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Abstract: Piecewise fractional-order differential operators have received more attention in recent years
because they can be used to describe various evolutionary dynamical problems to investigate crossover
behaviors. In this manuscript, we use the aforementioned operators to investigate a mathematical model
of COVID-19. By utilizing fractional calculus, our approach aims to capture the crossover dynamics
of disease spread, considering heterogeneity and transitions between epidemic phases. This research
seeks to develop a framework using specialized mathematical techniques, such as the Caputo fractional
derivative, with the potential to investigate the crossover dynamical behaviors of the considered epidemic
model. The anticipated contribution lies in bridging fractional calculus and epidemiology, offering
insights for both theoretical advancements and practical public health interventions. In order to improve
our understanding of epidemic dynamics and support, we used MATLAB to simulate numerical results
for a visual representation of our findings. For this interpretation, we used various fractional-order
values. In addition, we also compare our simulated results with some reported results for infected and
death classes to demonstrate the efficiency of our numerical method.

Keywords: epidemic modeling; piecewise fractional-order derivative; numerical solutions

1. Introduction

Infectious diseases continue impacting a vast global population, despite ongoing
advancements in treatment and prevention. Efficient control necessitates the precise man-
agement of factors such as transmissibility, population size, contact rates, and infection
duration. One of the most important aspects of understanding and managing illness pro-
cesses is mathematical modeling, particularly when vaccination is inaccessible or during
the early stages of a disease. Recently, the study of biological models of infectious diseases
has experienced a notable surge in popularity. Numerous mathematical models in the
literature capture the dynamics of various infectious diseases. These models, like SIR
models, often use three populations at time t: recovered people R, infectious I, and suscep-
tible S. Key contributions in the early twentieth century by Ross [1], Ross and Hudson [2],
and Kermack and Mc Kendricks [3] established the groundwork for these models. An
additional compartment, called the exposed class E has been included for individuals
who have been incubated but are not yet infectious in the infection phase. The studies
in [4,5] investigated disease transmission rates using saturated, bilinear, and fractional
incidence rates. Many diseases, such as human immunodeficiency virus [6], tuberculosis [7],
influenza [8], and dengue fever [9], exhibit a variation process, potentially leading to the
emergence of multiple pathogen strains. Therefore, a multi-strain model is more effective
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in describing diseases caused by multiple epidemic strains. Previous research on the SEIR
multi-strain model assumed homogenous mixtures for all strains [10,11].

In recent times, there has been a notable surge in the exploration of definitions and
fractional derivatives. Pure mathematicians aim to expand current definitions by generaliz-
ing beyond basic power functions, incorporating a broader range of kernel functions. This
work was motivated by the need to confront the intrinsic complexity of fractional calculus,
which was previously disregarded in engineering since it appeared to be self-contained
in integer-order calculus and had no obvious geometrical or physical meaning. While
fractional calculus has ancient roots, it has only recently gained traction in mathematical
applications. The growing curiosity of humans has led to the development of new ideas,
aiding in better understanding complex challenges encountered daily. Real-world appli-
cations of fractional differential calculus principles have become apparent, especially in
situations where traditional derivatives, whether fractional- or integer-order, fall short in de-
scribing rapid changes seen in phenomena like earthquakes, weather dynamics, economic
fluctuations in developing countries, and even events within the human body.

To address these challenges, a different type of derivative known as piecewise is required
to adequately represent phenomena characterized by crossover behavior. Differential equa-
tions incorporating such piecewise derivatives find wide-ranging applications in modeling
evolution problems. The authors of [12] introduced various operators to tackle real-world
problems, offering a novel approach that effectively represents evolution phenomena expe-
riencing crossover behavior. Fractional calculus is used in many areas, including chemistry,
probability, diffusion, rheology, transport theory, and quantitative biology [13]. A recent
study investigated bilinear and non-monotonic types of incidence for infection growth in
a population using a mathematical model with two strains and two infected classes [14].
In [15], this model was examined in further detail using two non-monotonic incidence rates.
Subsequently, ref. [16] expanded these models by incorporating exposed individuals for each
strain. The authors of [17] studied a two-strain model for the mentioned infectious diseases.

