

Proceedings 2018, 2, 1230; doi:10.3390/proceedings2191230 www.mdpi.com/journal/proceedings

Proceedings

Blockchain Technologies for Private Data
Management in AmI Environments †
Tomás Robles 1, Borja Bordel 1, Ramón Alcarria 2,* and Diego Sánchez-de-Rivera 1

1 Department of Telematics Systems Engineering, Universidad Politécnica de Madrid, Madrid 28040, Spain;
tomas.robles@upm.es (T.R.); bbordel@dit.upm.es (B.B.); diego.sanchezderivera@upm.es (D.S.d.R.)

2 Department of Geospatial Engineering, Universidad Politécnica de Madrid, Madrid 28031, Spain
* Correspondence: ramon.alcarria@upm.es; Tel.: +34-91-06-73922
† Presented at the 12th International Conference on Ubiquitous Computing and Ambient Intelligence

(UCAmI 2018), Punta Cana, Dominican Republic, 4–7 December 2018.

Published: 19 October 2018

Abstract: Blockchain enables the creation of distributed ledgers as a type of database that is shared,
replicated, and synchronized among the members of a network. In this paper we analyze how
distributed ledgers can be used for empowering end-users to self-manage their own data, enabling
third parties to access those data under a cryptographic management model. We propose a use case
where both blockchain and smart contracts are employed by using cryptographic technology to
enable user empowerment of data management in AmI. Finally, we analyze strengths and
weaknesses of the proposed scenario.

Keywords: blockchain; AmI; data management; user empowerment

1. Introduction

In the Big Data era, the amount of data is continuously increasing [1], from user’s behavior [2]
to other personal data as a new key economical resource [3]. While there are a lot of clear benefits
concerning the use of Big Data technologies and the data themselves as a key resource for economy,
there is a growing concern about user’s privacy and the misuse of user’s information [4].
Organizations collect large amounts of personal and sensitive data [5]. Specifically, Ambient
Intelligence (AmI) environments require such information for providing context-aware [6] and other
personalized services to optimize corporate decisions.

Individuals have little control over the data about them that is stored and how it is used [5]. In
recent years, several controversial incidents related to privacy have been discussed on public media.
Some of the known examples are government surveillance [7], and large-scale usage of Facebook’s
data used for influencing public opinion [4], and publishing location data without suitable controls
[8].

In this context blockchain technology emerged as one promising technology for enabling a
suitable data management using the concept of public ledger updated independently by each
participant in the network. In this paper we explore how to combine the building characteristics of
blockchain technology to define, create and deploy a user-centric private data management system
in AmI environments, providing a data management preliminary solution in Ethereum and an
abstract model for authorization of IoT devices and third parties to data. In particular, we contribute
to the following objectives:

• Definition of mechanism for user empowerment on data management scenarios, by deploying
some mechanisms to store data provided by IoT devices in AmI environments, and to enable the
end-user to generate and to revoke data usage authorization for others.

Proceedings 2018, 2, 1230 2 of 11

• Definition of secure procedures in blockchain for storing and reading data for IoT devices. Data
stored on blockchain network will be provided and accessed by IoT devices with the
corresponding credentials, to avoid unauthorized usage of such data storage.

The rest of the paper is organized as follows: Section 2 introduces blockchain technology and
requirements for private data management in AmI environment; Section 3 provides a security
management scenario for AmI environments using blockchain and smart contracts; Section 4
provides an implementation for the data management functionality as a smart contract; Section 5
proposes an abstract security management model and finally Section 6 analyses the proposed
solutions and describes future developments.

2. Blockchain Technology and Data Management in AmI

In this section we analyze two main technologies for data management using blockchain
technologies. First, we review the facilities offered by blockchain technologies and finally we go
through technologies and requirements related to data management in AmI environments.

2.1. Blockchain Technologies

Blockchain emerged as a new technology with the success of cryptocurrencies [9]. A blockchain
is a tamper-evident, shared digital ledger that records information (transactions and data) in a public
or private peer-to-peer system. Distributed to all member nodes in the system, the ledger records, in
an immutable sequential chain of cryptographic hash-linked blocks, the history of asset exchanged
that take place between the peers (users, programs or contracts) in the network, preserving the
validated list of transactions and the resulting data values associated to these transactions.

