E proceedings ﬁw\p\py
F

Proceedings

Assessment of Fitness Tracker Security: A Case of Study *

Florina Almenares Mendoza 1*(®, Lucia Alonso 2, Andrés Marin Lépez 1 Daniel Diaz Sanchez !
and Patricia Arias Cabarcos 1+

1 University Carlos III de Madrid, Avda, de la Universidad 30, 28911 Leganés, Spain;
amarin@it.uc3m.es (A.M.L.); dds@it.uc3m.es (D.D.S.), ariasp@it.uc3m.es (P.A.C.)
2 Alumni University Carlos III of Madrid, 28911 Madrid, Spain; 100355904@alumnos.uc3m.es
Correspondence: florina@it.uc3m.es
1t Presented at the 12th International Conference on Ubiquitous Computing and Ambient Intelligence (UCAmI
2018), Punta Cana, Dominican Republic, 4-7 December 2018.
T Currently supported by an Alexander von Humboldt fellowship at Universitdt Mannheim.

check for

Published: 26 October 2018 updates

Abstract: The wearable industry has experienced a notable growth over the last decade, especially in
fitness or e-health trackers. These trackers bring new functionalities that require collecting a great
amount of sensitive information about the user. This fact has made fitness trackers the target of
deliberate attacks, e.g., eavesdropping, unauthorized account access, fake firmware update, and so on.
For this reason, this paper describes a vulnerability study on one of the most popular fitness trackers
in 2017, together with the mobile application associated to the tracker. The study results show what
vulnerabilities of the communications among agents (i.e., wearable device, mobile application and
server) could put at risk users sensitive information and privacy.

Keywords: fitness tracker; wearable devices; security vulnerabilities

1. Introduction

The Internet of Things (IoT) paradigm has encouraged the creation of environments with
interconnected highly heterogeneous entities and networks. This can be reflected in the notable growth of
wearable devices and applications over the last decade. Many of the devices are focused on monitoring
physical activities for healthcare. That is the case of personal fitness trackers or wristbands, which offer
new functionalities that require the collection of a wide amount of sensitive information about the user.

Fitness trackers designed to be worn all day long by users, track steps and physical activity of
their owners, but they are also able to track their sleep duration and consistency, and many other
factors related to users” health. Therefore, they are designed to locally gather all the information they
can about the user throughout the day. The gathered information can later be synchronized with a
mobile application, and then sent to servers controlled by fitness tracker manufacturers.

There is an intrinsic need to ensure users privacy and to minimize security vulnerabilities. For this
reason, several studies [1-6] have showed the vulnerabilities and risks of these devices and security
improvements have been carried out. Nevertheless, recent studies [7-9] have discovered still privacy
and security issues, e.g., related to geolocation or unclear policies leaving the door open for the sale of
users’ fitness data to third parties without express consent of the users. In this study we analyse the
potential security vulnerabilities of the communication of one of the most popular fitness trackers in
the market! with the mobile application, the synchronization with the manufacturer’s servers, and the

1 The fitness tracker model is not revealed to be compliant with the legal policy terms of service.

Proceedings 2018, 2, 1235; d0i:10.3390/ proceedings2191235 www.mdpi.com/journal/proceedings

http://www.mdpi.com/journal/proceedings
http://www.mdpi.com/journal/proceedings
http://www.mdpi.com
https://orcid.org/0000-0002-5232-2031
http://dx.doi.org/10.3390/proceedings2191235
http://www.mdpi.com/journal/proceedings
http://www.mdpi.com/2504-3900/2/19/1235?type=check_update&version=2

Proceedings 2018, 2, 1235 20of 11

data shared with third party applications. The tracker -used in this study- has not been analysed in the
literature and uses the same protocols that are used by most devices. In addition, the study has been
carried out during several months, allowing us to discover privacy vulnerabilities that have not been
analysed so far in the literature. The OAuth2 protocol implementation has been also analysed, as part
of the traffic exchanged between the mobile application and the servers. To carry out the study, we
have used Bluetooth test tools and sniffer software.

This paper is organized as follows. Section 2 describes the previous studies performed
about vulnerabilities in personal fitness trackers and introduces Bluetooth Low Energy (BLE) as
communication protocol between wearable and mobile devices. Section 3 gives details about the study
performed. Section 4 describes the privacy and security vulnerabilities found in the communication
between wearable and mobile app, the communication between mobile app and server and the APL
Finally, Section 5 contains the conclusions, recommendations from the results and future work.