To explore the concept of fractional calculus in epidemic modeling, we refer to [18–21].
For the recent advances in fractional-order mathematical models with a piecewise fractional
differential operator, we refer to [22–26].

In extending the idea of derivatives to non-integer orders, fractional calculus provides
a strong mathematical foundation that makes it possible to characterize intricate and
unusual behaviors in dynamical systems. In particular, a piecewise fractional differential
operator provides a more effective approach to investigating epidemic models compared
to ordinary differential operator because of numerous important benefits. These operators
can more precisely describe the complex dynamics seen in epidemics, such as population
heterogeneity and non-linear interactions.

Motivated by the aforementioned information, we present our approach to investigate
the fractional dynamics of an existing modified model (1) studied in [27], which is represented
by a set of ordinary differential equations (ODEs), using the advanced perspective of fractional
calculus. The authors studied the dynamics of the aforementioned COVID-19 model using
Volterra–Lyapunov matrix theory. Our goal was to extend the traditional framework by
incorporating fractional derivatives and exploring its advanced techniques to enhance our
understanding of the system’s behavior beyond the limitations of integer-order models.

dS(t)
dt

= σ −
[

β1

1 + η I(t)
I(t) + µ + γ

]
S(t),

dE(t)
dt

= γS(t) + αC(t)−
[

β2ρI(t)+µ+τ

]
E(t),

dC(t)
dt

= τE(t)− [α + µ]C(t),

dI(t)
dt

=

[
β1

S(t)
1 + η I(t)

+ β2ρE(t)− µ − δ − ϵ

]
I(t),

dQ(t)
dt

= δI(t)− [µ + k + λ]Q(t),

dD(t)
dt

= ϵI(t) + kQ(t),

dR(t)
dt

= λQ(t)− µR(t).

(1)
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With the help of the aforementioned theory, the authors established a detailed analysis
for global, and local stability. In addition, the authors used a nonstandard finite difference
method for the numerical simulations.

To extend the traditional framework by incorporating the advanced perspective of
fractional calculus, we used a piecewise fractional differential operator to investigate the
epidemic model (1). The model is formulated in terms of a piecewise derivative as follows:

PWC
0 Dϑ

t [S(t)] = σ −
[

β1

1 + η I(t)
I(t) + µ + γ

]
S(t),

PWC
0 Dϑ

t [E(t)] = γS(t) + αC(t)−
[

β2ρI(t)+µ+τ

]
E(t),

PWC
0 Dϑ

t [C(t)] = τE(t)− [α + µ]C(t),

PWC
0 Dϑ

t [I(t)] =
[

β1
S(t)

1 + η I(t)
+ β2ρE(t)− µ − δ − ϵ

]
I(t),

PWC
0 Dϑ

t [Q(t)] = δI(t)− [µ + k + λ]Q(t),
PWC
0 Dϑ

t [D(t)] = ϵI(t) + kQ(t),
PWC
0 Dϑ

t [R(t)] = λQ(t)− µR(t).

(2)

Here, the notation PWC
0 Dϑ

t is used for the piecewise fractional-order derivative with
order ϑ ∈ (0, 1]. Table 1 describes the compartments and nomenclature of model (2).

Table 1. Description of compartments and nomenclature of model (2).

Nomenclature Description
S Susceptible (the individuals at risk of being affected)
C Protected class (individuals without infection and showing no symptoms)
E Exposed (Potentially affected class)
I Infected class
Q Isolated class
D Death class
R Recovered class
µ Rate of natural mortality
σ The rate of immigration into S
η Saturation threshold
δ Isolation rate
α Rate of protective measures
β1 The rate of disease transmission through contact
β2 Infectivity rate
γ Rate of immigration from S to E
k Viral mortality rate
λ Rate of recovery from Q
τ Duration of protection
ϵ Mortality rate from infection

We show a diagram of our suggested model in Figure 1.
We present some details about the basic reproductive number and equilibrium points.