All the confirmed and validated transaction blocks are linked and chained from the beginning
of the chain to the most current block, using the proof of work as the consensus mechanism for
preserving the chain integrity. Blockchain offers several key characteristics that can be used for data
management in AmI environment [10]:

Data storage: blockchain packs data and transactions in a single structure. A block maintains the
record of all transactions occurred across the system. It prevails as an immutable information in the
blockchain.

Most relevant benefits of blockchain are fraud protection (prevents the unauthorized changes or
malicious tampering, as changes are not possible), easy management (all accepted transactions can
be found in the network in a sequential way), ownership (security is maintained by the means of keys
and signatures), and lack of mediators (decreasing the settlement times of many transactions and
speeding up the process).

Data Distribution: the owner has direct control of the data by using his/her private key. The key
enables owner authentication and the owner can provide access rights to the data to whomever he
wants.

Most relevant benefits of blockchain regarding data distribution are fault tolerance and attack
resistance (decentralized networks are less likely to fail because of their lack of single point of failure),
lower transaction costs (by the elimination of intermediaries and overhead costs for exchanging
assets) and transparency and auditability (as all transactions are immutable and public).

Data integrity and authenticity: Anyone trying to alter a transaction stored inside a block would
need an almost impossible amount of resources (memory, computing power and bandwidth) to alter
sufficient number of nodes. Thus, the system cannot be easily corrupted. Guaranteeing the
authenticity of data is very important; organizations and individuals have sensitive documents,
assets or contracts that must be protected [11]. When data, in any from, is stored, a hash is created for
this information piece. This mechanism that works for a single piece of information (data, file,
document, etc.) can be extended to a large amount of data using technologies such as the Merkle tree
or hash tree.

Smart contracts: Smart contracts [12] are cryptographic “boxes” containing programming logic
that is executed if certain conditions are met. They offer more power than Bitcoin scripting because

Proceedings 2018, 2, 1230 3 of 11

of the added powers of Turing-completeness, value-awareness, blockchain-awareness and state [13].
Smart contracts can function as ‘multi-signature’ accounts, so that funds are spent only when a
required percentage of people agree, and also can store data and provide utility to other contracts
(similar to how a software library works).

2.2. Data Management in AmI Environments

Data management is a key element in any AmI architecture [14]. A central element regarding
data management in these scenarios is privacy, as the right of every person to control access to his/her
own personal information [15].

Jøsang et al. [16] explain that the fundamental privacy protection principle is that exposure of
personal information should be minimized. Translating this concept to personal data protection, this
means that the fewer parties involved in the management of the identity information the better.

Possible weakness in security of a wireless system should be recognized so that the right
measures can be taken to improve the user’s confidence. AmI systems require data privacy, security,
and physical security. A very small carelessness in the AmI security could really have a big impact
to everyone involved [16]. Problems like authorization, authentication, and accounting are important
while considering the data security. Different devices and standards for communications should be
studied properly. Security requirements in AmI systems are studied from the data integrity,
authentication and confidentiality point of view.

Data integrity requirement should ensure that the transmitted data from source to destination is
unaltered by any means. The data could be intercepted in transit and can be modified [17]. Therefore,
data integrity checks (by fingerprinting) should be performed so that the receiver could confirm that
the data is not altered.

Data authentication is the process ensuring that the provider is truly the provider of the data
[17,18]. The provider should be authenticated so that the attacker pretending to be the sender would
not be able to fake the communication.

Data confidentiality is the process of hiding the information so that only the recipients could know
of what’s being provided by the provider. It can be achieved by using the data encryption algorithms
defined in symmetric [16,18] (shared common key) and asymmetric (public-private key pairs)
models.

