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Abstract: Data driven approaches for human activity recognition learn from pre-existent large-scale 
datasets to generate a classification algorithm that can recognize target activities. Typically, several 
activities are represented within such datasets, characterized by multiple features that are computed 
from sensor devices. Often, some features are found to be more relevant to particular activities, 
which can lead to the classification algorithm providing less accuracy in detecting the activity where 
such features are not so relevant. This work presents an experimentation for human activity 
recognition with features derived from the acceleration data of a wearable device. Specifically, this 
work analyzes which features are most relevant for each activity and furthermore investigates 
which classifier provides the best accuracy with those features. The results obtained indicate that 
the best classifier is the k-nearest neighbor and furthermore, confirms that there do exist redundant 
features that generally introduce noise into the classification, leading to decreased accuracy. 
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1. Introduction 

Human activity recognition (HAR) is a key component to a broad range of application areas 
including ambient assisted living, connected health and pervasive computing. It is commonly used 
in monitoring the activities of elderly residents to support management and prevention of chronic 
disease. Another common application area of HAR is within smart homes. It is used in this scenario 
to monitor the health and wellbeing of inhabitants by tracking their daily activities [1]. HAR can be 
generally classified as belonging to two categories: sensor-based or vision-based. Most notably, 
sensor-based activity recognition has attracted considerable research interest in pervasive computing 
due to advancements with sensor technologies and wireless sensor networks [2]. A frequently 
utilized wearable sensor for monitoring human activities is the accelerometer, which is particularly 
effective in observing movements such as walking, running, standing, sitting, and ascending stairs 
[3]. 

Feature selection methods [4] provide a means of selecting a subset of relevant features to use 
with a classifier from a dataset. Thus, these methods aim to identify which features are relevant and 
can indicate if there are interdependency relationships between them. The use of feature selection 
methods has been conducted within smart homes utilizing sensor technologies and wireless sensor 
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networks [5–7] as well as with wearable devices [8,9]. In these studies, feature selection methods were 
applied to the entire dataset containing multiple activities, identifying the most relevant features that 
generalize across all target activities. In some datasets, certain features may be relevant for a subset 
of similar activities (scenario) in the dataset and not for another scenario in the same dataset. This fact 
can lead to the classification algorithm providing less accuracy in the scenario where the feature is 
not relevant. 

This contribution analyzes, per scenario in a dataset, which features are the most relevant and 
which classifier works best with those features. This study is crucial to provide researchers with a 
guide of the most relevant features per activity type, and the classification algorithm that provides 
the best accuracy for that scenario (kind of similar activities) and those features. To do so, an 
experimentation for HAR using a recently collected dataset [10] is carried out. This dataset contains 
features derived from acceleration data collected from a wearable device. In this experimentation, the 
evaluated dataset contains six different scenarios: self-care, exercise (cardio), house cleaning, exercise 
(weights), sport and, finally, food preparation, representing 18 activities in which two popular feature 
selection methods, in conjunction with five well known classification algorithms, are evaluated. 

The remainder of the paper is structured as follows: Section 3 reviews the dataset evaluated in 
the experimentation as well as the two feature selection methods and the five classification algorithms 
that will be analyzed in this contribution. Section 4 presents the proposed method to carry out the 
experimentation, which is divided in three groups. Section 5 presents the obtained results in the 
experimentation. Section 6 discusses the obtained results in order to identify the more relevant 
features per scenario and the most accurate classifier in the evaluated dataset. Section 6 presents the 
conclusions and future works. 

2. Materials 

In this section, the evaluated dataset used in the experimentation is reviewed, paying special 
attention to the features that are computed from the sensor acceleration data. Furthermore, a review 
of feature selection methods is provided accompanied by a brief review of the five well-known 
classification algorithms that will be evaluated in the experimentation. 