A detailed analysis for the existence theory was established using the procedure presented
in [28]. In addition, we deduced the numerical algorithm based on interpolation technique,
for which its details can be found in [29]. Various graphical representations are presented
using different fractional-order values.

Organization of the paper: Section 2 provides a thorough overview of the core concepts
required to understand the subsequent studies. Section 3 focuses on the key findings and
analysis of our study. Section 4 focuses on the technical aspects of our methodology, with
a particular focus on the numerical technique employed in the simulations. In Section 5,
we present the simulation of the numerical results graphically. Section 6 is devoted to the
discussion and comparison of numerical results. Finally, a brief conclusion of the major
findings, drawn from our research, is provided in Section 7.
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Figure 1. Schematic flowchart of model (24).

2. Preliminaries

This section highlights the crucial and pertinent themes addressed in the article. We
consider V = [0, T], V1 = [0, t1], and V2 = (t1, T].

Definition 1 ([12]). The definition of the integral operator for a differentiable function z is given
for both classical and fractional orders as follows:

PW
0 Iϑ

t (t) =


∫ t1

0
z(θ)dθ, t ∈ V1,

1
Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1z(θ)d(θ), t ∈ V2,

where PW
0 It denotes two integrals: a classical one for t ∈ V1, and a Riemann–Liouville integral for

t ∈ V2.

Definition 2 ([12]). Let z ∈ C(V ) be a differentiable function. Then, we define the required
operator as follows:

PWC
0 Dϑ

t z(t) =

{
z′(t), t ∈ V1,
C
0 Dϑ

t z, t ∈ V2.

Lemma 1 ([12]). For solving piecewise fractional-order differential equations,

PWC
0 Dϑ

t z(t) = G(t, z(t)), 0 < ϑ ≤ 1,

is defined as

z(t) =


∫ t

0
G(θ, z(θ))dθ + z0, t ∈ V1,

z(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1G(θ, z(θ))d(θ), t ∈ V2.

3. Main Results and Analysis

The quantity denoted by R0 and the equilibrium points of model (24), including both
disease-free equilibrium (DFE) and endemic equilibrium (EE), can be deduced using the
procedure described here [17,30]. When R0 < 1, it signifies stability at the DFE, suggesting
that the disease agent will fade out. Conversely, if R0 > 1, the disease is expected to endure.
Below, the basic reproduction number R0 for model (24) is presented, as in [27]:
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R0 =
σ

µ(µ + γ)(µ + α + τ)(µ + δ + ϵ)

(
β1(µ + α + τ)µ + β2(µ + α)ργ

)
. (3)

The 3D profile of R0 is presented in Figure 2 using the numerical values provided in
Table 2 for the parameters of (3).

1
0.8

β
2

0.6
0.4

0.2
00

0.5
µ

4

2

0

6

8

1

×10-3

R
0

1
0.8

α
0.6

0.4
0.2

00

0.5µ

1

2

3

0
1

×10-3

R
0

1
0.8

0.6µ0.4
0.2

00

0.5
σ

0.8

0.6

0.4

0

0.2

1

R
0

1
0.8

β
10.6

0.4
0.2

00

0.5
µ

0

0.05

0.1

0.15

0.2

1

R
0

1
0.8

0.6

ǫ
0.4

0.2
00

0.5
τ

0.01

0.02

0.03

0

0.04

1

R
0

1
0.8

0.6
δ0.4

0.2
00

0.5τ

0

0.005

0.01

0.015

1

R
0

1
0.8

δ0.6
0.4

0.2
00

0.5
ρ

0.15

0.1

0.05

0
1

R
0

1
0.8

δ0.6
0.4

0.2
00

0.5
γ

0

0.01

0.02

0.03

1

R
0

Figure 2. Three-dimensional representations of R0.

Table 2. These data sources are found in [27].