3. Security Management Scenario for User Data in AmI Environments

In this section we present a security management scenario for user data in AmI Environments.
The scenario proposed in Figure 1 integrates several actors: end-users, IoT devices controlled by the
user, the third parties willing to access the private information provided by IoT devices, all around
the blockchain infrastructure that is going to provide secure access to the data controlled by end-
users.

Figure 1. Security management scenario for user data in AmI environments.

Proceedings 2018, 2, 1230 4 of 11

In this scenario users manage their own security keys (1), so they can generate suitable
credentials, using cryptographic techniques, to be provided to the IoT devices (1.a), and they also are
going to generate credentials (1.b) for third parties in order to enable them to access data of the user
under strict conditions. Both credentials should be translated to the blockchain infrastructure so they
can enforce the application of the rules defined by the end-user regarding data storage and data
access. Cryptographic techniques suitable for supporting this are under development. A security
model for such proposal is presented in Section 5.

IoT devices, by using security keys, are able to store information into the blockchain (2). End-
users feed the blockchain with suitable information, then the smart contract can apply security
restrictions to store and retrieve data from the blockchain, while it provides a full data log. Third
parties requesting end-user authorization for using private data can access those data stored in the
blockchain (3). In this case blockchain is going to provide access log based on blockchain
characteristics.

4. Implementing Data Management on Blockchain

In this section we present an implementation for the data management functionality in
blockchain. We use Ethereum, an open software platform based on blockchain technology that
enables developers to build and deploy decentralized applications. Ethereum allows us the
implementation of smart contracts, written in Solidity, a contract-oriented programming language.

We provide an implementation of a data management procedure to handle user’s private data
in Ethereum, by using the smart contract capabilities.

The smart contract of Figure 2 identifies several key elements:
The first line (1) of the contract defines the version of Solidity used for coding this smart contract.
This defines the name of the smart contract as the name of the class in most object-oriented

programming languages.
As one of the attributes of the class we can define data structures (5). In this case we define an

array of uint (a short of integer) values for defining the data storage structure.
Another attribute (7) is defined for storing the address of authorized persons for using this

contract. In this case for the sake of simplicity only the address of the owner is included in this list of
authorized people, although a function can be added to include and remove authorized persons.

The function to generate events to be sent out of the contract is defined (9). Events are the natural
way for sending information to users and other external applications.

One specific method (11) is used for checking authorization. In this simple case we checked that
the sender of a request is included in the list of authorized users defined at Point 4.

We define the constructor of the smart contract (19).
Function in line 23 enables a data reading. The data of the position pos is provided to anybody

that requests the data. In this case no filter is applied.
Function in line 28 enables the storage of a data. A new data is stored in the next position of the

array data. In this case only users meeting the requirements imposed by authorized function can use
this function (in this example only the owner of the contract).

As a summary, this smart contract defines a data storage structure, with a list of authorized
addresses (i.e., external users) that can use the functions getData and setData of this contract. An
authorized function is defined for evaluating the access right of each invocation to these functions.
This simple contract provides some solutions to common problems in AmI environments regarding
data management, such as integrity (data storage structure in unaltered), authentication (the sender
of a request must be included in the list of authorized users) and confidentiality (smart contract
providers and consumers are only recognized by their public key).

Proceedings 2018, 2, 1230 5 of 11

Figure 2. Smart contract for data management.

5. An Abstract Model for Authorization of IoT Devices and Third Parties to Access a
Smart Contract

In this section we present a general cryptographic model that can be used for generating
credentials to enable IoT devices and third parties to store and to read data from the smart contract
managed by the end-user. This model can be implemented for generating the credential, providing
suitable information to the smart contract to enable them through the modifiers function to filter the
access to the data repository.

In the proposed scenario, where keys must be distributed among an undefined (and probably
unlimited) number of entities (including devices, third party users and stakeholders), encryption
schemes based on symmetric keys have been proved to be highly inefficient and costly. Public Key
Infrastructures (PKI), on the other hand, can be the answer to these problems, but the identity
assurance of the key owner then becomes a new issue to solve.

