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Abstract: We analytically express the loss of entanglement between the components of a quantum
device due to the generation of quantum correlations with its environment, and show that such loss
diminishes when the latter is macroscopic and displays a semi-classical behaviour. We model the
problem as a device made of a couple of qubits with a magnetic environment: this choice allows us
to implement the above condition of semi-classical macroscopicity in terms of a large-S condition,
according to the well known equivalence between classical and S→ ∞ limit. A possible strategy for
protecting internal entanglement exploiting the mechanism of domain-formation typical of critical
dynamics is also suggested.
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1. Introduction

One of the most relevant issues in the design of quantum devices is to understand how their
internal quantum components interface with the external macroscopic apparatus that allows us to
control, and ultimately make use of, these extraordinary tools. In fact, we know that entanglement
between components (hereafter dubbed “internal entanglement”) is key to the effective functioning of
quantum devices. On the other hand, the above interface is expected to imply the dynamical generation
of entanglement between the device and its environment (hereafter dubbed “external entanglement”),
be it a control system, a measuring apparatus, or just a noisy surrounding. Therefore, understanding
how internal and external entanglement depend on each other, and whether it is possible to protect
the former by reducing the latter, is important. In this work we consider a quantum device D and
the apparatus M that works as interface with the user. Although M might in principle include other
physical systems, such as a thermal bath, in this work we will not take this possibility into account.
In fact, in order to obtain an analytical description of how entanglement internal to D is affected by the
presence of M, we further restrict ourselves to the case when D is a qubit-pair and M can be described
in terms of two quantum objects with spin much larger than 1/2 (so as to make them different from
the qubits by definition).

2. The Model and Its Entanglement Properties

We study an isolated system Ψ = D + M, with D = Q1 + Q2 and M = A + B, where Q1,2 are
qubits, i.e., quantum systems whose Hilbert spaces are two-dimensional, while A, B are such that
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dimHA,B = 2SA,B + 1, with 2SA,B integer numbers much larger than unity. Overall it is dimHD = 4,
dimHM = (2SA + 1)(2SB + 1), and dimHΨ = 4(2SA + 1)(2SB + 1). In what follows the qubits
will be described by the Pauli operators σ̂i such that

[
σ̂λ

i , σ̂
µ
j

]
= i2ελµνσ̂ν

i δij, with λ(µ, ν) = x, y, z,

and i(j) = 1, 2. As for A and B, they will be represented in terms of spin operators Ŝ∗ such that[
Ŝλ
∗ , Ŝµ

#

]
= iελµνŜν

∗δ∗#, with |Ŝ∗|2 = S∗(S∗ + 1), and ∗(#) = A, B. The total system Ψ is assumed
isolated, and hence in a pure state |Ψ〉 at all time. The device is prepared in a state featuring some
internal entanglement, meaning that Q1 and Q2 are entangled. On the other hand, we take SA and SB
independent from each other, and separately coupled with D, i.e., with Q1 and Q2, via an interaction
upon which we do not make assumptions.

In this setting, the state |Ψ〉 at whatever time after the interaction starts can be written as

|Ψ〉 =
4

∑
d=1

2SA+1

∑
α=1

2SB+1

∑
β=1

gdαldβ |d〉 ⊗ |α〉 ⊗ |β〉 , (1)

where {|d〉}HD , {|α〉}HA and {|β〉}HB are orthonormal bases for the Hilbert spaces of D, A, and
B, respectively. The complex coefficients {gdα} and {ldβ} satisfy ∑dαβ |gdαldβ|2 = 1, due to the
normalization of |Ψ〉. The form (1) ensures that the state of M is separable [1], meaning that there is no
entanglement between S1 and S2. For the sake of a lighter notation and without loss of generality, we
set SA = SB = S.

Aim of the following analysis is to understand how the internal entanglement depends on the
spin-values S, particularly when the condition of large-S is enforced on both A and B. To this respect,
we remind that a spin-S system exhibits a classical-like behaviour when S → ∞ [2], which implies
the vanishing of any sort of quantum correlations, including entanglement, with other systems; we
hence expect M to disentangle from D when S increases. In order to check whether this process can
effectively protect the internal entanglement we proceed as follows.

We first conjecture that the coefficients entering the state (1) have the following form in the
large-S limit

gdαldβ =
1

N(S)
cd(1 + xdα(S))(1 + ydβ(S)) , (2)

where xdα(S) and ydβ(S) are decreasing functions of S, ∀d, α, β, such that

lim
S→∞

xdα(S) = lim
S→∞

ydβ(S) = 0 , ∀d, α, β , (3)

while N(S) is the normalization factor that goes to 1 in the large-S limit. Moreover, in order to make
our analytical results more readable, we restrict ourselves to the case when the qubit pair is confined to
the two-dimensional Hilbert subspace generated by two of the four states {|d〉}, namely |d = 3〉 = |00〉
and |d = 4〉 = |11〉 (we choose the indexes 3 and 4 to avoid confusion with the qubit labels, 1 and 2).

We can now determine the explicit expression for the concurrence CQ1Q2 relative to the state
ρD = TrM |Ψ〉 〈Ψ|, which is a proper measure [3] of the internal entanglement, i.e., the one between Q1

and Q2. Notice that the concurrence can be here used to study the internal entanglement because D is
made of a qubit-pair, i.e., the only system for which the concurrence relative to a mixed state is defined.

