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Abstract: New challenges have raised in parallel to the expansion of Building Information Modeling 
(BIM) like applying it for optimizing building design already in early stages. This implies analysis 
of many changes in building design which should be all evaluated in terms of performance but also 
in terms of uncertainty. The presented research proposes a methodology and information models 
for enabling systematic and on-demand energy simulation of many building design scenarios. 
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1. Introduction 

The building design process aims at developing a product that best fulfills the performance 
requirements of future users. To quantify them, experts typically use a variety of simulation tools 
that are well established on the market. While every project is tackled as an optimization problem 
involving multiple performance criteria, there is a growing need of rapidly evaluating, already in 
early stages, many different design options to find the best alternative. The reliability of such an 
evaluation is always a critical point because of uncertainty associated with the building design. Such 
uncertainty is related both to design unknowns reflecting the actual level of development (LOD) and 
to the stochastic nature of the building life cycle. 

This research work presents an innovative modeling approach that supports analysis of 
uncertainty by several building design options produced in a collaborative building design 
workflow. In this workflow, several disciplines share information from different data models and 
formats. This multidisciplinary information is then used as input in building energy analysis (BEA) 
for detailed results (e.g., geometry, energy infrastructure, weather, building usage…). For that 
purpose, the approach builds upon the multimodel method [1]. It enables interlinking data from 
heterogeneous domains and in different data formats into a consistent information set, called 
multimodel. This background multimodel method is extended for a broad exploration of building 
design options and their inherent uncertainty. 

 
2. Materials and Methods 

 
2.1. Multimodel Method 

nD modeling initiated the implementation of BIM, and since, many software techniques and 
tools have been developed so far. However, even if the 3D building model can be extended within a 
same system with some more informational dimensions like time and cost, it is still not sufficient to 
integrate the full amount of domain-specific information that every building project engages. Several 
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project partners  will still use  singular data  models  specifically optimized for their application 
domains. For this reason, the multimodel method was developed. 

The principle of a multimodel is to combine data models from distinct native data formats, so- 
called application models, in a single exchangeable information resource named multimodel 
container. Among application models, the IFC CAD building model [2] is commonly used as central 
model. For the energy simulation mentioned in chapter 3, additional application models complement 
this geometrical product model e.g., an energy system information model (ESIM), a library of generic 
product templates, a climate and an occupancy model. Data between the different application models 
are semantically connected and those connections are necessary for performing energy simulation. 
In order to model them, the multimodel container includes one or more link models. Their purpose 
is to explicitly associate items from different application models in links adding certain metadata that 
describe this association. Figure 1 below illustrates the content of a multimodel container. 

 

 
 

Figure 1. Schematic content of a Multimodel Container including Application Models and Link 
Models. 

 
2.2. Variation Model for an Extended Multimodel Method 

During the design process numerous changes are made by designers thus producing numerous 
model versions. In this context, we introduce the concept of variant which consists of a set of 
variations in BIM respectively multimodel data that are made with the aim of analyzing and 
comparing different design solutions. That way, the design can be optimized in an incremental 
manner thus letting the decision maker select after each analysis best design candidates with the aim 
of getting always closer to building design optima. Three types of multimodel variants were defined: 

• Design Alternatives represent building designs that contain substantial geometric and/or 
semantic differences between them e.g., a higher number of storeys, another energy system 
technology or another building shape. Those alternatives are represented by single IFC models. 

• Design variants represent design options configured on the basis of one design alternative e.g., 
different types of windows or walls. Configuring variants relies on the use of additional non- 
IFC data contained in other application models (ESIM, product templates, occupancy…). The 
content of those additional application models is then interlinked with the IFC model using link 
models. 

• Stochastic realizations are generated by a sampling service (Figure 2) on the basis of one design 
variant. They describe several scenarios of the building life cycle that depend on its aleatory 
uncertainty. Unlike design variants which are configured manually by an end user, the 
stochastic realizations are generated automatically by the sampling service. In the presented 
example, the stochastic realizations are composed of a set of time series of climate and occupancy 
variables [3]. 

 
As the amount data can increase drastically through the creation of design alternatives, variants 

and stochastic realizations, a variation model has been developed as an extension to the multimodel 
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method for describing data variations, coordinating simulations and avoiding information 
redundancy. That way, one single multimodel resource represents not only one BIM design but 
multiple design options as well as numerous scenarios induced by aleatory uncertainty. The model 
does not include domain-specific vocabulary but define only fundamental concepts for varying 
information. It can describe variations of all type of data at attribute, object, file or resource level. 

 

 
 

Figure 2. Illustration of aleatory uncertainty in the multimodel information space and both ways of 
analyzing it. 

 
3. Results 

In a use case of an office building a test collaborative design workflow has been implemented. 
After processing of multimodel information, the simulation [4] provides a set of KPI values. Below, 
the generated KPIs were the energy demand for heating (kWh/m2/year) for three design variants. 

 

 

Figure 3. Visualization of simulation results in term of energy demand for heating by three different 
design variants (Granlund Optimizer). 
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The picture lets notice substantial differences between the three variants which differ from their 
energy system technology (district heating, natural gas boiler, biomass boiler), window-to-wall ratio 
and other architectural properties. The second one shows less robustness with regard to uncertainty. 
Despite higher mean value, both other alternatives present less volatility in the yearly use of energy. 

 
4. Discussion 

In engineering two types of uncertainty are distinguished, the aleatory and the epistemic 
uncertainty. Aleatory uncertainty has a random character while epistemic uncertainty is introduced 
by unknowns. Basically, uncertainties are characterized as epistemic, if the modeler sees a possibility 
to reduce them by gathering more information. On the contrary, uncertainties are categorized as 
aleatory if the modeler does not foresee the possibility of reducing them. Considering the effect of 
uncertainty on building energy performance it is commonly recognized that three main categories of 
parameters contribute the most to energy simulation outcomes and are the most uncertain at the same 
time. These are thermo-physical properties like material properties, climate, occupancy and occupant 
behavior, which all have an intrinsic aleatory uncertainty. Besides the aleatory uncertainty, the 
design-related uncertainty associated to a certain LOD represents for its part the most contributing 
epistemic uncertainty. This uncertainty can be appraised by the amount of possible and available 
design options which will for each have different performances e.g., in terms of energy. 

The presented method offers the possibility to analyze both types of uncertainty by exploring 
their respective information spaces. The epistemic uncertainty is explored by enabling an easy 
configuration and analysis of numerous design variants. These can then be compared with each other 
against several performance criteria, thus letting a decision maker or a designer select best design 
options. Repeating such design choices within the design workflow reduces stepwise the epistemic 
design uncertainty. The aleatory uncertainty is explored by each design variant by generating 
stochastic realizations that each represent one building life cycle scenario. That way the effect of 
aleatory uncertainty on certain performance criteria can be evaluated and can even drive the design 
choices thus favoring most robust design variants. 

 
5. Conclusions 

The goal of the presented extended multimodel method is to fasten and facilitate setting and 
simulation of numerous BIM variants and uncertainties. It can be further applied to other analysis 
types e.g., sensitivity analysis or domains e.g., structural analysis, reliability analysis or 
computational fluid dynamics. Because of the high computational effort induced by numerous 
simulations, coupling the method with cloud-computing technologies represents promising 
complementary research. 
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