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Abstract: This study classified motions of typical daily activities in both environments using inertial 
sensors attached at the chest and thigh to determine the optimal site to attach the sensors. Walking, 
chair standing and sitting, and step climbing were conducted both in water and on land. A mean, 
variance and skewness for acceleration data was calculated. A Neural Network and Decision Tree 
algorithm was applied for classifying each motion in both environments. In total, 126 and 144 
samples of thigh and chest data sets were obtained for analysis in each condition. For the chest data, 
the algorithm correctly classified 80% of the water-based activities, and 90% of the land-based. 
Whilst the thigh sensor correctly classified 97% of water-based and 100% of land-based activities. 
The inertial sensor placed on the thigh provided the most appropriate protocol for classifying 
motions for land-based and water-based typical daily life activities. 
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1. Introduction 

Accelerometer and/or inertial sensors consisting of an accelerometer, gyroscope and 
magnetometer have been widely used for monitoring human activities due to the ease of its wearable 
characteristics. Wearable inertial measurement units (IMUs) have been used for measuring human 
motion especially walking, running and chair standing [1–3]. In addition, IMUs were also utilized in 
calculating energy expenditure with a motion classification algorithm [4,5]. 

IMUs technique are also employed in underwater activities. Ohgi et al. [6] reported a 
classification model for swimming techniques based on acceleration data from the swimmer’s chest. 
The usability of IMUs in swimming is also described in the other studies [7]. Fantozzi et al. [8] 
reported three-dimensional kinematic characteristics during walking in water (WW). A calculation 
model of energy expenditure during WW was suggested from an accelerometer attached to the head 
[9,10]. The usability of IMUs has spread from land-based activities to now include water-based 
activities. 

Water-based activities have become increasingly popular for recovery from sport, and 
rehabilitation from injury. The higher water density; about 800 times greater than the air; influences 
both buoyancy and viscosity and alters human movement during water exercise. For example, 
exercising in water condition alters body movement due to increased buoyancy and increased 
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resistance and muscle stress due to the water viscosity [11]. The water condition also provides 
increased safety during exercise due to reduced risk of falls and injury [12,13]. 

While there are some studies reporting the usefulness of IMUs in water-based activity, an 
investigation of classifying motion during water-based activities has not yet been reported. Therefore, 
this study aimed to classify motions of typical daily activities such as walking, chair standing/sitting 
and step climbing on-land and in-water conditions using IMUs and comparing the exercise condition 
and the influence of the sensor position to determine better place to attach the sensors. 

2. Methods 

2.1. Subjects 

Fourteen males (age: 28.4 ± 7.0 years, height: 181.1 ± 6.7 cm and weight: 78.0 ± 8.8 kg) and ten 
females (age: 31.4 ± 7.7 years, height: 172.1 ± 5.5 cm and weight 65.0 ± 7.8 kg) were recruited. No 
previous injury or trauma were reported prior to participation in this study. All subjects provided 
informed consent before the experiment. This study was approved by the Human Research Ethics 
Committee at the University of the Sunshine Coast. 

2.2. Exercise 

The subjects conducted the following three activities; about 7 m walking, 40 cm chair seat height 
standing and sitting, and 20 cm height stair climbing. Each exercise was conducted three times both 
in water and on land conditions. The subjects stood and sat to the chair at least three times for chair 
standing and sitting exercise. For the stair climbing exercise, the subjects conducted three steps with 
the first step being made by right leg. The water depth was 1.35 m for walking and stair climbing, 
and 85 cm for the chair standing and sitting exercise. The land exercises were conducted on the 
surrounding concrete pool deck. 

2.3. Data Collection 

An IMU (LP-WS0904, 9DoF Wireless Motion Logger, Logical Product Co., Fukuoka, Japan) was 
attached on the subject's chest for male or back for female and the subject’s front-side of the right thigh 
(Figure 1). 

 
Figure 1. Inertial sensor attachment and its axis definition. 

