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Abstract: In the world, floods are at the forefront of natural hazard. Urban areas are often at risk of 
flooding and just as often unprepared for management. Flood modeling is nowadays a very 
important topic in the theme of water, it inevitably involves the numerical resolution of the shallow 
water equations derived from the Navier Stocks equations governing flows. Two-dimensional 
shallow water models with porosity appear as an interesting path for the large-scale modeling of 
floodplains with urbanized areas. The porosity accounts for the reduction in storage and in the 
exchange sections due to the presence of buildings and other structures in the floodplain. The 
introduction of a porosity into the two-dimensional shallow water equations leads to modified 
expressions for the fluxes and source terms. An extra source term appears in the momentum 
equation. The developed solution method consists in solving the two-dimensional shallow water 
equations with porosity via a finite volume scheme solving the conservative form of the equations 
which can be reduced to a calculation of flux through an edge, a problem that can be approached 
by a one-dimensional problem in the normal direction at the edge (Riemann problem). 
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1. Introduction 

The theme of this work concerns the control of floods and inundation, especially in the case of 
sudden events: dam break. Urban areas are often exposed to these flood risks (presence of 
watercourses, impervious surfaces) but also often poorly prepared to manage these risks. Numerical 
modeling makes it possible to map flows in a given site, with different possible applications: 
knowledge of risk exposure, regulation of urban development, definitions of crisis management 
scenarios. Models of shallow water equations with porosity were initially proposed by Defina et al. 
[1] and Hervouet et al. [2]. In this work, we present a numerical model with porosity for the 
simulation of free surface flows. To do this, we adopt a finite volume method based on the resolution 
of the conservative form of the shallow water equations, a problem that can be approached by a 
one-dimensional problem in the normal direction at the edge (Riemann problem). The algorithm 
comprises two steps: a predictor step for the discretization of the gradient terms and a corrective 
step for the processing of the source terms. The digital flows at the interfaces of each control volume 
are reconstructed using biassed scheme. The proposed method is implemented on unstructured 
meshes. As an application, the solver is tested for dam break study. 
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2. Material and Methods 

2.1. Mathematical Model 

The resolution method consists in solving two-dimensional shallow water equations using a 
finite volume scheme solving the conservative form of equations on an unstructured mesh 
composed of quadrilaterals and triangles. 

The shallow water equations are written in conservative form with the concept of porosity in 
the form [Soares-Frazão] [3]: 𝜕𝑊𝜕𝑡 ൅ 𝜕𝑓ଵ𝜕𝑥 ൅ 𝜕𝑓ଶ𝜕𝑦 ൌ 𝑆 (1) 

with 

𝑊 ൌ ൥ 𝜙ℎ𝜙ℎ𝑢𝜙ℎ𝑣൩ 𝑓ଵ ൌ  ⎣⎢⎢
⎡𝜙 𝜙ℎ𝑢ℎ𝑢ଶ  ൅  𝜙 𝑔ℎଶ2𝜙ℎ𝑢𝑣 ⎦⎥⎥

⎤ 𝑓ଶ ൌ ⎣⎢⎢
⎡ 𝜙ℎ𝑣𝜙ℎ𝑢𝑣 𝜙ℎ𝑣ଶ  ൅ 𝜙 𝑔ℎଶ2 ⎦⎥⎥

⎤  𝑆 ൌ ቎ 0𝑆௣,௫ 𝑆௣,௬ ቏ (2) 

where ϕ is the porosity, g is the gravitational acceleration, h is the water depth, u and v are the 
velocities in the x and y directions, Sp,x and Sp,y are the source terms resulting from the variations in 
the bottom slope and variations of porosity in the directions x and y. 

The source terms are given by:  𝑆௣,௫ ൌ 𝜙 𝑔ℎ 𝑆଴,௫ ൅ 𝑔 ℎଶ2 𝜕𝜙𝜕𝑥 ൌ െ𝜙 𝑔ℎ 𝜕𝑧𝜕𝑥 ൅ 𝑔 ℎଶ2 𝜕𝜙𝜕𝑥  (3) 

𝑆௣,௬ ൌ 𝜙 𝑔ℎ 𝑆଴,௬ ൅ 𝑔 ℎଶ2 𝜕𝜙𝜕𝑦 ൌ െ𝜙 𝑔ℎ 𝜕𝑧𝜕𝑦 ൅ 𝑔 ℎଶ2 𝜕𝜙𝜕𝑦  (4) 

z is the dimension of the bottom, and S0,x, S0,y are the source terms of the bottom slope in the x and y 
directions. 

