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Abstract: Windowing is an established technique employed within dense sensing environments to 
extract relevant features from sensor data streams. Among the established approaches of Explicit, 
Time-based and Sensor-Event based windowing, Dynamic windowing approaches are beginning 
to emerge. These dynamic approaches claim to address the inherent shortcomings of the 
aforementioned established approaches by determining the appropriate window length for live 
sensor data streams in real-time, thereby offering the potential to optimize and increase the 
recognition of these sensor represented activities. Beyond these potential benefits, dynamic 
approaches can also support anomaly detection by actively uncovering new, unknown window 
patterns within a trained model. This paper presents findings from a study which utilizes data from 
a single source dataset, towards benchmarking and comparing more traditional windowing 
approaches against a dynamic windowing approach. The experiments conducted on a real-world 
smart home dataset suggest Time-based windowing is the best approach. Through evaluation of 
results, Dynamic windowing approaches may benefit from carefully annotated datasets. 

Keywords: windowing; segmentation; human activity recognition; smart home; dynamic; sensor 
event; time 

 

1. Introduction 

Drivers for pervasive computing include increased battery, processing power and connectivity 
capabilities. Pervasive computing for healthcare solutions, in particular, are increasing due to the 
growth in the aging population, leading to more age-related diseases and raising health costs 
significantly [1]. Smart Environments are among the main application areas benefiting from 
pervasive computing and comprise a large set of sensors, actuators, displays and computational 
elements to enable them to “acquire and apply knowledge about the environment and its inhabitants 
in order to improve their experience in that environment” [2]. This is typically realized through 
combined networks of sensors, which provides information on the inhabitant’s activities of daily 
living. Simple contact sensors and motion sensors can be used here to collect information on activities 
occurring around the home, such as doors and cupboards opening and closing, and people moving 
around the home. Activity Recognition is used to recognize these activities of daily living and 
interpret events taking place in a smart home [3]. These activity recognition systems use this 
contextual information to understand the behaviors taking place within the environment [3,4]. As 
this information is personal and can identify different activities and behaviors about an individual’s 
personality, it is difficult to extract this information [5]. Activity Recognition is now a well-researched 
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pattern recognition problem that aims at identifying and classifying activities carried out from sensor 
data sources. Typically, the Activity Recognition Chain (ARC) involves several steps including Data 
Acquisition, Preprocessing, Segmentation, Feature Extraction, Dimensionality Reduction, and finally, 
Classification. Within the segmentation stage of the ARC, there is an opportunity to employ various 
windowing techniques, to partition the data and extract useful features that are viewed as being 
characteristic of the target activities to be recognized. The most common types of windowing 
techniques reported in the literature include: Explicit windowing, Time windowing, Sensor Event 
windowing and Dynamic windowing. Each approach offers respective advantages and 
disadvantages. 

Explicit Windowing (EW): This is a two-step approach where in the first step, segments of data 
are fragmented into activities themselves, with the classification of the actual activities taking place 
in the second step. As this approach attempts to split the data into the activity portions, issues arise 
when trying to estimate the size of the explicit activity portion, as each person will carry out activities 
differently and humans tend to deviate from exact patterns in terms of time taken for an activity. 
Because this approach is a two-step process it also means the second step is dependent and must wait 
for the first step to be completed [6]. 

Time Windowing (TW): This approach breaks the dataset into equal periods of time to segment 
the data. This approach is favorable when using streamed data as the sensors fire continuously in 
time. Issues with this approach occur when trying to choose the optimal period of time, as there may 
be too little data to represent an activity, or too much data spread across one window, influencing 
potentially more than one activity to represent this window. This issue is common in smart home 
data using binary sensors, as they do not have a sampling rate and often provide little information in 
short time windows. This approach is typically used for accelerometers and gyroscopes to divide 
exercise-based activities such as walking, running and jumping. This approach will be investigated 
further throughout the paper, discussing the advantages and disadvantages when applied to smart 
home data with other traditional approaches based on the experiments carried out [6,7].  