Nonetheless, the proposed technique describes a high-level application which should be
supported by existing communication technologies, so among all components in the scenario it is
supposed a robust, reliable and highly available communication infrastructure. Therefore, problems
associated to the private information protection during transmissions and to mechanisms to
guarantee the identity of the different entities exchanging keys (which are addressed at link, network
and transport level) are assumed to be resolved by the underlying communication infrastructure.

By default, blockchain networks are transparent and all data stored in the smart contracts are
accessible by every user in the system. The use of these networks, however, enables all the community
sharing information to maintain an agreed and unmodifiable record about the accesses and
transactions made over these data. Nevertheless, organizations and owners (usually) need to stablish
controls about who can obtain their information or data (systems must be permissioned) [19].
Therefore, incorporating a certain level of privacy in blockchain is required.

In this first work and use case, AmI data are stored in the smart contracts, but in future and
advances works this information could be maintained in a database whose access in controlled by a
smart contract. In that way, a record about the transactions involving the AmI data will be created,
but information could be modified more dynamically and efficiently than in solution using only

Proceedings 2018, 2, 1230 6 of 11

blockchain technologies. In conclusion, smart contracts only should manage the authorization of
users to obtain data, which is the solution to be developed in this section.

In our application scenario, smart contracts, the blockchain network, third-party entities and
sensitization devices typically communicate using TCP/IP technologies and REST-like petitions (a
REpresentational State Transfer architecture). Thus, for all elements it is possible to stablish a secure
communication channel with any other component in the system through protocols such as
Hypertext Transport Protocol Secure (HTTPS), which includes solution for both privacy information
protection and identity certification.

Therefore, in this section we are only discussing about the “intrusion tolerance” and “active
protection” policies at application level. In other words, we are only describing a solution to
guarantee that only authorized entities are allowed to communicate (though the described secure
channels) with the proposed deployment.

Various special characteristics of blockchain networks and smart contract must be considered:

• First, all attributes, parameters and variables in a smart contract are public. In that way, any user,
program or device may access to any information about authorized entities that is stored in the
smart contract.

• Besides, sensitization devices are usually resource constraint and cannot perform complex
algorithms. On the other hand, devices are also typically unmanaged and geographically sparse,
so it is not safe to store information enough to break the security of the system in the ROM
memory of these devices (as it could be physically accessed by unauthorized people) [20].

• Finally, in PKI, keys cannot be sent through public networks (even if secure channels are
stablished), except if a piece of information is not transmitted to maintain the security of the
entire solution.

In general, a final user ܷ who deploys a smart contract to manage information in AmI
environments, employs an original and key ݇௨. Then, it is proposed a digital signature scheme (DSS)
described by the 3-tuple ൫࣡௦௜௚, ࣭௦௜௚, ௦ࣰ௜௚൯. The first element is a key generator, the second one is the
signature function, and the third one is the verification procedure. From this DSS we only require to
be homomorphic.

Homomorphic encryption is a special encryption type where applying any algebraic operation
on the original information is equivalent to apply also an algebraic operation (not necessary the same)
on the encrypted information (1). Many existing DSS schemes and encryptions algorithms are
homomorphic (such ElGamal technique [21]). ࣭௦௜௚(݉ଵ ⊛݉ଶ) = ࣭௦௜௚(݉ଵ) 	⊚ ࣭௦௜௚(݉ଶ)	 (1)

being ⊛,⊚	 algebraic operations.
The proposed security model is showed on Figure 3. As can be seen, using the signature

generator, the private user key ݇௨ and a n-tuple of additional parameters to increase the generator
entropy, it is constructed a user operation key ݇௨∗ . This user operation key is a 2-tuple, including (as
any PKI) two different keys: a private user operation key ݇௨ି௣௩∗ and a public user operation key ݇௨ି௣௕∗ (2).

Proceedings 2018, 2, 1230 7 of 11

Figure 3. Security model.