2.1. Dataset 

The dataset was collected by 141 undergraduate students at Ulster University in a controlled 
environment, following a data collection protocol. Students collected triaxial accelerometer data from 
a wearable accelerometer (Shimmer 2R, Shimmer Sensing, Dublin Ireland, Republic of Ireland) whilst 
carrying out 3 of the 18 investigated activities across 6 scenarios of daily living. Data was collected at 
a sample rate of 51.2 Hz. Data was processed using each axis of the accelerometer independently (x, 
y and z). Furthermore, the three axis were combined to extract the signal magnitude vector (SMV), 
Equation (1). The SMV is independent of orientation of the sensor node and is therefore a crucial step, 
particularly as the sensor was permitted to be placed on either the right or left wrist during the data 
recordings. 

SMV = ඥܽ௫ + ܽ௬ + ܽ௭௫ (1) 

The accelerometer signals, including the SMV, were partitioned into 4 s (204 samples) non-
overlapping windows. Table 1 presents the number of instances generated per windowed class. In 
total, 9612 instances were approximately equally represented across the 18 investigated activities, 
which are grouped into 6 scenarios. 
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Table 1. Activities grouped by scenarios with their ids and the No. of instances. 

Scenarios Activity Activity id No. of Instances 

Self-Care 
Hair grooming 1 577 
Washing hands 2 551 
Teeth brushing 3 527 

Exercise (Cardio) 
Walking 4 491 
Jogging 5 510 

Stepping 6 500 

House cleaning 
Ironing 7 579 

Window washing 8 555 
Dish washing 9 577 

Exercise (Weights) 
Arm curls 10 516 
Deadlift 11 469 

Lateral arm raises 12 511 

Sport  
Pass 13 627 

Bounce 14 563 
Catch 15 598 

Food Preparation 
Mixing food in a bowl 16 498 
Chopping vegetables 17 475 

Sieving flour 18 488 
Total   9612 

The set of common features, defined in previous work [8,9] were extracted from the x, y, z axis 
and SMV, as is presented in Table 2. These features were selected to represent both temporal and 
frequency domain information. Features 1–24 are common statistical metrics, computed from the 
time domain and extracted from the SMV. Feature 25 (Signal Magnitude Area (SMA)) has been found 
to be a suitable measure for distinguishing between static and dynamic activities when employing 
triaxial accelerometer signals [9]. It is calculated by applying Equation (2). 

SMA =෍ሺ|ݔሺ݅ሻ|ሻே
௜ୀଵ + ሺ|ݕሺiሻ|ሻ + ሺ|ݖሺiሻ|ሻ (2) 

where ݔሺ݅ሻ ሺiሻݖ	and	ሺiሻݕ , , represent the acceleration signal along the x-axis, y-axis, and z-axis, 
respectively. 

Table 2. Initial considered feature. 

Feature 
No. 

Feature Name Feature Description 

1–4 Mean value Mean value of the x, y, z and SMV in the window. 
5–8 Maximum Maximum value of the x, y, z and SMV in the window. 
9–12 Minimum Minimum value of the x, y, z and SMV in the window. 

13–16 Standard Deviation Standard deviation of the samples x, y, z and SMV in the window. 
17–20 Range Range of the samples of SMV in the window. 
21–24 Root Mean Square Root Mean Square of the values of x, y, z and SMV in the window. 

25 Signal Magnitude area Signal Magnitude Area (SMA) across the acceleration signal in x, y and z axis. 

26 Spectral Entropy 
The normalized information entropy magnitudes of the discrete FFT 

components of the signal. 
27 Total Energy Sum of the squared magnitudes of the discrete FFT components of the signal 

Feature 26 (Spectral Entropy) is the sum of the squared magnitude of the discrete fast Fourier 
transform (FFT) components of a signal. Feature 27 (Total Energy), is the sum of the squared discrete 
FFT component magnitudes of the SMV. The sum is divided by the window length for the purposes 
of normalization Equation (3). This feature has been reported to result in accurate detection of specific 
postures and activities [11]. For instance, the energy of a subject’s acceleration can discriminate low 
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intensity activities such as lying from moderate intensity activities such as walking or high intensity 
activities such as jogging. If ×1, ×2, ... are the FFT components of the window, then the energy can be 
represented by Equation (3): 

Energy୶ = ∑ |SMV୧|ଶ|୵|୧ୀଵ|w|  (3) 

where SMVi are the FFT components of the window for the SMV axis and |w| is the length of the 
window. 

