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Abstract: Blue Low Energy technology is playing an important role nowadays in ubiquitous 
systems, being the beacons a key element. The configuration of parameters related to the beacons, 
such as their transmission power or their advertising interval should be studied in order to build 
fingerprinting indoor positioning systems based on this technology as accurate as possible. In this 
work, we study the impact and the interplay of those parameters in static indoor positioning as well 
as the orientation effect in the calibration phase. To reduce the time of data collection, a semi-
automatic system is introduced. 
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1. Introduction 

Bluetooth Low Energy (BLE) is increasingly used in indoor positioning systems, both as a single 
technology and in combination with other technologies [1–3]. In the fingerprinting method, the user’s 
position is characterized by the signal pattern detected from each BLE transmitter or beacon [2–4]. 
Fingerprinting method consists in two phases: calibration (or offline) and positioning (or online). In 
the calibration phase, it is necessary to construct a database (reference fingerprint database) for a set 
of points of known positions (reference points). In that database, each reference element or fingerprint 
consists of the coordinates of the reference points, the Received Signal Strength (RSS) or the 
measurement of the power present in the radio signal received by each beacon, the orientation in 
which these RSS readings have been taken, etc. In the positioning phase, users in an unknown 
position obtain the RSS values for different beacons (target fingerprints) and compare these RSS 
values with those stored in the reference fingerprint database. By means of some matching algorithm, 
such as Weighted K-Nearest Neighbor (WKNN), users ultimately obtain the coordinates of their 
position. 

Accuracy in fingerprinting indoor positioning systems based on BLE is currently a major 
concern because there are some factors that might affect it: those related to signal emitters or beacons, 
such as the advertising interval (how often the beacon transmits), the transmission power (the 
expected power at 1 m), because the maximum range of the broadcasted signal depends on it and 
because the RSS suffer interferences, reflections, etc., the BLE channel, or those environmental-related 
[4,5,6]. In addition, one of the biggest drawbacks in the fingerprinting method is that site surveys or 
calibration campaigns are time consuming [7]. 
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Studying the influence of all these parameters and their inter-relation is a very arduous task due, 
for example, to the amount of data to be handled. A possible way of solution would be the use of 
semi-autonomous or autonomous systems in charge of data collection that would allow deepening 
these studies. Due to mobile devices do not distinguish between the three BLE channels and the 
aggregate signal may lead to reduced positioning accuracy, this type of device has not been used in 
this work [3]. 

To start studies of this type we will test a semi-autonomous system in a reduced environment. 
The main contributions of this work are: 

• We provide a study on those parameters related to the configuration of beacons that can affect 
the positioning accuracy. 

• We also study the impact on accuracy by increasing the number of orientations in the 
fingerprinting calibration phase. 

• We present a new semi-automatic system that, not only facilitates those studies mentioned 
above, but also shortens the duration of data collection. 

This paper is organized in six sections: Section 2 reviews related works, Sections 3 and 4 will describe 
material and methods and the experimental setup. Section 5 shows the results of the experiments carried 
out and, finally, the conclusions and future lines of work are presented in Section 6. 

2. Related Works 

There are many works on indoor positioning based on BLE: within the specific category of those 
works based on the fingerprinting method, we may mention that Faragher et al. [1] were among the 
first to conduct experimental tests of fine-grained BLE positioning and a detailed study into the key 
parameters for accurate indoor positioning using the BLE radio signals. Kajioka et al. [8] 
demonstrated the viability of positioning through the received signal strength of BLE beacons using 
fingerprinting and squared Euclidean distance for template matching. Zhu et al. [9] proposed a 
complete positioning method and a series of optimizations to improve positioning accuracy. Faragher 
et al. [10] explored the use of BLE beacons for fingerprint positioning and demonstrated an 
improvement over Wi-Fi positioning. Fard et al. [11] provided a more accurate, cost-efficient 
approach to the indoor positioning of mobile devices using the iBeacon protocol, concluding that 
more training data do not always yield higher accuracy. 

