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Abstract: Deep neural network architectures show superior performance in recognition and 

prediction tasks of the image, speech and natural language domains. The success of such multi-

layered networks encourages their implementation in further application scenarios as the retrieval 

of relevant motion information for performance enhancement in sports. However, to date deep 

learning is only seldom applied to activity recognition problems of the human motion domain. 

Therefore, its use for sports data analysis might remain abstract to many practitioners. This paper 

provides a survey on recent works in the field of high-performance motion data and examines 

relevant technologies for subsequent deployment in real training systems. In particular, it discusses 

aspects of data acquisition, processing and network modeling. Analysis suggests the advantage of 

deep neural networks under difficult and noisy data conditions. However, further research is 

necessary to confirm the benefit of deep learning for next generation performance analysis systems. 
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1. Introduction 

Insights into aerodynamics and biomechanics largely supported the improvement of human 

performance and motor skills during the last century [1]. However, decades of extensive exploration 

and frequent deployment exhausted the possibilities of further kinematic performance improvement. 

This focuses attention on the implementation of novel technologies as for example smart equipment 

and surfaces [2] or augmented intelligent coaching software [3]. Especially the latter possesses large 

potential due to the availability and low cost of wearable devices that facilitate the acquisition and 

accessibility of in-field movement data. Here, the most common sensors are Inertial Measurement 

Units (IMUs). They were used in various applications like swimming [4], ski jumping [5], cross-

country skiing [6], trampolining [7] or table-tennis [8]. Within the last years, increasing attention is 

furthermore paid to less obtrusive bio-sensors woven into garment [9] or even directly implanted in 

the skin [10]. Common to all of those devices is their very traditional strategy of deployment: data is 

collected and transmitted to a main processing system that retrieves relevant information on the basis 

of feature extraction and similarity or variance measurements or basic machine learning. To 

implement meaningful performance analysis systems, one has to pose the question whether these 

computations can ensure the utilization of all significant and relevant motion information. 

Different computing domains suggest that sensor data analysis software has by far not reached 

its maximum level of quality yet: for example in image recognition, the introduction of deep neural 

network architectures improved system error rate by more than 10% [11], and was constantly 

decreased since then. Similar results are reported for natural language translation and speech 

recognition. This draws the conclusion that deep learned machine intelligence could also play a major 
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role for the successful implementation of reliable and intelligent automated training systems. But 

what is necessary to apply deep learning to high-performance motion data? And how exactly can 

deep learning be applied in respective trainings systems? Based on reported works utilizing 

biological time-series data, answers to the previous questions and strategies for the implementation 

of deep learning motion performance analysis systems shall be given in this survey. 

2. The Benefit of Deep Learning 

Traditional activity recognition systems are based on defined processing steps that aim to 

control and restrict the multi-variate (and typically high-dimensional) wearable sensor measurement 

data [12]. The common flow of those steps can be summarized as (1) basic data analysis, (2) data 

segmentation into activity segments, (3) extraction of meaningful feature representations per data 

segment and (4) the retrieval of relevant motion information using similarity or variance measures 

and machine learning. Implementation of those major processing steps is subject to manual, hand-

crafted algorithms and data transformations that depend on the specific characteristics of the given 

application. Consequently, it can be cumbersome to determine those data properties that work best 

for a given task, and often specific domain knowledge is necessary to ensure meaningful data 

processing. Common feature extractors range from simple statistical or spectral descriptions as 

obtained using Wavelet and Fourier transformations to kinematic-induced features such as body 

pose and body joint position [5]. Using IMUs or other wearable measurement instrumentation, the 

latter can generally not be determined directly and need to be estimated by further processing 

functions such as the Kalman Filter. Although kinematic features are close to the biomechanic 

specifications, most practitioners therefore prefer simple statistical feature extractors of fast 

implementation and computation time. 

As one can see, traditional activity recognition is a very heuristic procedure that largely relies 

on the idea that the chosen feature extractors are able to display variance between data streams for 

subsequent data mining. To prevent information loss caused by such work flow, it appears 

reasonable to utilize deep neural networks: given a sufficient amount of training data, all relevant 

characteristics of the underlying data are learned intrinsically by stacking layers of transformed data 

representations [13]. The stacked (deep) layers remain hidden within the neural network architecture 

and commonly reduce dimensionality of the fundamental data structure to a more compact and 

discriminant data representation. This procedure guarantees independence from further data 

augmentation or feature extraction steps (Figure 1). Every hidden layer is learned individually based 

on the input training data, whereas often only the higher level layers need to be retrained for different 

training input of similar data structure [14]. 