2.2. Feature Selection Methods 

Feature selection methods are carried out in order to reduce the size of the dataset, keeping as 
much information as possible about the domain without causing a negative impact on the 
classification accuracy [4]. Therefore, irrelevant and redundant features are eliminated. Reducing the 
number of these features clearly improves the time taken to deploy a learning algorithm and assists 
in obtaining a better insight into the concept of the underlying classification problem [4]. 

Feature selection attempts to select the minimal sized subset of features according to the 
following criteria: (i) the classification accuracy does not significantly decrease; and (ii) the resulting 
class distribution, given only the values for the selected features, is as close as possible to the original 
class distribution, given all features. 

Figure 1 illustrates the process of feature selection methods that consists of the following three 
steps in an iterative process. First, the generation procedure attempts to discover optimal feature 
subsets that summarize the whole feature set, reducing the computational complexity. In the case of 
a dataset that contains N features, the total number of candidate subsets to be generated is 2N. Second, 
an evaluation function measures the discriminating ability of a feature, or subset of features, in order 
to distinguish the different class labels. Finally, it is necessary to establish a criterion that indicates 
when the process is finished. The choice of stopping criterion may depend on the generation 
procedure and the evaluation function. This criterion can be a maximum iteration number or when a 
condition is achieved, for example, a number of iterations. 

 
Figure 1. Scheme of a feature selection method. 

In this contribution, two feature selection methods have been used; one of them is based on a 
consistency measure while the other is based on a dependence measure. 

On the one hand, a feature selection method based on a consistency measure so called 
consistencySubsetEval [12] is applied. This method evaluates the worth of a subset of features by the 
level of consistency in the activity class when the training instances are projected on the subset of 
features. So, subsets of features are highly correlated with the activity class, considering a low 
intercorrelation. In the evaluation functions based on the consistency measure case, the consistency 
of any subset can never be lower than that of the full set of features. 

On the other hand, a feature selection method based on a dependence measure, CfsSubsetEval 
[13] is applied. This function evaluates the worth of a subset of features by considering the individual 
predictive ability of each feature with the redundancy degree between them. So, the subsets of 
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features that are highly correlated with the activity class are preferred, taking into account a low 
intercorrelation. 

2.3. Classification Algoritms 

The classification algorithms, which will be evaluated in the experimentation of this work are 
regarded among the most popular algorithms employed for data driven approaches [3]. In this kind 
of approach, activity models learn from pre-existent large-scale datasets of users’ behaviors using 
data mining and machine learning techniques. In this contribution, the following classification 
algorithms have been used: 

- Naive Bayes classifier (NB) [14]. The basic idea in NB classifier is to use the joint probabilities of 
sensors and activities to estimate the category probabilities given a new activity. This method is 
based on the assumption of sensor independence, i.e., the conditional probability of a sensor 
given an activity is assumed to be independent of the conditional probabilities of other sensors 
given that activity. 

- Nearest Neighbour (KNN) [15]. This classifier is based on the concept of similarity [7] and the 
fact that similar patterns have the same class label. An unlabeled sample is classified with the 
activity label corresponding to the most frequent label among the k nearest training samples. 

- Decision Table (DT) [16]. This classifier is based on a table of rules and classes. Given an 
unlabeled sample, this classifier searches for the exact match in the table and returns the majority 
class label among all matching samples, or informs no matching is found. 

- A Multi-Layer Perceptron (MLP) [17] is a feedforward neural network with one or more layers 
between input and output layer. Each neuron in each layer is connected to every neuron in 
the adjacent layers. The training data is presented to the input layer and processed by the hidden 
and output layers. 