In relation to works on the study of parameters related to beacons or those related with the 
environment, we may mention those of Castillo-Cara et al. [12,13], where they identify in a simple 
setup the main system parameters to be taken into account on the design of BLE4.0 beacons-based 
indoor localization mechanisms, and explore two parameters: transmission power and physical 
characteristic of the scenario. Lu et al. [14] adjusted iBeacon transmission power to increase BLE 
signal differences in indoor environments. In Sie’s et al. work [15] beacons emit at low transmission 
power level to limit the estimation error; each beacon transmits with multiple power levels to increase 
the utilizing efficiency. de Blasio et al [3] studied the impact of the orientation in the positioning phase 
and the impact of BLE protocols and channels, using 40 distance metrics in order to minimize 
fluctuations and degradation factors and obtain the greatest possible accuracy and precision; they 
also studied the impact of sampling time, in both calibration and positioning phases. 

He et al. [16] investigated the problem of beacon deployment for unambiguous user positioning; 
they theoretically proved a series of performance bounds on the number of required beacons, and 
formulated a novel integer linear program that jointly determines the beacon positions along with 
their power levels and broadcast intervals. Pelant et al. [17] created a Ray-Launching based 
simulation model to study the performance of BLE technology in indoor localization, where RSS 
fingerprinting map was created based on theoretical and measurements results; their results show 
that accuracy highly depends on the number of sectors in the environment and on the number of 
beacons considered.  
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3. Material and Methods 

Four Accent Systems iBKS 105 BLE beacons were deployed in an environment described in next 
section. To collect those BLE signals, an Asus N56J laptop with a Nordic Semiconductor nRF51 BLE 
dongle were used. The dongle was fixed on a LEGO EV3 [18] unit (see Figure 1) and connected to the 
laptop port via a USB cable. 

 
Figure 1. Design of the “orienting” device or semi-automatic data collection system. The BLE dongle 
and the USB cable that connects it to the laptop are not shown in the figure. 

The EV3 unit had the role of orienting the dongle in a horizontal plane at any angle between 0° 
and 360° with increments of 1°. The EV3 unit was fixed to a table with wheels, being the orientation 
of the table fixed at all times (see Figure 2a,b). 

The sniffing software employed was Nordic Semiconductor ble-sniffer win-1.0.1-1111 together with 
Wireshark 2.6.0. The data collection process is initiated through a batch file that controls the orienting 
device and calls the sniffing software. 

 
(a) 

 

(b) 

Figure 2. The orienting device: (a) General view mounted on the table showing connections to the 
laptop and its height to the ground; (b) Close view with the BLE dongle and the USB cable that 
connects it to the laptop. 
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Both in calibration and positioning phase, the same laptop, dongle and software were used. 
WKNN was the pattern-matching algorithm used to compare fingerprints of both calibration and 
positioning phase. WKNN is an improvement on the classic Nearest Neighbor (NN) and K-Nearest 
Neighbor (KNN) algorithms [4]. Reference points obtained in the calibration phase, which are close 
to test points obtained in the positioning phase, should have a higher weight than reference points 
that are far away. The estimated coordinates ሺ𝑥௘, 𝑦௘ሻ  of the test points are calculated using the 
formula: ሺ𝑥௘, 𝑦௘ሻ ൌ ∑ ሺ𝑥௜, 𝑦௜ሻ ∙ 𝑤௜௞௜ୀଵ∑ 𝑤௜௞௜ୀଵ       𝑤௜ ൌ 1𝑑௜ (1) 

where ሺ𝑥௜, 𝑦௜ሻ are the coordinates of the k reference points and 𝑤௜ are the weights for each distance 𝑑௜. The distance/similarity metrics employed in this paper were Euclidean, Mahalanobis and Pearson 
Correlation [19,20]. 

4. Experimental Setup 

Figure 3a shows a schematic view of the chosen scenario. The four BLE 4.x beacons deployed 
were situated on columns at a height of 2.1 m and configured with the Eddystone and iBeacon 
protocols. 

 
(a) 

 
(b) 

Figure 3. Schematic view of the scenario and testbed: (a) Dimensions of scenario and small rectangular 
testbed along with cardinal directions; (b) Representation of the axes of the chosen coordinates, along 
with beacons (blue dots), reference and test points (black circles and red crosses respectively). 