2. Related Work and Background
2.1. Related Work

One of the first contributions of security research on wearable devices is related to the popular
Fitbit trackers and dates back to 2013. In this study, Rahman et al. reverse engineered the semantics
of the tracker memory banks, the command types and the tracker-to-social network communication
protocol [1]. In addition to finding vulnerabilities in the device, they also developed FitBite, a suite
of tools that could allow an attacker to capture and modify data stored in one of these trackers, as
well as Fitlock, a Fitbit extension that protected it against such attacks. This study was followed up by
Zhou et al. that identified flaws in Fitlock and discussed possible means to alleviate these issues [10].
After that, Rahman et al. developed Garmax, similar to FitBite, as a tool to exploit vulnerabilities
against Garmin trackers. Rahman et al. proposed SensCrypt, a protocol to protect low power fitness
trackers (i.e., Fitbit and Garmin) [11].

Another study was carried out by Cyr et al., which tried to understand how much Fitbit had
progressed in adding security to their devices as well as what data they collected, how they collected it
and how it was transferred back and forth from the server. As a noticeable finding, they discovered
that it was possible to obtain the BLE credentials sent to the phone from the server in plaintext [3].

In 2014, the security of Fitbit devices was put in the spotlight thanks to the strong media coverage
of a security flaw detected by Axelle Apvrille [2]. This Fortinet researcher discovered a vulnerability
that allowed an attacker to inject, over a Bluetooth connection, unauthorized code onto a Fitbit
Flex and not only have it persist, but also reflect in the devices to which it connected. Other Fitbit
model, the Charge HR, has been studied by Schellevis et al. [7]. They used reverse engineering of the
cryptographic primitives used by the device and they were able to describe its authentication protocol.
Among their findings, it is worth mentioning the discovery of a backdoor in the first firmware that
enabled attackers to obtain via Bluetooth the encryption key stored in the tracker’s memory.

Schiefer and Losche studied the security of data storage and transmission, either via Bluetooth
or the Internet, and the authentication on application of nine fitness trackers (i.e., LG, Sony, Fitbit,
Withings, Jawbone, Polar, Huawei, Garmin and Acer) [4]. For that, they developed a mobile application
to capture all traffic sent to and received from the Internet, in order to search for unencrypted
information. The trackers, except Sony and Huawei, use BLE to connect to the mobile device.
The results show most devices do not allow deactivating Bluetooth, except Sony and Polar. All of them
sent encrypted traffic, but the security level is different. This analysis was just a start up. Other studies,
in the same year (i.e., 2015) and focused on the BLE communication, demonstrate the possibility of
discovering and connecting to the devices without the owner even knowing [6] and how a theoretically
robust protocol can be wrecked by badly implementing it, using a Nike+ tracker [5]. The last study
found out the same vulnerability than [6], as well as the protocol supports direct reading and writing
of the device memory (up to 65 K of contents).

Proceedings 2018, 2, 1235 3of11

Rieck demonstrates a flaw in the firmware for Withings” Activité, which allows an adversary to
compromise the tracker itself. He suggests also findings that can be transferred to other trackers as
well, due to the hardware similarities [12].

Despite the security improvements have been made on the fitness trackers after these studies,
recent studies, such as [8,9], have proven that it is still necessary to keep on developing new security
solutions. Hilts et al. analysed eight popular fitness trackers focusing on the privacy and security of data
transmissions. They found security issues in most of the studied devices, and only one manufacturer
implemented BLE privacy [8]. The authors in [9] presented a security analysis of a representative sample
of current fitness trackers on the market. They focused on malicious user setting that aims at injecting
false data into the cloud-based services leading to erroneous data analytics. Their results show the fitness
device has no data integrity check and the collected data are stored in plain text on the smartphone.

Not only device vulnerabilities, but also application vulnerabilities may have a large impact in
data disclosure. For instance, related to military information, in November 2017 the fitness tracking
application Strava announced it will publish a heat map reflecting billions of tracked user activities [13].
Later, the 28th and 29th of January 2018, several media announced that Strava giving away the location
of US military or intelligence operations, including secret military bases and patrol routes. It was first
alerted by Nathan Ruser, a student of the Australian National University in a tweet.

A recent tendency is to share information and compete with friends on activity-based social
networks [14]. This would raise even more security and privacy challenges, because an effective and
granular access control over data must be appropriately provided.