- Support Vector Machines (SVMs) [18]. This method focuses on a non-linear mapping to 
transform the original training data into a higher dimension. Within this new dimension, it 
searches for the linear optimal separating hyperplane. A hyperplane is a decision boundary that 
separates the tuples of one activity from another. 

3. Method 

This section presents the proposed method to analyze the evaluated dataset per scenario, to 
ascertain which features are the most relevant and to determine which classifier works best with 
those features. The method is divided into the following three groups: 

- The first experiment (Exp1) evaluates the complete dataset with the 27 features in order to 
establish the accuracy with each classification algorithm, considering the 6 scenarios. 

- The second experiment (Exp2) evaluates two feature selection methods in the complete dataset. 
The experiment Exp2.A applies the consistencySubsetEval method per each classification 
algorithm and the experiment Exp2.B applies the CfsSubsetEval method per each classification 
algorithm. 

- The third experiment (Exp3) transforms the complete dataset into six different datasets per 
scenarios. Therefore, per each scenario, the classes of that scenario are preserved and the rest of 
the classes are considered as negative. For each scenario, from scenario 1 (S1) to scenario 6 (S6), 
two experiments are carried out according to the two feature selection methods: ‘A’ for the 
consistencySubsetEval method and ‘B’ for the CfsSubsetEval method. For example, Exp3.S1A is the 
experiment with the adapted dataset for Scenario 1 when the consistencySubsetEval method is 
applied. Another example, Exp3.S6B is the experiment with the adapted dataset for Scenario 6 
when the CfsSubsetEval method is applied. Figure 2 illustrates the transformation process for the 
original dataset for the Scenario 1 in the third experiment. 
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Figure 2. Transformation of the original dataset for the dataset of Scenario 1. 

4. Results 

The experiments have been implemented using the Weka software [18]. Weka is a Java software 
tool with machine learning algorithms for solving real-world data mining problems, which has GNU 
General Public License, GPLv3. For both feature selection methods and all classification algorithms, 
the default parameters of Weka have been used. 

Table 3 illustrated the features considered in the three groups of experiments. Experiment Exp1 
was conducted without applying a feature selection method. In Exp2A and Exp2B, the 
consistencySubsetEval and CfsSubsetEval methods were applied, respectively. Finally, from Exp3.S1A 
to Exp3.S6A, each scenario was adapted to each dataset, applying the consistencySubsetEval method, 
and from Exp3.S1B to Exp3.S6B, each scenario was adapted to each dataset, applying the 
CfsSubsetEval method. If the cell indicates a Y (Yes), that characteristic was selected by the feature 
selection method, otherwise, the cell indicates an N (No). 
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Table 3. Features considered in each experimentation. 

ID. Fe.  Exp2A Exp2B Exp3.S1A Exp3.S1B Exp3.S2A Exp3.S2B Exp3.S3A Exp3.S3B Exp3.S4A Exp3.S4B Exp3.S5A Exp3.S5B Exp3.S6A Exp3.S6B 
Tot. 
Fea. 

1 N Y Y Y Y Y N N Y N Y N Y Y 9 
2 Y Y N Y Y N Y Y N N N Y N Y 8 
3 Y Y Y Y Y Y N Y Y Y Y Y N Y 12 
4 Y N Y N Y Y Y Y N Y N Y N Y 9 
5 N Y N N N N N N N Y N N Y N 3 
6 Y Y Y Y Y Y Y Y N Y N Y Y Y 12 
7 Y Y Y N Y Y N N N N Y N N Y 7 
8 Y Y N Y Y Y Y Y N N Y N N Y 9 
9 Y Y Y N Y Y Y Y N N N N N Y 8 
10 N Y N Y N Y N N N Y N N N N 4 
11 N Y Y N Y Y N Y N Y N Y Y Y 9 
12 Y N Y N N N N N N N N N N N 2 
13 N Y N Y Y Y N Y N N N N Y Y 7 
14 Y Y Y N Y Y N N Y Y Y Y Y N 10 
15 Y Y N N Y Y Y Y N N N Y N Y 8 
16 N Y N Y Y N N Y N N N N N N 4 
17 Y N Y Y N Y Y N N Y N N N N 6 
18 N Y N N Y Y N N N Y N N Y N 5 
19 N N N Y Y Y N N N N N N N N 3 
20 N N N N N N N N N Y N N Y N 2 
21 Y Y N N Y N N N N Y N Y N N 5 
22 N Y Y N N N N N N N N N N N 2 
23 Y Y N N Y N Y N N N N N N N 4 
24 N N N N N N N N N Y N N N N 1 
25 N N N N Y Y N Y N Y N Y N N 5 
26 Y Y Y Y Y Y N Y N N N N Y Y 9 
27 N N N N N N N N N N N N N N 0 