Sensor Event Windowing (SEW): This approach splits the dataset into equal segments of sensor 
events fired. The advantage of this approach is that the windows will vary in time. Issues arise when 
busy or quiet periods occur, as there may be too much or too little context from fired sensors to 
represent an activity accurately. For example, in one window there may be sensors representing 
someone using the bathroom and sleeping, where sleeping sets off a small number of sensors, but 
has a much more significant time frame [6,8].  

Dynamic Windowing (DW): DW allows for the window size to increase or decrease in length 
based on a set of identified rules and thresholds. In doing so, this approach aims to maximize the 
probability of a specific activity, per window. Using this approach, issues can occur if the source 
dataset contains portions of the data are not annotated correctly (or annotated at all), making it more 
difficult to correctly identify and classify the target activities. Furthermore, an additional downfall 
when using this approach is the inefficiency to model complex activities [9–11].  

This paper presents findings from a comparison of windowing approaches, applied to a single 
data source. Previous researchers [7–12] have compared various windowing techniques pair-wise, 
however, there does not appear to have been a direct comparison based on a single dataset from 
which to benchmark and objectively compare results. This prompted the current study, to objectively 
benchmark a dynamic approach against older, more conventional approaches using a single data 
source. 

The remainder of the paper is organized as follows: Section 2 discusses related works for each 
of the abovementioned windowing approaches. The experimental settings and dataset used is 
discussed in Section 3. Section 4 thoroughly describes the methodology of each of the approaches 
being investigated and how these were carried out. Section 5 discusses the results of the experiments, 
followed by Section 6 which summarizes this work in a conclusion with future work. 
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2. Related Works  

Over the past number of years, a number of segmentation approaches have been investigated to 
support more robust Human Activity Recognition (HAR) within smart environments. These 
segmentation techniques are used to window (partition) the available data from which, relevant 
features pertaining to different target activities can be extracted. What follows is a brief review of 
established windowing techniques, employed to support HAR within smart environment settings. 

EW is a two-step approach for segmenting activities in a data stream. Junker et al. use and EW 
approach to recognize sporadically occurring gestures in a continuous data stream from body-worn 
inertial sensors. They describe this approach as a natural partitioning of sensor signals for spotting 
tasks [13]. The first steps involved segmenting the sensor events into partitions, where each partition 
represents a potential activity. The second step involved classification of this segment of data 
representing the activity.  

TW is regarded as a less computationally expensive approach than the EW process described 
above. TW is a common approach when the data source originates from accelerometer/gyroscope 
data as these provide time series data [7]. Oresti et al. carry out a review paper based on TW of time 
series data. They compare the impact different times have when carrying out different activities using 
accelerometers and gyroscopes [7]. Krishnan and Cook use a TW approach as a benchmark for an 
experiment on sensor event windowing [6]. Blond et al. investigate the effects of window length of 
the sensor data on varying sizes of datasets. They found the length of the window does not have a 
significant effect on the training and evaluation time of their algorithm, but the sample size has effects 
on the training time more [12]. Sannino, G. et al. use TW as part of a processing technique to detect 
falls [14,15]. Bashir et al. use TW and acceleration sampling frequency for HAR using a variable 
Activity Recognition (AR) duration strategy to improve energy efficiency and accuracy when using 
an accelerometer on a smart phone [16]. As the literature reviewed here mostly reflects TW for 
sampling data, it will be interesting to see how this approach compares to other windowing 
approaches on a binary dataset generated in a smart home. 

SEW facilitates data to be segmented into windows of varying duration as they focus upon the 
events occurring within the data rather than the timing components of these events. Krishnan and 
Cook investigated the issues around busy or quiet periods within captured data streams and found 
that there were instances where too much or too little context is received from the sensor events, to 
represent an activity accurately. These experiments were carried out using smart home generated 
binary data, adding their own modifications to improve the shortcomings of this SEW approach.  