The main contributions of this study beyond the literature are: discovery of new vulnerabilities
related to privacy and denial of service (DoS) attacks in BLE communication; analysis of the traffic
exchanged between mobile app and server, including how the OAuth2 protocol is used; and possible
vulnerabilities identification in the mobile app-server communication.

2.2. Bluetooth Low Energy (BLE)

BLE, introduced as part of the Bluetooth 4.0 core specification [15,16], is a light-weight subset of
classic Bluetooth. It was developed with the purpose of supporting devices that run for long periods on
power sources, such as coin cell batteries or energy-harvesting devices. The BLE architecture is depicted
in Figure 1, which shows the protocol stack in three components that contain layers or modules.

Application Application (App)
: Generic Access Profile Generic Attribute Profile :
; (GAP) (GATT !
1 1
Host ! Security Manager Protocol Attribute Protocol '
| (SMP) (ATT) !
]]
1 1
1 1
1 1

Logical Link Control and Adaptation Protocol
(L2CAP)

Link Layer (LL)

Controller

LE Physical Layer (PHY)

Figure 1. Bluetooth Low Energy Protocol Stack.

Proceedings 2018, 2, 1235 40f 11

Controller. It includes the lowest layers of the BLE stack. The Physical Layer is in charge of modulating
and demodulating analogous signals and transforming them into digital symbols. BLE devices
can communicate using unicast or broadcast connections.

In a unicast connection, the device roles can vary depending on the mode: non-connected or
connected. In non-connected mode, two main roles can be distinguished: peripheral and central.
The peripheral role is usually played by a device constrained in both computing resources and
energy, since its main tasks are to advertise and wait for connections. However, the second role,
the central, has to be played by a device with more resources. It is the one responsible for scanning
for other devices and it is also in charge of establishing links by sending connection requests.

Once a connection is established, i.e., connected mode, the central device can be referred to as
master, while the peripheral is called slave. A slave can only be connected to a single master, but a
master can be connected to multiple slaves.

On the other hand, regarding broadcast connections, the assigned roles do not change. The BLE
device sending packets is called broadcaster while those that receive them are named observers.

The Link Layer (LL) interacts directly with the Physical Layer and it is responsible for advertising,
scanning and creating or maintaining connections. This uses seven different advertising channel
PDU (Protocol Data Unit) types: ADV_IND (connectable, undirected advertising), ADV_DIRECT_IND
(connectable, directed advertising), ADV_NONCONN_IND (non-connectable undirected advertising),
ADV_SCAN_IND (scannable undirected advertising), SCAN_REQ (active scanner), SCAN_RSP (scan
response) and CONNECT_REQ (establishing a connection). It is also in charge of encryption, useful to
ensure the confidentiality of the transmitted data, and filtering out advertising packets depending
on their content or the Bluetooth Device Address (BDA), a 48-bit number that uniquely identifies
a device.

Host. It involves protocols and profiles. The profiles use functionalities provided by the
underlying protocols.

The Generic Access Profile (GAP) modes and procedures can be seen as the cornerstone of BLE.
The GAP defines how BLE devices can communicate with each other. It is responsible for the
management of the three mechanisms that BLE devices employ to communicate: discovery,
connecting and pairing. GAP is also in charge of securing communications, by making use
of rules and algorithms implemented in the Security Manager Protocol. After two devices have
established a connection, their communication does not initially have security, so they must pair.
The pairing process entails authenticating the identity of the master and the slave, encrypting the
link with a short-term key (STK) and, afterwards, distributing long-term keys (LTK). The devices
generate an ECDH (Elliptic Curve Diffie-Hellman) public-private key pair to, right after, exchange
their public keys and start computing the Diffie-Hellman key.

The Generic Attribute Profile (GATT) determines the way data are organized and sent over a BLE
connection. It makes use of the Attribute Protocol (ATT) as transport mechanism, as well as
organizing data into attributes, making its transmission much easier.

These profiles and protocols use the Logical Link Control and Adaptation Protocol (L2ZCAP) to pass
packets to either the Host Controller Interface (HCI) or on a hostless system, directly to the LL.

Application. At the top of architecture, the Application represents apps that can use the functionalities
of the BLE Protocol Stack by accessing the APL

3. Study Description and Setup

The vulnerability study has been mainly focused on the possible privacy and security
vulnerabilities of the communications among agents: wearable device, mobile application and
server. So the study has been divided in two main sections: the communication between wearable
device (i.e., fitness tracker) and mobile application (i.e., in Android, iOS and others) using BLE; and

Proceedings 2018, 2, 1235 50f11

communication between mobile application and server, using Internet. In addition, the manufacturer
offers an API service for third party applications to interact with the user’s data. The API offers a
registry process that involves OAuth 2.0 protocol [17,18].