Tot. 
Fea. 

14 19 12 11 19 17 8 12 3 13 5 9 9 12  
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Table 4 presents the results from the experiment, citing the classification accuracy for each. Let N୅  be the number of samples of activities TP୅  the number of samples of activities correctly 
classified, the classification accuracy is defined by Equation (4): Accuracy = TP୅N୅  

(4) 

The tests were executed, employing a 10-fold Cross-Validation. The main advantage of cross-
validation is that all the samples in the dataset are eventually used for training and testing and 
therefore avoids the problem of considering how the data is partitioned. 

Table 4. Classification accuracy obtained per each experimentation in each classification algorithm by 
using a 10-fold cross validation. 

Accuracy DT NB KNN MLP SVM 
Exp. 1 0.599 0.631 0.937 0.831 0.784 

Exp. 2A 0.606 0.624 0.930 0.789 0.742 
Exp. 2B 0.599 0.658 0.938 0.825 0.771 

Exp. 3.S1A 0.774 0.816 0.900 0.900 0.839 
Exp. 3.S1B 0.885 0.879 0.959 0.942 0.760 
Exp. 3.S2A 0.802 0.737 0.931 0.882 0.774 
Exp. 3.S2B 0.819 0.748 0.965 0.910 0.729 
Exp. 3.S3A 0.915 0.835 0.974 0.972 0.924 
Exp. 3.S3B 0.842 0.698 0.962 0.908 0.715 
Exp. 3.S4A 0.988 0.976 0.998 0.948 0.967 
Exp. 3.S4B 0.955 0.928 0.994 0.990 0.916 
Exp. 3.S5A 0.955 0.948 0.993 0.831 0.946 
Exp. 3.S5B 0.900 0.872 0.989 0.970 0.916 
Exp. 3.S6A 0.839 0.656 0.962 0.922 0.646 
Exp. 3.S6B 0.912 0.852 0.981 0.941 0.756 

5. Discussion 

In this Section, the computed accuracy results are analyzed, per scenario investigated, in order 
to identify which features were the most relevant and which classifier was found to work best with 
those features. 

Regarding Experiment 1, the KNN algorithm was the classification algorithm that provided the 
highest accuracy. This experimentation did not apply a feature selection method and the training 
process was carried out with the original dataset, considering all 18 activities in the six scenarios. In 
this case, the ranking of the classifiers by accuracy was as follows: KNN > MLP > SVM > NB > DT. 

Experiment 2 applied the consistencySubsetEval method in Exp2.A, which identified 14 features, 
and the CfsSubsetEval method in Exp2.B, which identified 19 features. The features that both feature 
selection methods excluded were {19,20,24,25,27}. Exp2.A and Exp2.B obtained very similar results 
with each classifier; however, Exp2.B required 6 fewer features than Exp2.A. The The common 
features of both methods were {2,3,6,7,8,9,14,15,21,23}. Therefore, we can consider these features are 
very important in the original dataset, to identify all the activities independent of each scenario. 
Exp2A is outperforming Exp2B, except when DT is used. (0.606 vs. 0.599). In both experiments, the 
best classifier was found to be KNN with the respective ranking of the classifiers matching those 
reported in Exp1: KNN > MLP > SVM > NB > DT. 