In [6], the authors also experimented with a DW approach that uses statistics to determine the 
average window lengths of activities to carry out the DW, employing three CASAS testbed datasets. 
The results found that SEW was best in this case. Yala and Fergani extend upon the SEW approach 
used in [6], focusing on the Mutual Information (MI) aspect of this approach, where they use the most 
common sensor as the comparison point for the MI calculation as opposed to the last sensor event, 
also described as part of the approach in [8]. They achieved a 3%-point accuracy rise when using six 
weeks of the CASAS Aruba dataset. Based on these experiments, SEW proved to be the best 
windowing approach on smart home data so far [6].  

Based on a review of the literature, DW is becoming an increasingly popular segmentation 
approach. Researchers such as Krishnan and Cook use a set of heuristics based on temporal and 
statistical information to define the DW sizes [6], as mentioned briefly above. This approach is then 
proved by Yala and Fergani, to be second best performing approach to their previously referenced 
extended features on a SEW approach [8]. Fahad et al. use a two-step approach with an offline phase 
and an online phase, where they define activities as a group, then use this information to dynamically 
monitor daily activities and detect anomalous behaviors [17]. Fatima et al. use sets of active sensors 
for related data to window data, using sequential behaviors from these classified activities to predict 
future and past activities [18]. Bernabucci et al. investigate the pre-processing effect on the accuracy 
of event-based activity segmentation using a dynamic event-based segmentation approach. 
However, they carry out the experiments using accelerometers for locomotion [19]. Fadi et al. also 
use a two-step approach for their DW approach, involving an offline phase and online phase. The 
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offline phase is used to form a group of “best fitting sensors” for each activity, based on explicit 
windowed features and information gain to develop the most informative features for each activity. 
These “best fitting sensors” for each activity were then streamed online in the dataset using a custom 
algorithm to window the data based on these sensor groups firing. Statistical and spatial features 
were then extracted as inputs to support the classification of the activities contained within the 
dataset [9].  

Each windowing approach reviewed offers a number of advantages and disadvantages as 
previously mentioned in Section 1. What is absent from the literature is an objective comparison of 
windowing approaches, based on experiments involving a single dataset. Consequently, it is not clear 
which windowing approach can be applied to best support HAR within smart environments. In this 
study, three different types of windowing approaches will be investigated by employing a single 
source dataset, in order to objectively investigate this problem. 

3. Materials & Experimental Set Up 

Dataset 

The Aruba dataset, from the well-established CASAS project [20], was selected to evaluate and 
validate three different windowing techniques. This dataset was chosen as it has also been used in many 
previous experiments by other researchers to validate their research, specifically the DW approach that 
part of this experiment is based upon [9], and the worked based on the SEW approach in [6] that extends 
these features to achieve a higher classification accuracy [8]. The Aruba dataset was collected in the 
home of a single female adult occupant who undertook her normal daily routine for seven months that 
included regular visits from family members. There is a total of 11 different annotated activities 
represented within this dataset, as described in Figure 1. These are: Meal_Preparation, Relax, Eating, 
Work, Sleeping, Wash_Dishes, Bed_To_Toilet, Enter_Home, Leave_Home, Housekeeping, Respirate 
and Other. The dataset is reflective of a real-world activity set and exhibits class imbalance in the 
number of each activity represented. Furthermore, 50% of the dataset is annotated as ‘Other’, which 
related to missed annotations when the dataset was being collected, leaving the data unlabeled. There 
were 40 different sensors installed throughout the Aruba household, comprising: 31 binary motion 
sensors (PIR), represented in the data as “M001” through “M031”; four binary door sensors 
(“D001”…“D004”) and; five temperature sensors (“T001”…“T005”).  

In the current study, Wash_Dishes and Respirate were removed for all of the experiments due 
to both having significantly under represented numbers of samples. The door sensor (D003) was 
removed as it is never triggered within the dataset and the temperature sensors (T001…T005) were 
also removed for each of the experiments as binary sensors were the focus for these experiments. 