The communication between the tracker and the mobile application is handled by BLE, also
referred to as Bluetooth Smart. For sniffing the BLE communication, a passive analysis was carried out
by employing two different methods:

1. enabling the Bluetooth HCI snoop log Developer Options feature in Android phone. When this
feature is enabled, a log file (btsnoop_hci.log) is created. In this file, all the BLE HCI packets
(i.e., packets exchanged between controller and the host interface) are registered.

2. using an Ubertooth-One hardware and software (in a laptop) to monitor and decode
Bluetooth packets.

The resulting dump file in the Android phone and the traffic captured by Ubertooth were inspected
by using Wireshark. In addition, we use mobile apps such as BLEScanner and nRF Connect.

The communication between the mobile application and the server (e.g., cloud-based services)
uses HTTP /HTTPS and the OAuth 2.0 protocol for authorization. Applications to capture the traffic
were used such as Inspeckage and mitmproxy. These same tools were used for testing third party
applications. In addition, we make reverse engineering in the mobile app in order to bypass the
certificate pinning.

The whole scenario is depicted in Figure 2, where different agents interacting and a laptop with
the sniffer tools and also the Bluetooth hardware can be seen.

BLE

. * . Third party App

(|

Wearable device BLE Mobile phone =

i Manufacturer app
Fitness tracker or . >
wristbands * Otherapps (e.g., ! P

0 BLEScanner) ‘ (.—-*-(’ .
)
| ()
[| o N

__ HTTP/HTTPS £
m TP
2/
- Manufacturer
Ubertooth-One . — Server ..

mitrmprox
: & mitmproxy
WIRESHARK e [[nispeckage

B

|

B

Figure 2. Scenario for communication testing.

The study was carried out during four months approximately. In those months, we performed
different tests to assess the security of the tracker, mobile app and server communications and API.
The Table 1 shows the tests carried out in: the communication between wearable and mobile devices
(Section 4.1), the communication between mobile app and server (Section 4.2) and the API (Section 4.3).

Proceedings 2018, 2, 1235 6 of 11

Table 1. Tests carried out for each part of the study.

Study Part Tests

T1: Pairing device with Fitbit app
Wearable device—mobile application communication = T2: Pairing device with third party app
T3: Syncing with device

T4: Signing up for app

T5: Log out of app

Té6: Logging into app

T7: Editing profi le data

T8: Logging activities manually
T9: Deleting a device

T10: Pairing device with server app
T11: Syncing with device

Mobile application—server communication

T12: Signing up for app
T13: Logging into app
T14: Editing profile le data
T15: Logging activities

Third party API

The data managed by this kind of devices are related to the user, such as personal, contact and
physical activity, and to the device. Table 2 summarizes the attributes that can be managed, grouped
by basic and additional attributes. “Basic attributes” are the data given by the user when creating
an account and registering his/her device, information collected by the tracker and the technical
information about device when it synchronizes with the mobile application. “Additional attributes”
allow users to provide more information in order to enjoy additional services (e.g., associating a
Facebook or Google+ account, sending messages and logging food) or customize his/her account
(e.g., profile photos).

Table 2. Data managed by fitness trackers.

Data type Basic Attributes Additional Attributes
Gender Food log
Age Water log
Personal data (PD) Date of birth Location
Height Profile photos
Weight Alarms
. . Contacts
Contact info (CT) email Basic info from other accounts (e.g., social networks)
Steps
. . Floors
Activity data (AD) Heart rate
Sleep quality
Battery level
Device info (DI) Sync time
App info

These data represent the assets to be protected, because these are shared by all agents in the
scenario. The data can be grouped in three categories according to the sensitivity of the information:
PD, AD and DI. PD contains the personal data and contact information that allow identifying the users,
called Personally Identifiable Information. AD contains the user’s physical activity data gathered by the
wearable device. With the aggregated activity data would be more difficult to identify a user (than
using PD). DI contains information about the tracker or the user’s mobile phone, including location.