࣡௦௜௚(݇௨, ሼ݌ଵ, … , (௡ሽ݌ = ݇௨∗ = ൫݇௨ି௣௩∗ , ݇௨ି௣௕∗ ൯ (2)

In order to authorize an AmI device to interact with a deployed smart contract, a device key ݇ௗ
is constructed. This device key is generated using a second generator ℱ௦௜௚ that presents vector
structure (3). It receives as parameters the private user operation key ݇௨ି௣௩∗ and a n-tuple of
additional parameters to increase the generator entropy. As result, the generator produces the device
key and a piece of information ݉ௗ, which is unique for each device, and is called “homomorphic
constant”. ℱ௦௜௚	൫݇௨ି௣௩∗ , ሼݎଵ, … , ௡ሽ൯ݎ = ሼ݇ௗ,݉ௗሽ = ൛൫݇ௗି௣௩, ݇ௗି௣௕൯,݉ௗൟ (3)

As in the previous case, the device key is composed of a public device key ݇ௗି௣௩	 and a private
device key ݇ௗି௣௕. In this proposal, it is required the private device key, the private user operation
key and the homomorphic constant to be related through an equivalence in the digital signature
algorithm of message ݉ (4). Although this relation may be difficult to fulfil, it must be noted that
employed private keys during the digital signature process are different; thus, both signature
functions are slightly different and the homomorphic can be obtained and found even if collision-
resistant hash functions are used during the signature procedure. The resistance to the birthday
attack, any case, is preserved. Any case, the calculation of this constant may be costly, so it is quite
impossible to obtain several of them in a row to attack an entire AmI system.

࣭௦௜௚௞ೠష೛ೡ∗ 	(݉) = ࣭௦௜௚௞೏ష೛ೡ	(݉ௗ ⊛݉) (4)

being ⊛	an algebraic operation.
At this point, and considering that the selected encryption scheme is homomorphic, it is possible

to rewrite the signature operation of message ݉ in terms of a new parameter that is unique for each

Proceedings 2018, 2, 1230 8 of 11

AmI device, ݉ௗ௦௜௚; and that corresponds to the signed homomorphic constant using the private device
key (5).

࣭௦௜௚௞ೠష೛ೡ∗ 	(݉) = ࣭௦௜௚௞೏ష೛ೡ	(݉ௗ ⊛݉) = ࣭௦௜௚௞೏ష೛ೡ	(݉ௗ) 	⊚	࣭௦௜௚௞೏ష೛ೡ	(݉) = =	݉ௗ௦௜௚ ⊚	࣭௦௜௚௞೏ష೛ೡ	(݉)
being ⊛,⊚	 algebraic operations

(5)

Then, in the smart contract (blockchain network) only two parameters are stored: the public user
operation key ݇௨ି௣௕∗ , and the ݉ௗ௦௜௚ parameter for each authorized device. On the other hand, to the
authorized device, it is only sent the private device key ݇ௗି௣௩. In order to the smart contract to accept
a data from an AmI device, it must send the corresponding information ݉ together with the
signature ࣭௦௜௚௞೏ష೛ೡ	(݉). Then, in the blockchain network, and using the properties of homomorphic
encryption, the signature is verified using only data stored in the smart contract (6). Only if the AmI
device employs a valid key during the digital signature procedure, the signature could be validated
using the public user operation key and parameter ݉ௗ௦௜௚. In that way, if signature is verified, the
received information is accepted as the remote device is authorized to store data.

௦ࣰ௜௚௞ೠష೛್∗ ቆ࣭௦௜௚௞ೠష೛ೡ∗ 	(݉)ቇ = 	 ௦ࣰ௜௚௞ೠష೛್∗ ൬݉ௗ௦௜௚ ⊚	࣭௦௜௚௞೏ష೛ೡ	(݉)൰ (6)

This approach presents several important advantages. First, the smart contract does not store
any private key or device key, which would be publicly accessible. Besides, as the authorization
procedure is based on the signature of the collected data, pattern recognition techniques or statistical
attacks are not successful as hash functions are not invertible. On the other hand, devices do not store
a complete key, only the private key of a KPI, so some types of cyberattacks (such as Denial of Service)
are also impossible, as nobody can encrypt a message using the private device key which is protected
by the user. As keys are generated by the user, strong long-length keys could be employed, as
resource constraint devices are not a problem to employ complex key generators.