 
Figure 1. Representative percentile for each of the activities contained within the Aruba Dataset [18]. 
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4. Methods 

4.1. Time Windowing 

For the TW approach, the data was divided into equal time intervals. A time of 15 s was chosen, 
as previous literature suggests this as the optimal time to use for binary smart home data [6,21]. 
Figure 2 presents an equal time interval of 15 s in the Aruba dataset, represented by the black brace. 
For each window, several features were extracted, including the time of the first sensor event, the 
time of the last sensor event, the duration of the window, and a binary representation of every sensor, 
where “1” is displayed if a sensor has fired, and “0” is displayed if the sensor has not turned on within 
the TW segment. 

4.2. Sensor Event Windowing 

The SEW approach divides the data into equal sensor event intervals. Figure 2 presents a segment 
of 20 sensor events in the Aruba dataset that are represented by the dark grey brace, as the authors in 
[6] refer to 20 sensor events as the peak number of sensor events to use per window. As Krishnan and 
Cook expose, treating all sensor events with equal importance is not a good approach, as the last sensor 
event in some windows may belong as the first sensor event in the next window, and vice versa. 
Therefore, we base this approach on the SEW approach with extended features that gained the best 
results in [6]. The extra features in this case were referred to as MI and Previous Window Previous 
Activity (PWPA). MI is based on the chance of two sensors occurring consecutively within the entire 
window. This is calculated using a subset of the data. Then each field calculates the MI based on the 
current sensor in the window and the last sensor in the window each time, to set the feature value as 
the MI for that current sensor. PWPA is achieved using a two-step approach where the features space 
is firstly classified using LibSVM, a library for Support Vector Machines [22], and Platt’s scaling [23]. 
Predictions output from this first classification provide two new features: predicted class labels and the 
probability of this predicted label. Alongside these improved features, several other features were 
extracted from this window to form the final feature space. This included the time of the first sensor 
event, the time of the last sensor event, the duration of the window (in this case it will vary, one of the 
benefits of this approach), and instead of a binary representation of every sensor, similar to the TW 
approach, the MI value is used. Lastly, the previously mentioned predicted class label and probability 
of the next window are also used to generate a total of 40 features, in the final feature vector. 

 

Figure 2. Each of the window approaches represented on a raw snippet of the Aruba Dataset. A Time 
Window of 15 s is represented by the black brace. A Sensor Event Window of 20 sensor events is 
represented by the dark grey brace. A Dynamic Window containing the best fitting sensor group is 
represented by the dashed line, as the DW changes based on the activity being represented. 
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4.3. Dynamic Windowing 

The DW approach presented here is based upon the work of Fadi et al. [9–11]. It involves a two-
step approach with both an offline and online phase. In the offline phase, the raw dataset activities 
are windowed using the begin and end labels to extract a number of features, namely, number of 
activations of each sensor, sensor location, activation duration of each sensor and number of activated 
sensors. For example, for the activity ‘eat’, each of the abovementioned features are extracted from 
‘eat begin’ to ‘eat end’ for the entire dataset and for each activity. Based on the features described 
above, the number of activations of each sensor was found to be the best feature using the Information 
Gain (IG) attribute evaluator in Weka [24] by averaging this rank for each of the features. The final 
feature space for this offline phase included the number of activations of each sensor and the class 
label. From the resulting set of features, the group of “best fitting sensors” was established using the 
IG, where sensors were added and removed iteratively based on the frequency of the activation times 
of all windows, resulting in the ‘best fitting sensor groups’, as shown in Table 1. A maximum of five 
sensors in a group was used to describe an activity, as shown in Table 1. 

Table 1. Best fitting sensor groups for each activity. “M001” … “M031” represent motion sensors and 
“D001”…“D004” represent door sensors throughout the Aruba Casas dataset. 