Proceedings 2018, 2, 1235 7 of 11

4. Vulnerabilities Results

4.1. Vulnerabilities in the Communication between Wearable and Mobile Devices

After analysing the pairing and synchronization processes (i.e., T1 to T3 in Table 1) between

wearable and mobile devices, using manufacturer mobile app and free apps to manage BLE connections,
the more relevant possible vulnerabilities found were:

Use of Public BDAs and General Discovery. After keeping track of the fitness tracker’s BDA, it
was found that its value did not change, which involves that it uses a Public BDA. Given its value
is fixed and unique, a user could be tracked by this identifier, violating her/his privacy, because
this information is contained in all the advertising PDUs.

In addition, the risk increases if we take into account the release of applications such as RamBLE
that scan for BLE devices in order to obtain information from their undirected advertising packets
(ADV_IND) and their SCAN_RSP. Besides, the application also stores the device’s BDA with the
geographic location at which it was detected. The information is shown graphically in a map.
This information can be obtained easily, because the tracker always uses general discovery instead
of direct discovery, even after being bonded with the mobile phone, so the ADV_IND packets are
always sent.

For this reason, devices send advertising packets and respond to scanning requests. Thus, it is
also possible to develop an app that sends SCAN_REQ messages and the wearable device answers
with a SCAN_RESP. The response contains information about device: its name and the current
transmission power. This information may be used to plan a denial of service attack.

This weakness is emphasized by the fact that the tracker always sends undirected advertising
instead of direct discovery (i.e., ADV_DIRECT_IND), even after being bonded with a mobile phone.
So devices are constantly sending advertising packets and responding to scanning requests.
In this sense, a DoS attack can be led.

Not use of BLE Secure Connections. Sniffing the pairing of the application and the tracker, we
can observe that the out of band (OOB) method is used to set the keys. This is one of the legacy
methods, Secure Simple Pairing model, and it is not using the long term key derivation using
ECDH as proposed by BLE security specification. Figure 3 shows the capture of the bonding
negotiation where the OOB method is identified. The key is generated only once, in this initial
pairing and stored in the bonding with the device. Despite the new BLE security specification
is not followed, we were able to see its own encryption and integrity (24-bit CRC) to protect the
Bluetooth connection.

Connections with unbounded devices. We also found the device accepts connections from
non-bonded devices, similar to results of other studies. This process leaks several details about
services and UUIDs, and BDAs. Armed with the UUID of a device, an attacker can monitor the
tracker even if a private BDA was used. Even worse, we found that using a Bluetooth scanner
application, e.g., BLEScanner or nRF Connect, we were able to modify the value of some attributes,
for instance the tracker name. This can at least confuse the user (see Figure 4).

Proceedings 2018, 2, 1235

8of 11

211 7.487661 controller host HCT_EVT 15 Rcvd LE Meta (LE Read Remote Used Features Complete)

212 7.4@89431 host controller HCI_CMD 18 Sent LE Connection Update

213 7.416237 controller host HCI_EVT 7 Rcvd Command Status (LE Connection Update)

214 7.422318@ LgElectr_5a:96:84 (Ne.. c9:48:b2:26:4e:9c (Char.. SMP 16 Sent Pairing Request: Bonding, MITM, Initiator Key(s): LTK IRK CSRK , ..
215 7.456829 c9:4@:b2:26:4e:9¢c (Ch.. LgElectr 5a:96:84 (Nexu.. ATT 18 Rcvd Find By Type Walue Request, GATT Primary Service Declaration, Han..
216 7.5@5082 controller host HCI_EVT 8 Rcvd Mumber of Completed Packets

217 7.514207 LgElectr_5a:96:84 (Ne.. c9:48:b2:26:4e:9c (Char.. ATT 16 Sent Read By Group Type Request, GATT Primary Service Declaration, Han..
218 7.553914 controller host HCI_EVT 8 Rcvd Number of Completed Packets

219 7.554921 €9:4@8:b2:26:4e:9c (Ch.. LgElectr 5a:96:84 (Nexu.. SMP 16 Rcvd Pairing Response: Bonding, No MITM, Initiator Key(s): LTK IRK CSR..
228 7.555776 LgElectr 5a:96:84 (Ne.. c9:48:b2:26:4e:9c (Char.. ATT 14 Sent Find By Type Value Response