Within the aforementioned scenario, a small rectangular testbed of 4 m × 3 m was chosen with a 
grid of ten reference points and eight test points (see Figure 3b, taking the (x, y) coordinates of all 
points with a laser pointer. In both the calibration and positioning phases, measurements were taken 
without people present by means of the semi-automatic system described previously in Section 3. 

Once the raw reference fingerprints had been recorded, taking 120 samples, a small fingerprint 
database was constructed taking the mean of the maximum RSS values for each cardinal direction, 
protocol and channel [3]. In the positioning phase, a similar procedure used in the calibration phase 
was used to record at eight test points situated randomly in the grid: in this case, only eight samples 
for each protocol and channel, for each cardinal direction (and for a random orientation also) were 
taken. A smaller fingerprint database was constructed from the original: for a particular beacon, 
protocol and channel, the maximum RSS value for each orientation was calculated [3]. We guaranteed 
the coherence of the orientation in both phases using a compass. 
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5. Results 

In this work, positioning accuracy is expressed by the mean error [4,21]. For the sake of space, 
we present in this section only some accuracy results, indicating whether or not they are general 
results for all possible cases. 

As a prior consideration to the tests carried out, Figure 4 shows the graphs of the RSS vs. time 
for all protocols-channels, all four beacons in an intermediate point of the grid, setting the 
transmission power (Tx), advertising interval (Adv) and orientation. It can be seen that, since there 
are no people present in data collection, these graphs do not present large variations in the RSS 
values. 

 
Figure 4. RSS vs. time graphs in an intermediate point of the grid, for all protocols and channels, all 
four beacons, setting the transmission power to 0 dBm, advertising interval to 500 ms and orientation 
0° (equivalent to the cardinal direction East). 

With the materials and methods described in Section 3 and in the experimental environment 
described in Section 4, three tests were designed with the same beacon parameters for both the 
calibration and test phase: 

1. Test1: The objective of the first test is to set the beacons’ transmission power and varying the 
advertising interval, A, to find what value produces the best accuracy. 

2. Test2: By setting the best advertising interval, A, obtained in Test 1, the objective of the second 
test is to vary the transmission power, Tx, to find the value that produces the best accuracy 
results. 

3. Test3: Setting both the best advertising interval, A, obtained in Test1 and the best transmission 
power, Tx, obtained in Test2, the objective of the third test is to detect if incrementing the number 
of orientations in the calibration phase the accuracy results improve significantly. 

5.1. Test1 Results 

The transmission power was set to 0 dBm, taking as advertising intervals, A, the following three 
values: 300 ms, 500 ms and 950 ms. In the calibration phase, RSS values were taken in the four cardinal 
directions (E, N, W, S). In the positioning phase, RSS values were taken in the same cardinal directions 
as well as in a fifth random orientation. 
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Table 1 shows the values of the accuracy (in meters) for the iBeacon protocol, channel 37, 
different orientations, values of A (300 ms, 500 ms and 950 ms), the first three values of k and 
Euclidean distance. It can be seen that there is no single value of A that produces the best accuracy 
for all orientations. The same results occur with the rest of protocol-channel-distance combinations. 

Table 1. Accuracy (m) for iBeacon protocol, channel 37 and Euclidean distance. 

iBeacon 37 
 East (0°) North (90°) West (180°) South (270°) Random 

k/A 300 500 950 300 500 950 300 500 950 300 500 950 300 500 950 
1 1.6 1.1 1.2 1.5 1.5 1.2 1.5 1.1 1.7 1.3 1.2 1.5 0.9 1.5 1.3 
2 1.4 1.1 1.2 1.6 1.3 1.5 1.3 1.3 1.7 1.3 1.3 1.3 1.1 1.4 1.4 
3 1.5 1.3 1.3 1.6 1.3 1.6 1.3 1.3 1.5 1.4 1.3 1.3 1.3 1.5 1.4 

5.2. Test2 Results 

For this test, a value of A equal to 500 ms was taken, since it balances the sampling time and the 
battery consumption. Transmission powers were set to 0 dBm and +4 dBm. In the calibration phase, 
RSS values were taken in four cardinal directions (E, N, W, S). In the positioning phase, RSS values 
were taken in the same cardinal directions as well as in a fifth random orientation. 