Algorithm 1 shows the entire authorization mechanism for AmI devices.

Algorithm 1 Authorization mechanism for AmI devices
user executes:
 ൫݇௨ି௣௩∗ , ݇௨ି௣௕∗ ൯ 	← 	࣡௦௜௚()
 ൛൫݇ௗି௣௩, ݇ௗି௣௕൯,݉ௗൟ ← 	ℱ௦௜௚()
 ݉ௗ௦௜௚ ← ࣭௦௜௚௞೏ష೛ೡ	(݉ௗ)	
 user stores ݇௨ି௣௕∗ , ݉ௗ௦௜௚ in the smart contract
 user sends ݇ௗି௣௩ to AmI device
AmI device executes:
 AmI device collects information ݉
ݏ ← ࣭௦௜௚௞೏ష೛ೡ	(݉)
 AmI device sends ݉, to the smart contract ݏ
smart contract executes:

	ℎݐݑܽ ← ௦ࣰ௜௚௞ೠష೛್∗ ൬݉ௗ௦௜௚ ⊚	࣭௦௜௚௞೏ష೛ೡ	(݉)൰

 if auth then
 ݉ is stored
 end if

Finally, we must discuss how to authorize third-party entities to access to the data stored in the
smart contract. The same strategy previously presented for AmI devices could be also employed, if
desired. However, in this case, as these entities will be remote, keys are not recommended to be

Proceedings 2018, 2, 1230 9 of 11

directly computed by the user. Instead of that a token-based solution is proposed. The user will
produce for each third-party a token ܶ using a specific token generator ࣡௧௢௞ which receives as
parameters the public user operation key and a n-tuple of additional parameters to increase the
generator entropy (7). The token is sent to the authorized third-party. ࣡௧௢௞൫݇௨ି௣௕∗ , ሼݍଵ, … , ௡ሽ൯ݍ = ܶ (7)

On the other hand, using the key generator, the third-party creates a new key ݇௧ named as
“third-party key” (8). The user receives, then, from the third-party the public third-party key ݇௧ି௣௕,
and stores it (with the corresponding token) in the smart contract. ࣡௦௜௚(ሼݏଵ, … , (௡ሽݏ = ݇௧ = ൫݇௧ି௣௩, ݇௧ି௣௕൯ (8)

Then, to access to certain data in the smart contract, the third-party should send (with the data
request) the authorization token signed with the private third-party key ݇௧ି௣௩. If this signature is
verified, then, the third-party is authorized to access to data (9).

௦ࣰ௜௚௞೟ష೛್ ൬࣭௦௜௚௞೟ష೛ೡ	(ܶ)൰ (9)

Algorithm 2 shows the entire authorization mechanism for third-party. As can be seen, in this
algorithm only required information to manage privacy and user authorizations is stored in smart
contracts. The storage and recuperation of AmI data should be developed in a different algorithm. If
data are stored in blockchain networks, they should be encrypted before being written, in order to
preserve their privacy.

Algorithm 2 Authorization mechanism for third-party
User executes:
 ܶ	 ← 	࣡௧௢௞()
 user waits for the public third-party key ݇௧ି௣௕
 user receives the public third-party key ݇௧ି௣௕
 user stores ܶ, ݇௧ି௣௕ in the smart contract
Third-party executes:
 ൫݇௧ି௣௩, ݇௧ି௣௕൯ ← 	࣡௦௜௚()	
 Third-party sends ݇௧ି௣௕ to user
 ௦ܶ௜௚ ← 	࣭௦௜௚௞೟ష೛ೡ	(ܶ)	
 Third-party sends ܶ, ௦ܶ௜௚ to the smart contract
Smart contract executes:
	ℎݐݑܽ ← ௦ࣰ௜௚௞೟ష೛್൫ ௦ܶ௜௚൯
 if auth then
 ݉ is stored
 end if

6. Conclusions and Future Work

In this paper we analyzed the problems related to data management by end-users in AmI
environments and developed a user-centric private data management infrastructure.