221 7.556722 host controller HCT CMD 4 Sent LE Rand

»> Frame 219:
» Bluetooth
» Bluetooth HCI H4
> Bluetooth HCI ACL Packet
» Bluetooth L2CAP Protocol
“ Bluetooth Security Manager Protocol
Opcode: Pairing Response (@x82)
I0 Capability: No Input, No Output (@x@3)
Q0B Data Flags: O0B Auth. Data Not Present (8x@88)
v AuthReqBonding, No MITM
. ..B1 = Bonding Flags: Bonding (@x1)
.@.. = MITM Flag: @
Max Encryption Key Size: 16
v Initiator Key DistributionLTK IRK CSRK
. ...1 = Encryption Key (LTK): 1
= Id Key (IRK): 1
«... .1l.. = Signature Key (CSRK): 1
“~ Responder Key DistributionlLTK IRK CSRK
= Encryption Key (LTK): 1
= Id Key (IRK): 1
= Signature Key (CSRK): 1

16 bytes on wire (128 bits), 16 bytes captured (128 bits)

o ¢

Figure 3. Bonding Negotiation.

Devices DISCONNECT

BONDED ADVERTISER

| ——
C€9:40:B2:26:4E:9C

Write Value

CONNECTED

NOT BONDED CEEN

SERVER :

Generic Attribute
UUID: 0x1801
PRIMARY SERVICE

Cancel

Generic Access
UUID: 0x1800
PRIMARY SERVICE

Device Name y 4
UUID: 0x2A00

Properties: READ, SIGNED

WRITE, WRITE, WRITE NO RESPONSE

Value: Test

Appearance 1 4
UUID: 0x2A01

Properties: READ, SIGNED

WRITE, WRITE, WRITE NO RESPONSE

G Test Testigo Testimonio &

1 2 3 4 5 6 7 .8 9
gwer tyuiop

[+

asdf gh j k I

1]

Peripheral Preferred 3
Connection Parameters
UUID: 0x2A04

Properties: READ, WRITE

|»

4 zxcvbnnma@a
® S

Figure 4. Non-Bonded but connected device altering attributes.

2123

All of these possible vulnerabilities are related to the assets PD and DI: users’ location and
device information.

4.2. Vulnerabilities in the Communication between Mobile Devices and Server

The mobile device runs an app which communicates with the server. The application plays the
role of forward proxy. In this part of the study, eight tests related with signing, logging, edition, pairing
and synchronization processes were carried out (i.e., T4 to T11 in Table 1).

Proceedings 2018, 2, 1235 9of 11

In order to inspect the security of this communication we used a proxy to inspect the traffic
between them. The proxy was configured to intercept and impersonate the server to the client, issuing
certificates on the fly according to the incoming requests from the devices. The certificates have to
be issued according to the expected CommonName, the A1tName, and the SNI (Server Name Indication)
requested by the client at the initiation of the connection.

The CA (Certification Authority) certificate used by the proxy to dynamically issue the certificates
has to be installed in the mobile device. This should be enough to have access to the clear text
communications of the app with the server. Luckily, certificate pinning has been deployed in the app.
This extra security measure allows the app to refuse a secure connection when the certificate passed by
the server does not match the known certificate by the app.

To bypass the certificate pinning, the app has to be altered to remove the certificate pinning
support. We download and disassemble the apk, locate the java methods where the certificate pinning
is used. Inserting a return void statement at the beginning of the method suffices to bypass the
certificate checking and thus the certificate pinning. We repackage the app and install it locally in the
mobile device. Due to the mechanism of verification of certificates in Android when apps are installed,
it is relatively easy to reassemble an app (.apk file), even using other certificates (i.e., fake certificates)
different from developer.

At this point, we have access to the clear text communications between the mobile device and
the server. We start the app and inspect the exchanged traffic for vulnerabilities and security issues.

o Authentication credentials sent in cleartext. In Figure 5 we observe that the app uses HTTP
Basic authentication to get an OAuth authentication token. This means the app is sending
the email and password in cleartext to the server. Even though the connection is protected by
TLS, the password should not be sent in cleartext. At minimum it should be hashed together
with a nonce freshly generated for each connection to avoid pass the hash attacks. This fact
compromises the assets PD, AD and DI.

o Misuse of OAuth2. The app also makes use of bearer tokens without protection mechanisms
(e.g., digital signature, hashes, or others). OAuth mechanism does not require proof of possession
of any key. The problem is that these tokens are extensively used by the apps without integrity
means and they are valid for 8 hours, though according to RFC 6750 [19] they should be protected
with a MAC (Message Authentication Code) and the maximum validity should be 1 h.