Regarding Experiment 3, the increase in terms of accuracy when the dataset was adapted for 
each of the scenarios, merits remark. As mentioned above, the adaptation consisted of generating a 
dataset for each scenario where the activities within this scenario were included as positive and the 
rest of the activity classes of the other scenarios were considered as negatives. In the positive class, 
multiple activities are in each scenarios (see Figure 1). In the used dataset, each scenario has 3 
activities. Full results for each experiment are presented in Table 5 and discussed below. 
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From Scenario 1 (Self-Care), which included three activities, the consistencySubsetEval method 
was applied in Exp3.S1A, which identified 12 features, and the CfsSubsetEval method was applied in 
Exp3.S1B, which identified 11 features. The features that both feature selection methods excluded 
were {5,15,18,20,21,23,24,25,27} and, therefore, these were deemed irrelevant. The common features 
of both methods were {1,3,6,17,26} so, these features were considered very relevant with the three 
activities from scenario 1. Regarding the classifiers, accuracy results were very similar, however, 
again the best classifier was KNN (the results were the same in KNN and MLP in S1.A) and the order 
of the classifiers by accuracy was the same as in Exp 1: KNN > MLP > SVM > NB > DT. 

From Scenario 2 (Exercise-Cardio), which included three activities, the consistencySubsetEval 
method was applied in Exp3.S2A, which identified 19 features, and the CfsSubsetEval method was 
applied in Exp3.S2B, which identified 17 features. The features that both feature selection methods 
excluded were {5,12,20,22,24,27}. The common features of both methods were {1,3,4,6,7,8,9,11,13,14, 
15,18,19,25,26} so we can consider these features relevant to identify the three activities from scenario 
2. Regarding the classifiers, both accuracy results are very similar with the best classifier reported as 
KNN. The order of the classifiers by accuracy deviated slightly from earlier experiments in the 
Exp3.S2A (KNN > MLP > DT > SVM > NB) and Exp3.S2B with (KNN > MLP > DT > NB > SVM). 

From scenario 3 (House cleaning), which included three activities, the consistencySubsetEval 
method was applied in Exp3.S3A, which identified 8 features, and the CfsSubsetEval method was 
applied in Exp3.S3B, which identified 12 features. The features that both feature selection methods 
excluded were {1,5,7,10,12,14,18,19,20,21,22,24,27} and, therefore, these were not relevant. The 
common features of both methods were {2,4,6,8,9,15}. In this case, we observed that the features 
selected by the consistencySubsetEval method were more relevant than the features selected by the 
CfsSubsetEval. Regarding the classifiers, in both cases, the best classifier was found to be the KNN. 

From scenario 4 (Exercise-Weights), which included three activities, the consistencySubsetEval 
method was applied in Exp3.S4A, which identified only 3 features, and the CfsSubsetEval method was 
applied in Exp3.S4B, which identified 13 features. The features that both feature selection methods 
excluded were {2,7,8,9,12,13,15,16,19,22,23,26,27}. The common relevant features of both methods 
were {3,14}. In this case, we consider that the 3 features selected by the consistencySubsetEval method 
were equally relevant to the 13 features selected by the CfsSubsetEval because the accuracy results 
were very high (more than 0.92) and comparable to each other. Regarding the classifiers, in both 
cases, they all reported good performance with the best being KNN. 

From scenario 5 (Sport), which included three activities, the consistencySubsetEval method was 
applied in Exp3.S5A, which identified only 5 features, and the CfsSubsetEval method was applied in 
Exp3.S5B, which identified 9 features. The features that both feature selection methods excluded were 
{5,9,10,12,13,16,17,18,19,20,22,23,24,26,27}. The common features of both methods were {3,14}. It is 
noteworthy that these common features were the same as those identified for scenario 4. Similar to 
scenario 4, we consider that the 5 features selected by the consistencySubsetEval method are more 
relevant than the 9 features selected by the CfsSubsetEval because, in general terms (4 of the 5 
classifiers- less MLP), the accuracy results were higher in Exp3.S5A. Regarding the classifiers, in both 
cases, the best classifier was the KNN. 