Each IMU contained a tri-axial accelerometer and gyroscope. The data was sampled at 100 Hz. 
The maximum range was ±5 g for the accelerometer, and ±300°/s for the gyroscope. 

The chest and thigh acceleration data were extracted based on the angular velocity data of frontal 
axis (sagittal plane) obtained from subject’s thigh IMU. The cut off value of the angular velocity data 
was set at ±5°/s [3] (Figure 2). One full cycle of each motion was extracted for analysis; one full step 
cycle of the walking motion, one full cycle from start of standing to the end of sitting for chair exercise, 
and one full gait cycle from the start to the end of the right thigh movement for step climbing. In this 
study, the data of the second and third trials were used for analysis. 
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Figure 2. Examples of each cut off point for gyroscope data of frontal axis at thigh. 

2.4. Data Analysis 

Following data collection, a mean, variance and skewness for each acceleration axis were 
calculated (Figure 3). In total, 21 subjects × 3 exercises × 2 trials = 126 samples of chest data sets and 
24 subjects × 3 exercises × 2 trials = 144 samples of thigh data sets were obtained for analysis in each 
condition, respectively. 

 
Figure 3. Examples of each calculated parameter. 

The calculated mean, variance and skewness data were adopted as input parameters for 
classification analysis for each condition. The classification analysis was made by WEKA (Waikato 
Environment for Knowledge Analysis, The University of Waikato, Hamilton, New Zealand) 3-6-13. 
The decision tree classification algorithm of C4.5, which is implemented in J48 classification function, 
was used. A 10th-fold cross validation model was adopted in its calculation. In addition, the neural 
network, which is implemented in multilayer perceptron classification function, was used. A 10th-
fold cross validation model was adopted. A number of node, a learning rate, a coefficient of moment 
and a number of iteration were set at 6 ((input + output)/2), 0.3, 0.2 and 500 in a single hidden layer, 
respectively. These consecutive calculation processes were referred to the previous study [6]. 

3. Results 

The details of the classification in each condition and position were expressed in Table 1 for the 
decision tree and neural network. 

For the chest data, the decision tree classification algorithm correctly classified 79.4% in the 
water-based activities, and 89.7% of the land-based. Whilst the thigh sensor correctly classified 97.2% 
and 97.9% of water- and land-based activities, respectively. 

Figure 4a–d depicted the decision tree structure delivered by WEKA 3-6-13 in each condition 
and position. In the chest or back results, there was no mean parameter used in the water condition 
although the mean parameter of frontal axis (Mean-x) was used at the lower level on the land 
condition. The result of the thigh was very simple. Only the mean parameter of anterior-posterior 
and longitudinal axes (Mean-z and Mean-y) was used in the water condition, furthermore, only the 
mean parameter of longitudinal axis (Mean-y) was used on the land condition. 
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Table 1. The detail results of the decision tree and neural network classification. 

Decision Tree 
a: chest or back on land b: chest or back in water c: thigh on land d: thigh in water 

Classified as Classified as Classified as Classified as 
Walk Chair Step Walk Chair Step Walk Chair Step Walk Chair Step 

36 3 3 32 0 10 47 0 1 47 0 1 
0 40 2 0 42 0 0 48 0 0 48 0 
5 0 37 15 1 26 0 2 46 2 1 45 
            

Neural Network 
a: chest or back on land b: chest or back in water c: thigh on land d: thigh in water 

Classified as Classified as Classified as Classified as 
Walk Chair Step Walk Chair Step Walk Chair Step Walk Chair Step 

38 0 4 31 0 11 48 0 0 47 0 1 
0 42 0 1 40 1 0 48 0 0 48 0 
4 0 38 8 0 34 0 0 48 0 0 48 

The neural network classification algorithm correctly classified 83.3% in the water-based 
activities, and 93.7% of the land-based for the chest data. In the thigh data, 99.3% was correctly 
classified in water-based activities, and 100% was attained on land-based. 