Parameter Numerical Values Parameter Numerical Values
µ 0.00992590 α 0.020
σ 0.00200 β1 0.005
η 0.02330 β2 0.0714
ϵ 0.00100 γ 0.02202643
ρ 0.1000 k 0.000123
δ 0.0290 λ 0.13978
τ 0.008 S(0) 5.93
E(0) 4.0 C(0) 1.0
I(0) 0.828596 Q(0) 26.60
D(0) 0.250 R(0) 0.8160360

The DFE and an EE points, E0 and E∗, respectively, are stated as follows:
E0 =

(
σ

µ+γ , 0, 0, 0, 0, 0, 0
)

, and E∗ follows from the particular values of S∗, E∗, C∗, Q∗, D∗,
and R∗ in term of I∗ as given below:
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S∗ =
σ(1 + η I∗)

(µ + γ) + (β1 + I∗(µ + γ)η)
,

E∗ =
I∗(µ + σ + ϵ)(β1 I∗ + (µ + γ)(1 + η I∗))− β1σI∗

β2 I∗ρ
,

C∗ =
τ(I∗(µ + σ + ϵ)(β1 I∗ + (µ + γ)(1 + η I∗))− β1σI∗)

β2ρ(α + µ)I∗
,

Q∗ =
1

(µ + k + λ)

[
δI∗

]
,

D∗ =
ϵI∗

k
,

R∗ =
λδI∗

(µ2 + µ(k + λ))
.

Existence Theory

In this section, we define the Banach space for our investigation. Consider X = J ×R7 →R,
where J = [0, τ], for 0 < t < τ < ∞, with a norm defined by

∥(S, E, C, I, Q, D, R)∥ = max
t∈J

{
|S|+ |E|+ |C|+ |I|+ |Q|+ |D|+ |R|

}
.

Then, clearly, (X, ∥.∥) is a Banach space. Now, in considering system (24) in the
piecewise fractional derivative,



PWC
0 Dϑ

t (S(t)) =


dS
dt

= σ −
[

β1

1 + η I(t)
I(t) + µ + γ

]
S(t) = Ψ1(t, S(t)), t ∈ V1,

C
0 Dϑ

t S = σ −
[

β1

1 + η I(t)
I(t) + µ + γ

]
S(t) = Ψ1(t, S(t)), t ∈ V2,

PWC
0 Dϑ

t (E(t)) =


dE
dt

= γS(t) + αC(t)−
[

β2ρI(t)+µ+τ

]
E(t) = Ψ2(t, E(t)), t ∈ V1,

C
0 Dϑ

t E = γS(t) + αC(t)−
[

β2ρI(t) + µ + τ

]
E(t) = Ψ2(t, E(t)), t ∈ V2,

PWC
0 Dϑ

t (C(t)) =


dC
dt

= τE(t)− [α + µ]C(t) = Ψ3(t, C(t)), t ∈ V1,

C
0 Dϑ

t C = τE(t)− [α + µ]C(t) = Ψ3(t, C(t)), t ∈ V2,

PWC
0 Dϑ

t (I(t)) =


dI
dt

=

[
β1

S(t)
1 + η I(t)

+ β2ρE(t)− µ − δ − ϵ

]
I(t) = Ψ4(t, I(t)), t ∈ V1,

C
0 Dϑ

t I =
[

β1
S(t)

1 + η I(t)
+ β2ρE(t)− µ − δ − ϵ

]
I(t) = Ψ4(t, I(t)), t ∈ V2,

PWC
0 Dϑ

t (Q(t)) =


dQ
dt

= δI(t)− [µ + k + λ]Q(t) = Ψ5(t, Q(t)), t ∈ V1,

C
0 Dϑ

t Q = δI(t)− [µ + k + λ]Q(t) = Ψ5(t, Q(t)), t ∈ V2,

PWC
0 Dϑ

t (D(t)) =


dD
dt

= ϵI + kQ = Ψ6(t, D(t)), t ∈ V1,

C
0 Dϑ

t D = ϵI + kQ = Ψ6(t, D(t)), t ∈ V2,

PWC
0 Dϑ

t (R(t)) =


dR
dt

= λQ − µR = Ψ7(t, R(t)), t ∈ V1,

C
0 Dϑ

t R = λQ − µR = Ψ7(t, R(t)), t ∈ V2.