Based on the analysis of blockchain, smart contracts and AmI environments, we designed one
scenario where end-users can use their own secure keys for deriving cryptographic information that
can be translated to both IoT devices and third parties. Using this cryptographic information, which
is also managed by the smart contract, the IoT devices and third-parties are able to use the data
repository according to explicit permissions granted by the end-users. Those permissions can be
changed dynamically, when required, by the end-user.

The proposed contract is only an example of how to provide some solutions to common
problems in AmI environments regarding data management, such as integrity (data storage structure

Proceedings 2018, 2, 1230 10 of 11

in unaltered), authentication (the sender of a request must be included in the list of authorized users)
and confidentiality (smart contract providers and consumers are only recognized by their public key).

Although the proposed smart contract fulfills many conditions of our scenario, it offers some
relevant drawbacks, based on blockchain’s basic design principles: every data stored in the smart
contract is publicly readable when it appears in a public transaction, the cost of storing data is very
high, and the list of authorized parties is also publicly available. For solving these limitations, we
provide a security approach for user authorization so that smart contracts do not store any private
key or device key avoiding security problems related to the public availability of the information.

We can conclude from the initial work presented in this paper, that blockchain technology
combined with smart contract enable the end-users to own and manage the data generated by IoT
devices in AmI environment. However, some problems arise in the provision of a public blockchain
infrastructure such as the one provided by Ethereum. The main problem is that public networks do
not provide means to effectively restrict read access to data, as all persistent data in a contract is
readable to anyone even without the provision of access functions in Solidity. Thus, it is still required
to deploy complex cryptographic solutions for avoiding problems of transparency related to
blockchain and to link the blockchain with external devices in order to automatically store
information in the system. Therefore, external data repositories are required to create hybrid
solutions where benefits of blockchain networks (traceability of data transactions) are combined with
the efficient and private access and storage of data. Other contributions related to these limitations,
such as external storage capabilities and integrity (Merkle tree [22]) and data anonymity (Kademilia
[23]) techniques will be studied in future works.

Author Contributions: The contributions described in this work are distributed among the authors in the way
that follows: T.R. proposed and developed the paper’s idea, B.B. proposed the security model, R.A. contributed
to the theoretical formalization and paper redaction, and D.S. implemented smart contract for data management
function.

Funding: Borja Bordel has received funding from the Ministry of Education through the FPU program (grant
number FPU15/03977). Additionally, the research leading to these results has received funding from the Ministry
of Economy and Competitive-ness through SEMOLA project (TEC2015-68284-R) and from the Autonomous Re-
gion of Madrid through MOSI-AGIL-CM project (grant P2013/ICE-3019, co-funded by EU Structural Funds FSE
and FEDER).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Carron, C.; Morris, A.; Percival, R. Big data and the internet of things. In Magazine Motion 2016 of Norton
Rose Flubright; Norton Rose Flubright: London, UK, 2016.

2. Schroepfer, M. Chief Technology Officer of Facebook. An Update on Our Plans to Restrict Data Access on
Facebook. Available online: https://newsroom.fb.com/news/2018/04/restricting-data-access/ (accessed on
4th April 2018).

3. Schwab, K.; Marcus, A.; Oyola, J.O.; Hoffman, W.; Luzi, M. Personal data: The emergence of a new asset
class. In An Initiative of the World Economic Forum; World Economic Forum: Cologny, Switzerland, 2011.

4. The Verge. The Cambridge Analytical Scandal, Understanding Facebook’s Data Privacy Debacle. Available
online: https://www.theverge.com/2018/4/10/17165130/facebook-cambridge-analytica-scandal (accessed
on 16th October 2018).

5. Martin, K.D.; Borah, A.; Palmatier, R.W. Data Privacy: Effects on Customer and Firm Performance. J. Mark.
2017, 81, 36–58.

6. Acampora, G.; Cook, D.J.; Rashidi, P.; Vasilakos, A.V. A Survey on Ambient Intelligence in Health Care.
Proc. IEEE 2013, 101, 2470–2494, doi:10.1109/JPROC.2013.2262913.