4. Discussion 

This study measured the chest or back and thigh acceleration in three-dimensions during typical 
daily life activities such as walking, chair standing/sitting and step climbing on-land and in-water 
conditions using IMUs. Mean, variance and skewness of extracted acceleration with reference to the 
thigh angular velocity were then calculated. Furthermore, this study classified the three activities by 
applying the decision tree and neural network classification algorithm each in-water and on-land. As 
a result, the classification percentages were considerably high in both conditions and IMUs positions. 
The classification percentages were slightly lower in-water condition than on-land in both positions. 
This may be due to the slower motion in-water condition because of the water viscosity, which 
resulted in lower acceleration in-water condition than on-land. This was more noticeable for walking 
and step climbing in-water condition at the chest or back position. Namely, the upper body motion 
of these two activities in-water condition would be similar. 

Ohgi et al. [6] reported 91.1% of the classification percentage by decision tree algorithm for 
classifying four types swimming stroke from the chest acceleration data. In this study, the 
classification percentage of the thigh IMUs data were higher than the previous study although the 
chest IMUs data were lower. In addition, this study used gyroscope data from the thigh IMU for 
extracting the acceleration data for analysis. This would suggest better value of the thigh attached 
IMU data than the chest attached IMU for monitoring and classifying daily life activities both in-
water and on-land condition. 

The current study adopted ±5°/s cut off value for extracting the acceleration data in each motion, 
and then, calculated mean, variance and skewness values. However, there was no parameter for the 
skewness in the result of decision tree classification. The chest or back IMUs data used mostly 
variance on-land condition and variance-y and variance-z in-water condition. Furthermore, there was 
only mean parameter on-land (mean-y) and in-water (mean-y and mean-z) conditions. To simplify 
the input data and classification strain, it could be said that it is enough to calculate variance and 
mean values of three axes for monitoring and classifying the daily life activities using an upper body 
attached accelerometer. We believe it may be better to calculate mean values of anterior-posterior and 
longitudinal axes of thigh attached accelerometer. When developing a monitoring and classifying 
system for daily life activities in-water condition, the system would demand anterior- posterior and 
longitudinal axes accelerometer and frontal axis (sagittal plane) gyroscope for thigh segment. This 
would also be applicable for on-land condition because the necessity is longitudinal axes 
accelerometer and frontal axis gyroscope. Therefore, this study can suggest the needs are 1-the IMU 
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containing two-dimensional accelerometer and single gyroscope, 2-the IMU attachment of thigh, and 
3-the calculation of mean and variance of acceleration data with ±5°/s algorithm for monitoring and 
classifying daily life activities both in-water and on-land condition. 

As a limitation of this study, the analysis was conducted for only one cycle of each exercise. It is 
uncertain if similar results would be obtained if the exercise was conducted continuously across more 
than one cycle. Further, this study involved only IMU data. When considering the development of 
an exercise monitoring system for water in the future, a validity of the IMU data may also be of value. 
Furthermore, this study cannot determine if the subject is in-water or on-land. The algorithm should 
be configured to classify the condition of the exercise environment. Further studies may be needed 
to develop the underwater exercise monitoring system in the future. 

 
Figure 4. Decision tree structures of each sensor position and condition. a: chest or back on land, b: 
chest or back in water, c: thigh on land, d: thigh in water. 

5. Conclusions 

From the results and discussion, this study can conclude that 1-the motion of upper body would 
be very similar between walking and step climbing in water-based condition, 2-attaching IMU at the 
thigh would be able to attain better classification than chest attached IMU during exercise in daily 
life activities both water- and land-based condition, 3-the anterior-posterior plus longitudinal axes 
accelerometers and frontal axis (sagittal plane) gyroscope at the thigh are enough for monitoring and 
classifying exercises in both conditions, 4-more than one cycle motion investigation may provide 
increased value. 
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