(4)
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Theorem 1. The solution of (4) is given by

S(t) =


S0 +

∫ t

0
Ψ1(θ, S(θ))dθ, t ∈ V1,

S(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Ψ1(θ, S(θ))dθ, t ∈ V2,

E(t) =


E0 +

∫ t

0
Ψ2(θ, E(θ))dθ, t ∈ V1,

E(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Ψ2(θ, E(θ))dθ, t ∈ V2,

C(t) =


C0 +

∫ t

0
Ψ3(θ, C(θ))dθ, t ∈ V1,

C(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Ψ3(θ, C(θ))dθ, t ∈ V2,

I(t) =


I0 +

∫ t

0
Ψ4(θ, I(θ))dθ, t ∈ V1,

I(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Ψ4(θ, I(θ))dθ, t ∈ V2,

Q(t) =


Q0 +

∫ t

0
Ψ5(θ, Q(θ))dθ, t ∈ V1,

Q(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Ψ5(θ, Q(θ))dθ, t ∈ V2,

D(t) =


D0 +

∫ t

0
Ψ6(θ, D(θ))dθ, t ∈ V1,

D(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Ψ6(θ, D(θ))dθ, t ∈ V2,

R(t) =


R0 +

∫ t

0
Ψ7(θ, R(θ))dθ, t ∈ V1,

R(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Ψ7(θ, R(θ))dθ, t ∈ V2.

(5)

Proof. Lemma 1 makes it simple to acquire the equivalent form (6).

We now outline a few assumptions in light of (4) as follows:

Hypothesis 1 (H1). For fixed real values KΨi > 0, i = 1, 2, ..., 7 at z, ẑ ∈ X,

|Ψi(t, z)− Ψi(t, ẑ)| ≤ KΨi [|z − ẑ|.

Hypothesis 2 (H2). For fixed real values cΨi , dΨi > 0, i = 1, 2, ..., 7, one has

|Ψi(t, ẑ)| ≤ cΨi + dΨi |ẑ|.

Here, we define the operator

∇ = (∇1,∇2,∇3,∇4,∇5,∇6,∇7) : X → X

using Theorem 1 as follows:
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

∇1(S) =


S0 +

∫ t

0
Ψ1(θ, S(θ))dθ, t ∈ V1,

S(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Ψ1(θ, S(θ))dθ, t ∈ V2,

∇2(E) =


E0 +

∫ t

0
Ψ2(θ, E(θ))dθ, t ∈ V1,

E(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Ψ2(θ, E(θ))dθ, t ∈ V2,

∇3(C) =


C0 +

∫ t

0
Ψ3(θ, C(θ))dθ, t ∈ V1,

C(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Ψ3(θ, C(θ))dθ, t ∈ V2,

∇4(I) =


I0 +

∫ t

0
Ψ4(θ, I(θ))dθ, t ∈ V1,

I(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Ψ4(θ, I(θ))dθ, t ∈ V2,

∇5(Q) =


Q0 +

∫ t

0
Ψ5(θ, Q(θ))dθ, t ∈ V1,

Q(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Ψ5(θ, Q(θ))dθ, t ∈ V2,

∇6(D) =


D0 +

∫ t

0
Ψ6(θ, D(θ))dθ, t ∈ V1,

D(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Ψ6(θ, D(θ))dθ, t ∈ V2,

∇7(R) =


R0 +

∫ t

0
Ψ7(θ, R(θ))dθ, t ∈ V1,

R(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Ψ7(θ, R(θ))dθ, t ∈ V2.

(6)

Here, we define some quantities using maxt∈[0,T] |S(t)| ≤ S0, maxt∈[0,T] |E(t)| = Ẽ,
and maxt∈[0,T] |I(t)| = Ĩ :

KΨ1 = β1 Ĩ + µ + γ, KΨ2 = β2ρ Ĩ + µ + τ,

KΨ3 = α + µ, KΨ4 = β1S0 + β2ρẼ + µ + δ + ϵ, (7)

KΨ5 = µ + κ + λ, KΨ6 = 0, KΨ7 = µ.