Activity Class Best Fitting Sensor Group 
Sleeping M003, M002, M007 

Bed_To_Toilet M004, M007, M005 
Meal_Prep M019, M018, M015, M017, M016 

Relax M009, M013, M020 
Housekeeping M031, M021, M008, M006, M005 

Eating M014, M009, M018 
Leave_Home M030, D004 
Enter_Home M030, D004 

Work M026, M027, M028 

The online phase of the DW approach was carried out using the best fitting sensor groups for 
each activity. The best fitting sensor groups were incorporated into an algorithm that streams the 
entire dataset, windowing the nine activities based on these “best fitting sensor groups”. When a 
sensor fired, the best fitting sensor groups containing the current sensor, updated its value to “1”. 
When the algorithm identified a “best fitting sensor group”, where all sensors are set to “1”, this 
segment of data was identified and labeled as a single window for that activity. The frequency of 
each sensor fired within a single activity was used to produce an occurrence histogram, from which 
statistical features were extracted, namely: mean, median, standard deviation, skewness and kurtosis. 
These features were used to form the final feature space to be classified, along with the dynamically 
windowed activity label. Figure 2 presents the DW approach where the light grey brace represents 
the dynamic segment. The dotted grey braces represent the dynamicity of the approach which moves 
according to the best fitting sensor group that has fired. 

4.4. Classification 

All experiments employed a five-fold cross validation strategy, which were normalized before 
classification. LibSVM [22] was used for classification of activities in all of the experiments conducted. 

5. Results 

Table 2 presents the results from the experiments involving the three windowing approaches. 
Results from TW showed a weighted average F-Measure of 0.755. Most correctly identified activities, 
based on F-Measure for the TW approach are Relax (0.883), Sleeping (0.818), Meal_Preparation (0.734) 
and Work (0.656). Relax has the highest precision and recall, followed closely by sleeping, and 
Meal_Preparation. Some activities were not classified at all, such as Bed_To_Toilet, Housekeeping, 
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Eating, Leave_Home and Enter_Home, which all had an F-Measure of 0.00. Relax, Sleeping and 
Meal_Preparation are the most accurately classified activities.  

SEW results show a weighted average F-Measure of 0.746. Most correctly identified activities, 
based on F-Measure for the SEW approach, were found to be Sleeping (0.818), Relax (0.765) and 
Meal_Preparation (0.673). Other, less well classified activities based on F-Measure are Work (0.479), 
Leave_Home (0.473), Eating (0.430) and Enter_Home (0.248). Most incorrectly identified activities 
were Housekeeping and Bed_To_Toilet, that both resulted in an F-Measure of 0.00. SEW has the 
highest classification for Eating, Leave_Home and Enter_Home, and this is the only approach to 
classify these activities from all of three of the approaches carried out in the experiments.  

DW results present a weighted average F-Measure of 0.657. Most correctly identified activities, 
based on F-Measure for this approach are Sleeping (0.816), Relax (0.665), Meal_Preparation (0.673) 
and Other (0.660). Other has the highest precision for the DW of all the approaches compared, 
whereas the other best identified activities in this approach, Sleeping, Meal_Preparation and Relax, 
have dropped precision, in comparison to the TW and SEW approach. All other activities for this 
approach were not classified with an F-Measure of 0.00. Enter_Home was consumed in the online 
windowing phase of this approach and is represented as “-” in the table. 

Table 2. Results for each of the windowing approaches. 

Precision Recall F-Measure 
Class 

TW SEW DW TW SEW DW TW SEW DW 
0.805 0.894 0.699 0.836 0.759 0.980 0.820 0.818 0.816 Sleeping 
0.740 0.737 0.814 0.764 0.855 0.555 0.752 0.555 0.660 Other 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Bed_to_Toilet 
0.678 0.773 0.623 0.799 0.680 0.764 0.734 0.673 0.687 Meal_Preparation 
0.872 0.816 0.543 0.873 0.817 0.859 0.873 0.765 0.665 Relax 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Housekeeping 
0.000 0.614 0.000 0.000 0.306 0.000 0.000 0.430 0.000 Eating 
0.000 0.683 0.000 0.000 0.331 0.000 0.000 0.473 0.000 Leave_Home 
0.000 0.898 - 0.000 0.071 - 0.000 0.248 - Enter_Home 
0.558 0.670 0.000 0.796 0.348 0.000 0.656 0.479 0.000 Work 
0.740 0.764 0.698 0.772 0.764 0.666 0.755 0.746 0.657 Weighted Average  