7. Ball, J. Nsa’s prism surveillance program: How it works and what it can do. The Guardian, 2013. Available
online: https://www.theguardian.com/world/2013/jun/08/nsa-prism-server-collection-facebook-google
(accessed on 16th October 2018).

8. Hern, A. Fitness Tracking App Strava Gives Away Location of Secret US Army Bases. In BBC News.
Available online: https://www.bbc.com/news/technology-42853072 (accessed on 16th October 2018).

Proceedings 2018, 2, 1230 11 of 11

9. Narayanan, A.; Bonneau, J.; Felten, E.; Miller, A.; Goldfeder, S. Bitcoin and Cryptocurrency Technologies: A
Comprehensive Introduction; Princeton University Press: Princeton, NJ, USA, 2016.

10. Techracers, “4 Key Features of Blockchain”. Available online: http://www.techracers.com/blockchain-key-
features (accessed on 16th October 2018).

11. Tapscott, D.; Tapscott, A. Blockchain Revolution: How the Technology Behind Bitcoin Is Changing Money,
Business, and the World; Penguin Publishing Group: London, United Kingdom, 2017.

12. Ethereum Community. Ethereum Homestead Documentation; Release 0.1. Available online: http://www.ethdocs.
org/en/latest/ (accessed on 16 October 2018).

13. Dameron, M. Beigepaper: An Ethereum Technical Specification. Available online: https://github.com/
chronaeon/beigepaper/ (accessed on 16 October 2018).

14. Murabet, A.E.; Abtoy, A.; Touhafi, A.; Tahiri, A. Ambient Assisted living system’s models and
architectures: A survey of the state of the art. J. King Saud Univ. Comput. Inf. Sci. 2018, doi:10.1016/j.jksuci.
2018.04.009.

15. Dey, N.; Ashour, A.S.; Amira, S. Ambient Intelligence in Healthcare: A State-of-the- Art. Glob. J. Comput.
Sci. Technol. 2017, 17, 19–28.

16. Jøsang, A.; Zomai, M.A.; Suriadi, S. Usability and Privacy in Identity Management Architectures. In
Proceedings of the Fifth Australasian Symposium on ACSW Frontiers, Ballarat, Australia, 30 January–2
February 2007; pp. 143–152.

17. Qu, H.; Cheng, J.; Cheng, Q.; Wang, L.Y. WiFi-Based Telemedicine System: Signal Accuracy and Security.
Int. Conf. Comput. Sci. Eng. 2009, 2, 1081–1085.

18. Adekunle, A.A.; Woodhead, S.R. On Efficient Data Integrity and Data Origin Authentication for Wireless
Sensor Networks Utilising Block Cipher Design Techniques. In Proceedings of the Third International
Conference on in Next Generation Mobile Applications, Services and Technologies (NGMAST ‘09), Cardiff,
Wales, UK, 15–18 September 2009; pp. 419–424.

19. Alcarria, R.; Bordel, B.; Martín, D.; De Rivera, D.S. Rule-based monitoring and coordination of resource
consumption in smart communities. IEEE Trans. Consum. Electron. 2017, 63, 191–199.

20. Mareca, M.P.; Bordel, B. Improving the complexity of the Lorenz dynamics. Complexity 2017, 2017,
doi:10.1155/2017/3204073.

21. Schnorr, C.P.; Jakobsson, M. Security of signed ElGamal encryption. In International Conference on the Theory
and Application of Cryptology and Information Security; Springer: Berlin/Heidelberg, Germany, 2000; pp. 73–89.

22. Merkle, R.C. A Digital Signature Based on a Conventional Encryption Function. Advances in Cryptology—
CRYPTO ‘87. Lect. Notes Comput. Sci. 1988, 293, 369.

23. Maymounkov, P.; Mazieres, D. Kademlia: A peer-to-peer information system based on the xor metric. In
Peer-to-Peer Systems; Springer: Berlin, Germany, 2002; pp. 53–65.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