2.2. Numerical Methods 

This is a widely used technique for the numerical resolution of fluid flow equations. This 
method relies on the integral discretization of the equations and requires the subdivision of the 
domain into a finite number of cells called control volume. The integral is applicable locally on each 
control volume and keeps the same value in each calculation cell. In our case, the domain of 
computation is discretized in triangular mesh and the control volumes are defined by the triangles Ti 
of the mesh. We speak of formulation finite volume (see Figure 1). 

 
Figure 1. Control volume. 
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The integration of the system (1) on each control volume Ti and the use of the Green divergence 
formula make it possible to write: න 𝜕𝑊𝜕𝑡 𝑑𝑉 ൅ ෍ න 𝑓ଵሺ𝑊, 𝑛ሻ𝑑𝜎 ൌ න 𝑆ሺ𝑊ሻ𝑑𝑉்೔୻೔ೕ௝∈ேሺ௜ሻ்೔  (5) 

where N(i) denotes the set of neighboring triangles of Ti per edge and Γij the edge separating two 
neighboring triangles Ti and Tj. 

3. Results and Discussion 

3.1. Dam Break with Constant Porosity 

This first test case consists of a dam break in a rectangular channel with a constant porosity ϕ = 
1. The channel length is L = 12 m and the break occurs at x0 = 6 m. The channel mesh is unstructured 
and consists of 3257 knots and 4328 triangles. The bottom has the form of a step, it is defined by: 𝑍ሺ𝑥, 𝑦ሻ ൌ ൜ 0 m 𝑠𝑖 𝑥 ൑ 𝑥଴  1 m 𝑠𝑖 𝑥 ൐ 𝑥଴   

In the initial state, the flow is assumed at repose (u = v = 0 m/s) and the water height is: ℎሺ𝑥, 𝑦, 0ሻ ൌ ൜ 5 m 𝑠𝑖 𝑥 ൑ 𝑥଴  1 m 𝑠𝑖 𝑥 ൐ 𝑥଴   

The exact solution of this problem consists of a rarefaction wave moving with a negative 
velocity, a nonlinear discontinuity on the step and a shock wave moving with a positive velocity. 
Figure 2 show comparisons between our solution and that of Vazquez’s equilibrium scheme [4] and 
the exact solution at physical time t = 0.5 s. These figures clearly show a very high precision of the 
schema and a very good agreement with the exact solution. 
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Figure 2. Dam break with constant porosity ϕ = 1. 

3.2. Dam Break with Variable Porosity 

This test consists of a dam break in a rectangular channel with a constant bottom, but this time 
with discontinuous porosity ϕ. The channel length is L = 100 m and the break occurs at x0 = 50 m. The 
porosity is: 𝜙ሺ𝑥, 𝑦ሻ ൌ ൜ 1             𝑠𝑖 𝑥 ൑ 𝑥଴     0.5          𝑠𝑖 𝑥 ൐ 𝑥଴       

and the height of water in the initial state is: 𝒉ሺ𝒙, 𝒚, 𝟎ሻ ൌ ൜ 𝟏𝟎 m          𝒔𝒊 𝒙 ൑ 𝒙𝟎     𝟏 m            𝒔𝒊 𝒙 ൐ 𝒙𝟎       

Note that the solution for this problem consists of a rarefaction wave, a constant state, a 
stationary discontinuity, a constant state and finally a shock wave. This problem is simulated here 
on two types of meshes: a first rough mesh consisting of nodes and triangles and a second fine mesh 
consisting of nodes and triangles. Here again, the results are very satisfactory. We find in Figure 3 
the five states of the solution. In addition, these results are in very good agreement with those 
presented in [5], which further confirms the accuracy of the scheme for dam break simulation with 
variable porosity. 
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Figure 3. Dam break with discontinuous porosity. 

4. Conclusions 

In this work, a finite volume method dedicated to non-homogeneous problems has been 
extended for the numerical simulation of dam break in free surface flows with variable porosity. The 
scheme is used on unstructured meshes and preserves the equilibrium property. The two test cases 
considered here as well as the comparisons with the existing solutions showed the precision of the 
method. The next step will be to simulate large scale floods involving urbanized areas, considering 
the shallow water model with porosity. 
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