Referring to the state (1), using the form (2) with d = 3, 4 only, and understanding the S
dependence, we finally find

CQ1Q2 = max

{
0,

2|c3c4|
N2

∣∣∣∣∣∑α

(1 + x3α)(1 + x∗4α)∑
β

(1 + y3β)(1 + y∗4β)

∣∣∣∣∣
}

. (4)

Another useful entanglement measure that we take into consideration is the one-tangle τQ, which
quantifies the entanglement between a qubit and whatever else determines its state ρQ, according to
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τQ = 4detρQ [4]. In our setting, we use it to evaluate how much entanglement one of the two qubits of
D shares with the system made of M and the other qubit. Its explicit form reads

τQ1 =
4|c3c4|2

N4 ∑
α

|1 + x3α|2 ∑
α′
|1 + x4α′ |2 ∑

β

|1 + y3β|2 ∑
β′
|1 + y4β′ |2 = τQ2 , (5)

where the last equation follows from the symmetry of the setting w.r.t. to the swap Q1 ↔ Q2. It is
important to notice that while the concurrence CQ1Q2 quantifies just the useful internal entanglement
that allows the device D to function efficiently, the one tangle τQ1 incorporates some useless external
entanglement, and comparing the twos can help quantifying the detrimental effect of M upon the
qubit-pair entanglement, as further commented upon in the concluding section.

In order to evaluate CQ1Q2 and τQ1 from Equations (4) and (5) one has to choose the coefficients
{xdα}, and {ydβ}. In order to keep our analysis as general as possible, for each value of S, we
have repeated the calculation of both quantities for 200 times, each time using a different set of
coefficients, {x3α, x4α, y3β, y4β} randomly generated according to xiα ∈ (0, xmax] and yi,β(0, ymax] ,
i = 3, 4, ∀α, β. The average of the 200 values thus obtained for CQ1Q2 , and τQ1 , is then taken as the,
respective, proposed result. In fact, reminding the S-dependence that we have understood in the above
coefficients, we have further enforced the condition (3) by taking xmax = 1

2Sn , with n = 1, 2, 3, and the
same for ymax. As for c3 and c4 we have put them both equal to 1/

√
2.

In Figure 1 we show CQ1Q2 as a function of S, and n = 1, 2, 3. We see that, even in the worse
case, n = 1, the internal entanglement increases with S. In order to check whether a larger internal
entanglement can be actually due to a reduction of the external one, in the inset of Figure 1 we show
the difference |C2

Q1Q2
− τQ1 |, that provides an estimate of the internal-entanglement squandering due

to the onset of quantum correlations between D and M. It is clearly seen, both for n = 1 and 2, that a
large value of S prevents the above onset, resulting in an effective protection of internal entanglement.

Figure 1. CQ1Q2 as a function of S. In the inset |C2
Q1Q2

− τQ1 | as a function of S. Each line correspond
to a specific choice of xmax and ymax (see text).

3. Discussion

In the above section we have introduced the idea that taking a large value of S might help
protecting the internal entanglement, as it induces a classical-like behaviour for M, and hence a net
reduction of its quantum correlations with D. However, this argument only works if one assumes
that some constraint upon the entanglement between, say, Q1, and other quantum systems holds.
In fact, one such constraint exists and usually goes under the name of “monogamy of entanglement”,
analytically expressed by inequalities taking different forms depending on the specific case considered.
In the case of N qubits in a pure state, it is expressed by
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N

∑
i=2

C2
Q1Qi

≤ τQ1R ≤ 1 , (6)

where τQ1R is the one-tangle between Q1 and the other N − 1 qubits. Although the above expression
does not fit our situation, as we are not dealing with N qubit, we can use it as follows (we still take
SA = SB for the sake of simplicity).

In order for the physical objects that model M to be described as spin-S systems they must be
made of a set of qubits {q∗i }, with i = 1, ...N ≥ 2S and ∗ = A, B, coupled amongst themselves in
a way such that the total spin of the set keeps the constant value S. In our setting, this translates
Equation (6) into

C2
Q1Q2

+
N

∑
i=1

C2
Q1qA

i
+

N

∑
i=1

C2
Q1qB

i
≤ τQ1 ≤ 1 . (7)

Although we cannot limit the sums entering the above equation by using Equation (6) again, as this
exclusively hold for qubits in a pure state while Q1 + {qA

i } is in a mixed one, yet we can understand
that one possibility for Equation (7) to stay meaningful as S → ∞, i.e., N → ∞, is that both sums it
contains do vanish. In fact, this can be analytically demonstrated by enforcing the condition (3) into
Equations (4) and (5) via neglecting all powers of order 2 and higher in the coefficients {xdα} and
{ydβ}. This leads to

C2
Q1Q2

∼ 4(2S + 1)2|c3c4|2
N ∑

α,β

[
1 + 2Re

(
x̄1α + x̄4α + ȳ1β + ȳ4β

)]
∼ τQ1 , (8)

which implies that Q1 is entangled almost exclusively with Q2 if S→ ∞ as M becomes macroscopic,
consistently with the idea that large-S systems do not share quantum correlations [5].

This work confirms that a good strategy for protecting the internal entanglement of a quantum
device D is that of making its control/reading apparatus M to feature a semi-classical behaviour,
by this meaning that it still admits a quantum-mechanical description, so as to keep talking with
the device, but with genuinely quantum properties, such as entanglement, already on the verge of
depletion. In fact, in order to test this strategy, we are specifically considering the case when M is a
many-body spin-system dynamically driven near a quantum critical point, where the mechanism of
domain-formation might indeed induce a semi-classical behaviour as described above. Related work
is in progress.
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