 

Figure 1. The work flow of a traditional human activity recognition system can be reduced considerably 

when using deep learning. Specific expert or domain knowledge is not necessary to learn subtle 

connections within the data. 
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Numerous variations of deep network architectures have been developed over the last decade, 

with most of them being variations of either Recurrent Neural Networks (RNNs) or Convolutional 

Neural Networks (CNNs). RNNs are commonly employed with sequential data such as in machine 

translation and base on probabilistic calculus. CNNs on the other hand utilize two- or three-

dimensional data and were initially developed for image recognition. Both network architectures 

were already employed in activity recognition tasks of human motion data and also appear useful 

for future sport performance analysis. 

Deep Learning in Human Activity Recognition 

Deep neural network architectures are utilized for the recognition of human motion data from 

wearable sensor measurements since 2012. Multiple studies demonstrated the advantage of deep 

learning over conventional feature-engineered systems under simple data sets of low-performance 

motion sequences like jogging, running and jumping with both RNNs and CNNs. For example  

in [15], a RNN architecture with long short term memory achieved 95% of recognition accuracy on a 

set of accelerometer data collected with a mobile phone. In a more extensive comparison of multiple 

network models, RNNs and CNNs were both shown to constantly achieve better F1 (meaning 

precision and recall) scores than shallow networks [16] on multiple public activity recognition data 

sets. A CNN architecture using one-dimensional convolution along the time domain was furthermore 

reported to consistently outperform the best shallow baseline networks by more than 5% [17]. Most 

recently, even higher accuracy was reported by the introduction of a deep recurrent convolutional 

network, which could outperform any of the previous networks by 4% on average [18]. 

3. Deep Learning High-Performance Sports Data 

Various research is reported that deployed deep learning network architectures for recognition 

or prediction of actions in sport scenarios. However, most of these works developed network models 

for the use of sport video recordings. To date, four performance analysis systems are known that 

utilized non-image data to learn deep neural network architectures. In concrete, these are one system 

for the prediction of basketball trajectories [19], one system for stroke recognition in beach  

volleyball [20], one system for the automatic judging of ski jumping [21] and one system for the 

classification of cross-country skiing gears [22]. Since the latter three systems are based on wearable 

sensor data, only their system specifications shall be discussed in more detail in the following, 

whereas the beach volleyball recognition system shall be referred to as BV, the ski jumping judging 

system as SJ and the cross-country classification system as XCS. 

3.1. System and Data Requirements 

As discussed in Section 2, deep neural network architectures are able to learn subtle connections 

within a set of training data without domain knowledge and information loss. However, this data-

independence requires a large amount of data with ideally up to then thousands of training samples. 

The collection of such masses of data can be a very difficult task under common constraints of 

experimental field measurements like restricted economic resources, access to participating athletes 

or sporting venues. For the design and training of a suitable network architecture, it is furthermore 

beneficial to have access to good computing hardware respectively high power graphical processing 

units: the most accurate network models are seldom found immediately. Instead, basic network 

architectures are retrained multiple times with varying properties to determine the parameters best 

suited for the given problem. Once a meaningful network is trained on the other hand, retrieval of 

the desired information is fast and relevant data provided within seconds. 

Difficulties in system implementation caused by the need of large data sets for network training 

reflect within the present studies. In SJ, only 88 ski jumps were available for network learning and 

evaluation. In BV, performances of a much larger data set of approximately 4300 motion actions were 

classified. Although large from a sensing and measurement perspective, this data collection is still 

small as compared to the data sets used in image or text classification tasks. The authors of XCS claim 
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to have used 416.737 data recordings, which appears to be a huge collection of skiing data. However, 

one can suspect the total number of recordings to constitute the absolute number of frame counts 

here, and the total number of data captures should be expected to be much smaller accordingly. 

3.2. Deployed Architectures 

Research suggests that different network models should be applied to different motion types: 

recurrent networks were shown to outperform convolutional networks on short and temporally 

ordered motion sequences, whereas CNNs worked better under long and repetitive actions [16]. For 

future training software, this would mean that RNNs should be favored for acyclic movements like 

jumping and throwing and CNNs for cyclic movements like rowing, skiing or swimming. The BV 

and SJ studies do not follow this recommendation and evaluate networks from a more general 

perspective. As a pilot study within the sports activity recognition domain, BV uses one CNN 

architecture and compares its performance to a variety of shallow baseline networks. To recognize 

errors without contextual dependence, the authors of SJ designed three different types of CNNs and 

compare their error classification results with two shallow baseline networks. In XCS, both RNNs 

and CNNs of different model design and parameters per layer were learned and evaluated, providing 

a more comprehensive evaluation of the different network types with sport performance data  

(Table 1). 

Table 1. Deep network architectures and the number of their different model parameters evaluated 

for use with high-performance sports data. 