Besides, once the tracker has been setup, the app is used to forward tracking information to the
server. We have changed for instance the parameter btlename and the server does not complain.
The Bluetooth device address and the ID of the user are sent encoded and kept constant, even
after app reinstallation, making easier to track a particular user. This lack of privacy is worse if
we look at the stats sent data such as user’s phone Android ID or the Wi-Fi SSID. These data
can compromise the user privacy, and should not be sent to the servers.

e Unauthorized data share. Regarding data shared with third parties, together with data related
to the tracker, the app also sends data regarding the mobile device (e.g., manufacturer, OS
version, screen, paired devices and so on). This again should be explicitly authorized by the user.
We must also say that the ID sent for these purposes is a different one from the ID used within
the manufacturer servers.

Proceedings 2018, 2, 1235 10 of 11

2017-08-13 12:27:52 https:// /oauth2/token HTTP/2.0
application/json 453b 1.01s
Request
android-api.
Basic MjI4VINSOjQ1MDY4YTc2MzcOMDRMYZzcS50GEYMDhKNmMMXZJISZTRM
application/x-www-form-urlencoded
188
zip

okhttp/3.6.0
URLEncoded form
1clns2894@gmail.com
master2016
activity heartrate location nutrition profile settings sleep social weight check_mfa mfa_ok
password

Figure 5. Requesting OAuth token with cleartext passwd.

4.3. Vulnerabilities in the Third Party API

Finally, we developed an application to test the public API for third party applications. In this
part, we carried out four tests related with signing, logging and edition (i.e., T12 to T15 in Table 1).

We found some insecurities that may be improved, such as allowing the use of WebView, which
does not offer the same level of protection as normal browsers, and can be easily faked. The API only
supports access tokens but lacks support for OAuth Refresh tokens. Finally, we have detected that
callback URLs do not force HTTPS, allowing MiTM attacks.

5. Conclusions and Future Work

This study shows that manufacturers have keep improving the design of their tracker devices.
In spite of several improvements being introduced in security at Bluetooth Low Energy, they have not
yet implemented them. It conveys possible vulnerabilities related to privacy and security. For many
companies, security is only present at the latest phases of the design and during the maintenance
period of devices, when they have to react to vulnerabilities and related issues. We expect the new EU
Regulations on Data Protection and Privacy will help manufacturers understand the importance of
security and introduce security in the whole design cycle, from the beginning of the design, to the end
of the supported life. Some recommendations to correct the found main issues are:

e Regarding the tracker-application communication, public BDAs are used. They should be replaced
by private BDAs, or frequently changing addresses. The device should establish connections with
trusted devices, not accepting connections with unbounded devices, nor making it possible the
modification of some attribute values like the device name. Besides once the device is bonded
with a trusted device, the tracker should only use Bluetooth Direct Discovery. General discovery
brings no advantage here, only snooping the Bluetooth devices in the neighbourhood, which is
not something meaningful for the purpose of the tracker, and for user side, no user data should be
transmitted to the manufacturer servers.

e Regarding the application-server communication, the bearer tokens should be adjusted to an hour
or less, according to the standard. The use of cleartext passwords should be avoided and replaced
by some of the many available schemas. At least, a hash including a session nonce. We could not
assess the internal security measures of the manufacturer servers, but cleartext password storage
must be avoided. Also the hardware identifiers should be avoided at this level of communication
(tracker BDA), and explicit user consent is needed for each specific type of information that the
app is transmitting (e.g., user Android ID, Wi-Fi SSID, observed Bluetooth connections). This data
makes easier profiling users, and may get more cyber-criminal attention.

e Finally, the manufacturer should improve the analysis of third party applications, effectively
avoiding the access with WebView, banning callbacks to HTTP URLs, and implementing OAuth
refresh tokens where the third party should be authorized every 30 days at maximum.

We are going to perform the study in other fitness trackers and to analyse privacy and security
issues related to the use of data by third party applications and activity-based social networks.

Proceedings 2018, 2, 1235 11 of 11

Funding: This work was supported by the Spanish Ministry of Science and Innovation (MINECO) through the
project INRISCO: Incident Monitoring in Smart Communities (TEC2014-54335-C4-2-R) and MAGOS: Inteligencia
de fuentes abiertas para “Smart Grids” (TEC2017-84197-C4-1-R).

References

1. Rahman, M.; Carbunar, B.; Banik, M. Fit and Vulnerable: Attacks and Defenses for a Health Monitoring
Device. arXiv 2013, arXiv:1304.5672.