6. Discussion 

Based on the TW results, it was found that a number of activities are not classified. This may be 
due to lack of instances for some classes to be trained, such as Bed_To_Toilet and Housekeeping. 
However, TW does have the highest precision of the class Relax in comparison with the other two 
approaches. Although this approach has the highest overall accuracy and weighted F-Measure for all 
of the classified activities, it only classifies half of the activities within this dataset, which is not 
desirable in a real-world environment.  

The SEW approach provided the next highest result, as shown in Table 3, with an accuracy of 
76.39% and weighted F-Measure of 74.6. This is the only approach out of all three approaches to 
classify Eating, Leave_Home and Enter_Home. This approach also resulted in the highest precision 
for classes Sleeping, Meal_Preparation, Eating, Leave_Home and Enter_Home. In the first step of this 
approach without the PWPA features, previously mentioned in Section 4.2, the activities were 
classified at 70.21%. In the second step of this approach which includes the PWPA features, the 
classification results were 76.39%, resulting in an increase in accuracy of 6.02%. The F-Measure rose 
from 68.60 in the first step to 74.60 after the second step. As noted in Section 4.2, the second step in 
this approach used predicted labels and probabilities of these predictions as extra features to the 
feature space. As a result of these features, the second step has overwritten the Bed_To_Toilet class, 
which was classified correctly in the first step of the approach, but then later unclassified through 
this prediction step. This is because the PWPA feature never predicts Bed_to_Toilet. If more 
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Bed_To_Toilet cases were available in a dataset, it is postulated that this activity may also be correctly 
classified more often within the dataset.  

Table 3. Accuracy of each of the windowing approaches. 

Windowing Approach Accuracy (%) 
TW 77.20 

SEW 76.39 
DW 66.65 

The DW results indicate that only some of the activities in the dataset are classified when 
streamed. It is postulated to be due to the iterative approach used to find the best fitting sensor groups 
for the DW approach and the high percentage of the Other class in the dataset. Using the iterative 
approach described in the methodology, the activity Enter_Home was consumed in the online phase 
of the approach. This is because the same sensor group is used for both Enter_Home and 
Leave_Home based on their IG values, therefore only one activity will be labelled when this sensor 
group fires, in this case Leave_Home being labelled and Enter_Home being consumed. This problem 
may be avoided in future if the window of temporary sensors is kept “open”, to evaluate which 
activity is more likely, based on the best sensor group that appears in the data stream. The DW 
approach produced the highest precision for the class ‘Other’, which implies the DW approach may 
have a greater impact in tasks such as anomaly detection, as it is assumed that the ability to detect 
non-labelled tasks could potentially offer a benefit within the anomaly detection research area. The 
DW approach may also perform better in real-time as it may have less instances to traverse through 
in order to find an activity. For example, the TW approach must run through 15 s of sensor data 
before producing a window, the SE approach must run through 20 sensor events before producing 
its first window, but, the DW approach may not always have to wait this long before producing its 
activity windows.  

When looking at each of the results in Tables 2 and 3, it is clear that in terms of accuracy, TW is 
the best approach, resulting in an accuracy of 77.2%, followed by SEW (76.39%) and then the DW 
approach (66.65%). As the dataset used to carry out these experiments is unbalanced, with 50% of the 
dataset being classed as Other, accuracy is not regarded as a fair measurement to use as it may 
mislead the results in such an unbalanced dataset. F-measure is a more suitable metric as it shows 
how well each activity performs, taking into account the precision and recall., of how each activity 
performs. When using F-Measure as the evaluation metric, the TW approach produced the highest 
result for the activities it classifies, Sleeping, Other, Meal Preparation and Relax, however, this is only 
half of the activities from the dataset. The F-Measure of these activities for the TW approach are 
followed closely by the SEW approach, however, the SEW approach also classifies four other activity 
classes, namely, Eating, Leave_Home, Enter_Home and Work, making this the best performing 
approach based on classifying more activities than the TW approach and with only a slightly lower 
F-Measure for all other activities.  