From scenario 6 (Sport), which included three activities, the consistencySubsetEval method was 
applied in Exp3.S6A, which identified 9 features, and the CfsSubsetEval method was applied in 
Exp3.S6B, which identified 12 features. The features that both feature selection methods excluded 
were {10,12,16,17,19,21,22,23,24,25,27}. The common features of both methods in scenario 6 were 
{1,6,11,13,26}. In both cases, the KNN was selected as the best classifier and the SVM was considered 
the worst classifier. The ranking order was KNN > MLP > DT > NB > SVM. 
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Table 5. Relevant and not relevant features selected by the two feature selection methods. 

Scenarios 
Feature Number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 
All scenarios   + +     + + + +         + +       x x +   + x x + x 

Self-Care +   +   x  +                 x    + x    x  x    x  x  x  + x 
Exercise (Cardio) +   + + x + + + +   + x + + +     + + x   x   x + + x 
House cleaning x +   + x + x + + x   x   x +     x x x x x   x     x 

Exercise (Weights)   x +       x x x     x x + x x    x     x x     x x 
Sport      +   x       x x   x x +   x x x x x   x x x   x x 

Food Preparation +         +       x + x +     x x   x x   x x x x x + x 
Total + 3 2 5 2 0 5 2 3 3 0 2 0 2 4 3 0 1 1 1 0 1 0 1 0 1 4 0 
Total x 1 1 0 0 4 0 2 1 2 3 0 5 2 1 2 3 2 3 5 5 3 5 4 6 3 2 7 
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In general terms, the five classifiers performed better with those features selected by 
consistencySubsetEval. Furthermore, the most relevant features were found to be Feature 3 and Feature 
6 that were selected 12 times, Feature 14 that was selected 10 times and, finally, Feature 1, Feature 4, 
Feature 8, Feature 11 and Feature 26 that were selected 9 times. The less relevant features were 
Feature 27 (Total Energy) that was never selected, Feature 24 that was selected once (in scenario 4). 
Feature 12, Feature 22 and Feature 20 were only selected twice: Feature 12 in Exp2A and Exp3.S1A; 
Feature 20 in Exp3.S4B and Exp3.S6A and; Feature 22 in Exp2B and Exp3.S1A. 

Regarding the classifiers, it was clearly demonstrated that the classifier performing best, in terms 
of overall classification accuracy, was KNN. A perceived issue with KNN is its computational burden 
because the unseen sample is compared with each sample of the training dataset. For this reason, 
MLP and SVM are deemed good options because, in general terms, the feature selection methods 
improved the accuracy significantly. These classifiers (MLP and SVM) are, however, black box in 
nature and in the case that a classifier based on white box is necessary; DT and NB are also good 
options to employ alongside the investigated feature methods. 

6. Conclusions and Future Works 

In this contribution, an experiment for HAR has been carried out using a recently collected 
dataset containing 27 features derived from the acceleration data of a wearable device. The 
experiment analyzed 6 scenarios, each containing three activities, to distinguish which features are 
the most relevant and which classifier provided the highest accuracy with those features. To do so, 
two feature selection methods have been applied, which consider a consistency measure and a 
dependence measure. These are used in conjunction with five well-known classification algorithms 
(NB, KNN, MLP, DT, SVM). The method for this experimentation has been presented with three 
grouped experiments: (i) with the original dataset without applying feature selection methods, (ii) 
with the original dataset after applying the two feature selection methods and, finally, (iii) with the 
adapted dataset per scenario after applying each feature selection method. The proposal of the 
adapted dataset per each scenario considered the classes of that scenario and the remaining classes 
were considered as negative. Considering this experimentation, the most relevant and non-relevant 
features for scenarios have been identified. 

Further work is required to investigate a greater number of features, particularly, those 
calculated from the frequency domain. Moreover, a broader set of feature selection methods and 
classification algorithms should be evaluated as well as to study the combination of two or more 
scenarios of the same dataset. 
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