the Fonds de Recherche Nature et Technologies du Québec (FRQNT). 

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors had no role in the design 
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the 
decision to publish the results. 

References and Notes 

1. Howe, J.G. Skiing Mechanics; Poudre Press: Vienna, Austria, 1983. 
2. Federolf, P.; Auer, M.; Fauve, M.; Lüthi, A.; Rhyner, H. Subjective evaluation of the performance of alpine 

skis and correlations with mechanical ski properties. In The Engineering of Sport 6; Springer: 
Berlin/Heidelberg, Germany, 2006; pp. 287–292. 

3. De Cecco, M.; Angrilli, F. Testing ski stability. Meas. Sci. Technol. 1999, 10, N38. 
4. Subic, A.; Clifton, P.; Beneyto-Ferre, J.; LeFlohic, A.; Sato, Y.; Pichon, V. Analysis of Snowboard Stiffness 

and Camber Properties for Different Riding Styles. In The Engineering of Sport 7; Springer: 
Berlin/Heidelberg, Germany, 2008; pp. 319–327. 

5. Scott, N.; Yoneyama, T.; Kagawa, H.; Osada, K. Measurement of ski snow-pressure profiles. Sports Eng. 
2007, 10, 145–156. 

6. Kaps, P.; Mӧssner, M.; Nachbauer, W.; Stenberg, R. Pressure Distribution under a Ski During Carved Turns. 
In Proceedings of the Science and Skiing, Hamburg, Germany, 9–15 January 2001. 

7. Heinrich, D.; Mӧssner, M.; Kaps, P.; Nachbauer, W. Calculation of the contact pressure between ski and 
snow during a carved turn in Alpine skiing. Scand. J. Med. Sci. Sports 2010, 20, 485–492. 

8. Nordt, A.A.; Springer, G.S.; Kollár, L.P. Simulation of a turn on alpine skis. Sports Eng. 1999, 2, 181–199. 
9. Mӧssner, M.; Heinrich, D.; Schindelwig, K.; Kaps, P.; Schretter, H.; Nachbauer, W. Modeling the ski-snow 

contact in skiing turns using a hypoplastic vs an elastic force-penetration relation. Scand. J. Med. Sci. Sports 
2014, 24, 577–585. 

10. Bruck, F.; Lugner, P.; Schretter, H. A Dynamic Model for the Performance of Carving Skis; ASTM Special 
Technical Publication; ASTM: West Conshohocken, PA, USA, 2003; Volume 1440, pp. 10–23. 

11. Federolf, P.; Roos, M.; Lüthi, A.; Dual, J. Finite element simulation of the ski-snow interaction of an alpine 
ski in a carved turn. Sports Eng. 2010, 12, 123–133. 

12. Lieu, D.K. Mechanics of the Turning Snow-Ski; University of California: Berkeley, CA, USA, 1982. 
13. Mӧssner, M.; Heinrich, D.; Schindelwig, K.; Kaps, P.; Lugner, P.; Schmiedmayer, H.-B.; Schretter, H.; 

Nachbauer, W. Modeling of the Ski-Snow Contact for a Carved Turn. In The Engineering of Sport 6; Springer: 
Berlin/Heidelberg, Germany, 2006. 

14. Truong, J.; Brousseau, C.; Desbiens, A.L. A Method for Measuring the Bending and Torsional Stiffness 
Distributions of Alpine Skis. Procedia Eng. 2016, 147, 394–400. 

15. Mitiguy, P.; Banerjee, A.K. Determination of Spring Constants for Modelling Flexible Beams. Working 
Model Technical Paper. 2000. 

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 