 
# Tested 

CNNs 

# Conv. Filter 

Variations 

# Tested 

RNNs 

# Memory Cell 

Variations 

# Baseline 

Networks 

BV 1 none none n.a. 6 

SJ 3 none none n.a. 2 

XCS 2 3 3 3 1 

Performance Results 

The performance and quality of deep learning systems largely depends on the choice of their 

network model and its internal parameters. As previously mentioned, it is therefore common to train 

a large number of multiple network variations until a best solution is found to obtain highly accurate 

performance evaluation systems. BV does not discuss any model fine-tuning and only evaluates the 

chosen CNN with a fixed number of convolution and pooling filter. Within the (most likely) 

optimized network design, significant improvement in classification accuracy of up to 16% could be 

achieved as compared to the baseline networks, indicating the potential of deep performance analysis 

systems. To exclude any bias caused by network optimization processes, SJ evaluates the deep 

networks without prior model fine-tuning. Instead, it only evaluates three CNN architectures under 

one basic design. As a result, accuracy of the convolutional networks was not significantly improved 

for errors that could already be classified sufficiently well with the shallow baseline networks. 

However, results appear promising for those errors that could not be reliably classified by the shallow 

networks beforehand. Here, recognition accuracy could be improved by approximately 10%. As 

stated by the authors, especially those errors are subject to large variations in execution as well as 

bias in the ground truth annotation, suggesting that deep networks might be able to learn more 

distinct features under noisy and erroneous data. However due to the small number of sample data, 

this finding cannot be generalized without further investigation. 

In contrast to the more general studies, the purpose of XCS was to determine the optimal 

network model within a number of network variations for the given classification problem. 

Therefore, the best working network models for both RNN and CNN were of high accuracy (2.4% 

and 1.6% of error rate) and perform considerably better than the baseline method (14.6% of error 

rate). In contrary to previous research, RNNs achieve higher accuracy than CNNs for the cycling 

skiing application. However, this might be a result of the chosen study and system design and should 
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not be generalized yet: for example, only two different types of motion (respectively skiing gears) 

had to be classified, which makes it difficult to evaluate the general relevance of the study for future 

system implementations.4. Impacting Performance Analysis Systems? 

To date, present studies that utilize wearable sensor data cannot be considered sufficient to allow 

for an extensive evaluation of the benefit of deep learning. This is mainly due to the following two 

reasons. Firstly, only activity recognition tasks have been investigated. To enable a valid conclusion, 

further tasks that might be important for the training of motor skills should be evaluated (e.g., the 

prediction of movements to intervene erroneous or even dangerous movements or the learning of 

regression models to obtain numeric values for data display and evaluation). Secondly, current 

systems only classify a small number of different action categories and movement patterns. Network 

models learned on general activity recognition data sets seldom contain more than ten different 

motion classes. Similarly, for the three reported sport performance systems the number of motion 

classes were ten different volleyball strokes (BV), nine different types of ski jump motion errors (SJ) 

and two different types of cross-country skiing turns (XCS). Since semantic differences between 

differing motion actions of sports performances are usually less distinct than in general human 

activity recognition, it is currently hard to predict how reliable and accurate data-driven performance 

analysis systems might become in future. 

5. Conclusions 

This work discusses the application of deep learning technologies in future sport performance 

analysis systems. To date, several investigations are reported that utilize deep neural network 

architectures on wearable sensor data, whereas the majority of all designed network models are 

evaluated on general human activity data of simple, everyday movements. Here, results clearly show 

that deep learning models are capable of improving recognition accuracy as compared to traditional 

data mining methods of heuristic approach. This suggests that relevant and discriminative 

characteristics of a motion could be learned that otherwise get lost in the process of feature 

engineering. As a consequence, one can expect the inclusion of deep neural network architectures to 

have a significant positive effect on the accuracy and reliability of intelligent training software. 

Studies that learned deep networks on sports motion data seem to confirm the previous results. 

However to date, only a very small number of different network model designs and parameter 

variations were evaluated. To predict the long-term effect of deep learning, network performance 

needs to be further evaluated with a higher number of semantically similar motion patterns or a 

higher number of movement variations as found within motor executions of one single sport 

performance. Furthermore, it should be emphasized that results of field studies are commonly not as 

significant or explicit as results of studies that employed data captured under laboratory conditions. 

This is mostly due to a smaller amount of available training data paired with higher noise and less 

discriminative data specifications. One of the main challenges in the implementation of deep learned 

training systems is consequently the provision of numerous and meaningful sensor data: to enable 

sufficient training samples for the learning of deep neural network architectures, it is necessary to 

overcome common constraints of data collection such as restricted time and economic resources. 

Then and only then, deep learning has the chance to bring sport performance analysis systems to a 

new level of reliability and accuracy to support and enhance every person exercising sports in  

the future. 
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