The DW approach adopted for these experiments performed less well than the other two 
approaches. This is at odds with the original hypothesis of this study. Based on accuracy, the DW 
approach scores 66.65%, the lowest scoring of the approaches experimented, with only four activities 
being classified using this approach, whereby each scored lower than when using the other 
windowing approaches. Nevertheless, there are areas for improvement with this approach that could 
be investigated, such as the use of statistical features in the DW approach and not in the TW or SEW 
approaches, the real-time performance this approach achieves, the overfitting influence of the ‘Other’ 
class within the dataset and, the potential to pair this DW approach with anomaly detection, which 
all make this an interesting area to research further. 
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7. Limitations 

The Aruba dataset chosen for this study contains seven months of free-living data, which is large 
in size in comparison to other smart home datasets. The methodology presented in this paper has a 
shortcoming in only considering this one dataset, however, the use of additional datasets would 
support the results and improve the robustness of the methodologies. In future more than one dataset 
should be used, such as the Opportunity dataset [25], or other datasets from the CASAS testbed, such 
as Tulum or Kyoto [21]. 

Another limitation of the Aruba dataset is that it is heavily imbalanced. Each windowing 
approach suggests that this class imbalance influences the results negatively for each activity with 
fewer instances. If a balanced dataset were used, it is hypothesized that these activities that perform 
poorly due to suspected lack of instances, would perform much better.  

As the Aruba dataset is a free-living dataset, not all sensor events are annotated or annotated 
correctly, which could be due to human error, such as forgetting to finish or start an activity 
annotation. The Aruba dataset has 50% unannotated data that is labelled as “Other”. This is a clear 
limitation when using the DW approach with this dataset as the DW approach has a disadvantage 
against the other windowing approaches, as it can only ever assign a label for ‘known activities’ 
within the dataset. Future work will remove and compare the approaches without the unannotated 
data, or find a way to incorporate such unannotated data within the DW approach. 

8. Conclusions 

In this paper we reviewed three different types of windowing approaches: time windowing, 
sensor event windowing, and dynamic windowing. We reviewed at each of the advantages and 
disadvantages of these approaches. We directly compared the three approaches against one another 
using a single source dataset benchmarked using a single classifier. Subsequently, it was found that 
TW was the best approach in terms of accuracy and weighted F-Measure for the five of the activities 
but was lacking in classifying another four activities. The SEW approach was the next best approach 
based on accuracy and weighted F-Measure and additionally was able to classify a further three 
activities that TW approach does not. Lastly and somewhat unexpectedly, the DW approach only 
classified four of the nine activities in the dataset. This is rationalized by considering that the DW 
approach does not recognize “Other” as an activity and is therefore disproportionately 
disadvantaged in these experiments where “Other” accounts for 50% of the activity instances 
investigated. In terms of F-Measure, it is clear the SEW approach classifies the most activities in the 
dataset and all other activities classified by the SEW approach closely matched the F-Measures 
obtained by TW, therefore this may be considered as the best approach for use with smart home 
generated binary data, as used in these experiments.  

In future work, the “best fitting sensor groups” for this DW approach will be explored further 
and additional DW approaches will be investigated. Dynamic approaches will also be investigated 
with the removal of unannotated data, alongside exploring ways to incorporate such unannotated 
data within the DW approach. A potentially interesting application of dynamic windowing is its 
application to anomaly detection within dense sensing environments, such as smart homes. Anomaly 
detection is an important research topic, not only for identifying unusual or unexpected activities 
within a smart home but for identifying infrequent activities within large imbalanced datasets. 
Consequently, it is anticipated that anomaly detection paired with an improved DW approach is a 
potentially useful and thought-provoking area to explore further. 
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