Theorem 2. In utilizing Hypothesis 1 (H1), the coupled system (4) has a unique solution, provided
that the following conditions are satisfied:

max
{

t1KΨi ,
(T − t1)

ϑ

Γ(ϑ + 1)
KΨi

}
= ΩΨi ,t1,T < 1,

where

max
(

KΨ1 , KΨ2 , KΨ3 , KΨ4 , KΨ5 , KΨ6 , KΨ7

)
= KΨi .

Proof. Using (6), one has

∥∇1(S)−∇1(Ŝ)∥ ≤


KΨ1 t1∥S − Ŝ∥, t ∈ V1,

KΨ1(T − t1)
ϑ

Γ(ϑ + 1)
∥S − Ŝ∥, t ∈ V2,

(8)

∥∇2(E)−∇2(Ê)∥ ≤


KΨ2 t1∥E − Ê1∥, t ∈ V1,

KΨ2(T − t1)
ϑ

Γ(ϑ + 1)
∥E − Ê∥, t ∈ V2,

(9)
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∥∇3(C)−∇3(Ĉ)∥ ≤


KΨ3 t1∥C − Ĉ∥, t ∈ V1,

KΨ3(T − t1)
ϑ

Γ(ϑ + 1)
∥C − Ĉ∥, t ∈ V2,

(10)

∥∇4(I)−∇4( Î)∥ ≤


KΨ4 t1∥I − Î∥, t ∈ V1,

KΨ4(T − t1)
ϑ

Γ(ϑ + 1)
∥I − Î∥, t ∈ V2,

(11)

∥∇5(Q)−∇5(Q̂)∥ ≤


KΨ5 t1∥Q − Q̂∥, t ∈ V1,

KΨ5(T − t1)
ϑ

Γ(ϑ + 1)
∥Q − Q̂∥, t ∈ V2,

(12)

∥∇6(D)−∇6(D̂)∥ ≤


KΨ6 t1∥D − D̂∥, t ∈ V1,

KΨ6(T − t1)
ϑ

Γ(ϑ + 1)
∥D − D̂∥, t ∈ V2,

(13)

∥∇7(R)−∇7(R̂)∥ ≤


KΨ7 t1∥R − R̂∥, t ∈ V1,

KΨ7(T − t1)
ϑ

Γ(ϑ + 1)
∥R − R̂∥, t ∈ V2.

(14)

Now, adding (8)–(14), we obtain

∥∇(S, E, C, I, Q, D, R) − ∇(Ŝ, Ê, Ĉ, Î, Q̂, D̂, R̂)∥ (15)

≤



t1KΨi∥(S, E, C, I, Q, D, R)− (Ŝ, Ê, Ĉ, Î, Q̂, D̂, R̂)∥,

t ∈ V1,

(T − t1)
ϑ

Γ(ϑ + 1)
KΨi∥(S, E, C, I, Q, D, R)− (Ŝ, Ê, Ĉ, Î, Q̂, D̂, R̂)∥,

t ∈ V2.

Again, from (16), we have

∥∇(S, E, C, I, Q, D, R) − ∇(Ŝ, Ê, Ĉ, Î, Q̂, D̂, R̂)∥ (16)

≤ ΩΨi ,t1,T∥(S, E, C, I, Q, D, R)−∇(Ŝ, Ê, Ĉ, Î, Q̂, D̂, R̂)∥.

Therefore, the system under consideration has a unique solution.

Theorem 3. In utilizing Hypothesis 2 (H2), the suggested coupled system (4) possesses at least one
solution within a bounded, closed, and convex subset:

Um =

{
(S, E, C, I, Q, D, R) ∈ X : ∥(S, E, C, I, Q, D, R)∥ ≤ m

}
, where m > 0.