2. Apvrille, A. Geek usages for your Fitbit Flex tracker. In Proceedings of the Hack.lu Conference, Luxembourg,
20-22 October 2015.

3. Cyr, B,; Horn, W,; Miao, D.; Specter, M. Security Analysis of Wearable Fitness Trackers (Fitbit); Technical Report;
Massachusetts Institute of Technology (MIT): Cambridge, MA, USA, 2013.

4. Clausing, E., Schiefer, M.; Losche, U. Internet of Things Security Evaluation of nine Fitness Trackers; Technical
Report; AV TEST: The Independent IT-Security Institute: Magdeburg, Germany, 2015.

5. Margaritelli, S. Nike+ FuelBand SE BLE Protocol Reversed; Technical Report; Evilsocket.net. 2015.

6. Unucheck, R. How I Hacked My Smart Bracelet; Technical Report; Kaspersky Lab: Moscow, Russia, 2015.

7. Schellevis, M.; Jacobs, B.; Meijer, C.; de Ruiter, J. Getting Access to your Own Fitbit Data; Radboud University:
Nijmegen, The Netherlands, 2016.

8. Hilts, A.; Parsons, C.; Knockel, J. Every Step You Fake: A Comparative Analysis of Fitness Tracker Privacy and
Security; Technical Report; Open Effect: Toronto, ON, Canada, 2016.

9. Fereidooni, H.; Frassetto, T.; Miettinen, M.; Sadeghi, A.R.; Conti, M. Fitness Trackers: Fit for Health but Unfit
for Security and Privacy. In Proceedings of the IEEE/ACM International Conference on Connected Health:
Applications, Systems and Engineering Technologies (CHASE), Philadelphia, PA, USA, 17-19 July 2017;
pp. 19-24. doi:10.1109/CHASE.2017.54.

10. Zhou, W,; Piramuthu, S. Security /Privacy of Wearable Fitness Tracking IoT Devices. In Proceedings of the
9th Iberian Conference on Information Systems and Technologies (CISTI), Barcelona, Spain, 18-21 June 2014.
doi:10.1109/CISTI.2014.6877073.

11. Rahman, M.; Carbunar, B.; Topkara, U. Senscrypt: A secure protocol for managing low power fitness trackers.
In Proceedings of the IEEE 22nd International Conference on Network Protocols, Raleigh, NC, USA, 21-24
Oct 2014; pp. 191-196.

12. Rieck, J. Attacks on Fitness Trackers Revisited: A Case-Study of Unfit Firmware Security. arXiv 2016,
arXiv:1604.03313.

13. Hsu, J. The Strava Heat Map and the End of Secrets, Security news, Jan 2018. Available online:
www.wired.com.

14. Pham, A.; Huguenin, K,; Bilogrevic, I.; Dacosta, I.; Hubaux, J.P. SecureRun: Cheat-Proof and Private
Summaries for Location-Based Activities. IEEE Trans. Mob. Comput. 2016, 15, 2109-2123.

15. Bluetooth SIG (Special Interest Group). Bluetooth Core Specification v4.0, 2009. Available online:
www.bluetooth.com.

16. Bluetooth SIG (Special Interest Group). Bluetooth Core Specification v5.0, 2016. Available online:
www.bluetooth.com.

17. Hardt, D. The OAuth 2.0 Authorization Framework; RFC6749; Internet Engineering Task Force (IETF): Fremont,
CA, USA, October 2012.

18. Denniss, W.; Bradley,]. OAuth 2.0 for Native Apps; REC8252; Internet Engineering Task Force (IETF): Fremont,
CA, USA, October 2017.

19. Jones, M.; Hardt, D. The OAuth 2.0 Authorization Framework: Bearer Token Usage; RFC6750; Internet

Engineering Task Force (IETF): Fremont, CA, USA, October 2012.

@ (© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1109/CHASE.2017.54
https://doi.org/10.1109/CISTI.2014.6877073
https://www.wired.com/story/strava-heat-map-military-bases-fitness-trackers-privacy
https://www.bluetooth.com/specifications/bluetooth-core-specification/archived-specifications
https://www.bluetooth.com/specifications/bluetooth-core-specification
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work and Background
	Related Work
	Bluetooth Low Energy (BLE)

	Study Description and Setup
	Vulnerabilities Results
	Vulnerabilities in the Communication between Wearable and Mobile Devices
	Vulnerabilities in the Communication between Mobile Devices and Server
	Vulnerabilities in the Third Party API

	Conclusions and Future Work
	References

