Abstract

Construction of Symmetric Determinantal Representations of Hyperbolic Forms ${ }^{\dagger}$

Mao-Ting Chien
Department of Mathematics, Soochow University, Taipei 11102, Taiwan; mtchien@scu.edu.tw
\dagger Presented at Symmetry 2017 - The First International Conference on Symmetry, Barcelona, Spain, 16-18 October 2017.

Published: 3 January 2018

Let A be an n-by-n matrix. The determinantal ternary form associated to A, defined by $F(t, x, y ; A)$ $=\operatorname{det}(t I+x H+y K)$, is hyperbolic with respect to $(1,0,0)$, where $H=\left(A+A^{*}\right) / 2$ and $K=\left(A-A^{*}\right) /(2 i)$. Kippenhahn (1951) characterized the numerical range of a matrix A as the convex hull of the real affine part of the dual curve of the curve $\mathrm{F}(\mathrm{t}, \mathrm{x}, \mathrm{y} ; \mathrm{A})=0$. The Fiedler-Lax conjecture has recently been proved by Helton and Vinnikov (2007) which confirms that every hyperbolic ternary form admits a symmetric determinantal representation. In other words, for any real hyperbolic ternary form $\mathrm{F}(\mathrm{t}, \mathrm{x}, \mathrm{y})$, there exist real symmetric matrices H and K such that $\mathrm{F}(\mathrm{t}, \mathrm{x}, \mathrm{y})=\mathrm{F}(\mathrm{t}, \mathrm{x}, \mathrm{y} ; \mathrm{H}+\mathrm{iK})$. We construct real symmetric matrices for the determinantal representations of some hyperbolic ternary forms and the orbits of a point mass under central forces.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chien, M.T.; Nakazato, H. Determinantal representations of hyperbolic forms via weighted shift matrices. Appl. Math. Comput. 2015, 258, 172-181.
2. Chien, M.T.; Nakazato, H. Computing the determinantal representations of hyperbolic forms. Czechoslov. Math. J. 2016, 66, 633-651.