Table 2 shows the values of the accuracy (in meters) for the Eddystone protocol, channel 39, 
different orientations, values of Tx, the first three values of k and Euclidean distance. It can be seen 
that, in general, Tx = +4 dBm produces the best accuracy, especially for a random orientation. The 
same results occur with the rest of protocol-channel-distance combinations. 

Table 2. Accuracy (m) for Eddystone protocol, channel 39 and Euclidean distance for two values of 
transmission power: Tx = 0 dBm and Tx = +4 dBm. 

Eddystone 39 
 East (0°) North (90°) West (180°) South (270°) Random 

k/Tx 0 +4 0 +4 0 +4 0 +4 0 +4 
1 1.1 1.1 1.9 1.6 1.3 1.4 1.4 1.4 1.7 1.0 
2 1.1 1.3 1.6 1.4 1.3 1.2 1.1 1.0 1.8 1.1 
3 1.2 1.3 1.6 1.3 1.3 1.2 1.0 1.2 1.7 1.2 

5.3. Test3 Results 

For this test, a value of A equal to 500 ms and a value of Tx equal to +4 dBm were taken. In the 
calibration phase, RSS values were taken in the four cardinal directions plus four intermediate 
directions (i.e., E, NE, N, NW, W, SW, S, SE). In the positioning phase, RSS values were taken in a 
random orientation only. 

Table 3 shows a comparison of the values of the accuracy taking four cardinal directions and 
four cardinal directions plus four intermediate directions in the calibration phase and a random 
orientation in the positioning phase. It can be clearly observed how the accuracy improves 
significantly when incrementing cardinal directions in the calibration phase. 

Table 3. Accuracy (m) for all protocols-channels and Euclidean distance, taking 4 cardinal directions 
(CD) and 4 cardinal directions + 4 intermediate directions (ID) in the calibration phase and in a 
random orientation in the positioning phase. 

 iBeacon 37 Eddystone 37 iBeacon 38 Eddystone 38 iBeacon 39 Eddystone 39 
k 4 CD 8 ID 4 CD 8 ID 4 CD 8 ID 4 CD 8 ID 4 CD 8 ID 4 CD 8 ID 
1 1.5 1.2 1.6 1.3 1.5 1.0 1.7 1.1 1.0 1.1 1.0 1.1 
2 1.6 1.3 1.6 1.3 1.4 1.2 1.4 1.2 1.2 1.1 1.1 1.1 
3 1.4 1.3 1.5 1.3 1.4 1.3 1.4 1.3 1.3 1.1 1.2 1.1 
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6. Conclusions and Future Work 

In this paper, we present different studies of static positioning that analyze the impact on the 
accuracy of parameters related to the configuration of BLE beacons, such as the transmission power, 
Tx and the advertising interval. The effect of orientation on accuracy in the calibration phase is also 
studied. To facilitate the collection of data, a semi-automatic system is presented. 

In a small 4 m × 3 m testbed and according to our results: 

• There is clearly no advertising interval value that produces the best accuracy results. 
• Best accuracies are obtained with all the beacons set to high transmission power values (Tx = + 

4 dBm). Comparing these best values with those obtained for other transmission power values, 
differences can reach values of 70 cm, especially for random orientations. 

• Better accuracy results are obtained by increasing the number of orientations in the calibration 
phase: differences can reach up to 60 cm depending on the protocol and channel. 

In this work, all accuracy results obtained are similar regardless of the distance used (Euclidean, 
Mahalanobis and Pearson Correlation) although the Euclidean distance produces slightly higher 
values: this could be due to the absence of people in the data collection and the low standard 
deviation of the RSS shown in Figure 4. 

As future lines of action, we may mention the following: develop a fully automatic system that 
allows data collection to be autonomous and that facilitates studies in different larger environments; 
include the presence of people in the data collection, mainly in the positioning phase; work with more 
transmission powers and advertising intervals, as well as the number and positioning of the beacons. 

Author Contributions: Conceptualization, Methodology and Investigation, G.d.B., A.Q.-A., J.C.R.-R., C.R.G., 
R.M.-D.Jr. 
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