Proof. Let us define an operator

F = (F1,F2,F3,F4,F5,F6,F7) : Um → Um

by
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

F1(S) =


S0 +

∫ t

0
Ψ1(θ, S(θ))dθ, t ∈ V1,

S(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Ψ1(θ, S(θ))dθ, t ∈ V2,

F2(E) =


E0 +

∫ t

0
Ψ2(θ, E(θ))dθ, t ∈ V1,

E(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Ψ2(θ, E(θ))dθ, t ∈ V2,

F3(C) =


C0 +

∫ t

0
Ψ3(θ, C(θ))dθ, t ∈ V1,

C(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Ψ3(θ, C(θ))dθ, t ∈ V2,

F4(I) =


I0 +

∫ t

0
Ψ4(θ, I(θ))dθ, t ∈ V1,

I(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Ψ4(θ, I(θ))dθ, t ∈ V2,

F5(Q) =


Q0 +

∫ t

0
Ψ5(θ, Q(θ))dθ, t ∈ V1,

Q(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Ψ5(θ, Q(θ))dθ, t ∈ V2,

F6(D) =


D0 +

∫ t

0
Ψ6(θ, D(θ))dθ, t ∈ V1,

D(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Ψ6(θ, D(θ))dθ, t ∈ V2,

F7(R) =


R0 +

∫ t

0
Ψ7(θ, R(θ))dθ, t ∈ V1,

R(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Ψ7(θ, R(θ))dθ, t ∈ V2.

(17)

Then, from (17), we have

∥F1(S)∥ =


S0 +

∫ t

0
∥Ψ1(θ, S(θ))∥dθ, t ∈ V1,

S(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1∥Ψ1(θ, S(θ))∥dθ, t ∈ V2,

∥F2(E)∥ =


E0 +

∫ t

0
∥Ψ2(θ, E(θ))∥dθ, t ∈ V1,

E(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1∥Ψ2(θ, E(θ))∥dθ, t ∈ V2,

∥F3(C)∥ =


C0 +

∫ t

0
∥Ψ3(θ, C(θ))∥dθ, t ∈ V1,

C(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1∥Ψ3(θ, C(θ))∥dθ, t ∈ V2,

∥F4(I)∥ =


I0 +

∫ t

0
∥Ψ4(θ, I(θ))∥dθ, t ∈ V1,

I(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1∥Ψ4(θ, C(θ), I(θ))∥dθ, t ∈ V2,

∥F5(Q)∥ =


Q0 +

∫ t

0
∥Ψ5(θ, Q(θ))∥dθ, t ∈ V1,

Q(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1∥Ψ5(θ, Q(θ))∥dθ, t ∈ V2,

∥F6(D)∥ =


D0 +

∫ t

0
∥Ψ6(θ, D(θ))∥dθ, t ∈ V1,

D(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1∥Ψ6(θ, D(θ))∥dθ, t ∈ V2,

∥F7(R)∥ =


R0 +

∫ t

0
∥Ψ7(θ, R(θ))∥dθ, t ∈ V1,

R(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1∥Ψ7(θ, R(θ))∥dθ, t ∈ V2.

(18)

By simplifying and employing Hypothesis 2 (H2), we derive from (18) as follows:
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

∥F1(S)∥ ≤


|S0|+ t1

[
cΨ1 + dΨ1∥S∥

]
≤ |S0|+ t1

[
cΨ1 + dΨ1 m

]
, t ∈ V1,

|S(t1)|+
(T − t1)

ϑ

Γ(ϑ + 1)

[
cΨ1 + dΨ1∥S∥

]
≤ |S(t1)|+

(T − t1)
ϑ

Γ(ϑ + 1)

[
cΨ1 + dΨ1 m

]
, t ∈ V2,

∥F2(E)∥ ≤


|E0|+ t1

[
cΨ2 + dΨ2∥E∥

]
≤ |E0|+ t1

[
cΨ2 + dΨ2 m

]
, t ∈ V1,

|E(t1)|+
(T − t1)

ϑ

Γ(ϑ + 1)

[
cΨ2 + dΨ2∥E∥

]
≤ |E(t1)|+

(T − t1)
ϑ

Γ(ϑ + 1)

[
cΨ2 + dΨ2 m

]
, t ∈ V2,

∥F3(C)∥ ≤


|C0|+ t1

[
cΨ3 + dΨ3∥C∥] ≤ |C0|+ t1

[
cΨ3 + dΨ3 m

]
, t ∈ V1,

|C(t1)|+
(T − t1)

ϑ

Γ(ϑ + 1)

[
cΨ3 + dΨ3∥C∥

]
≤ |C(t1)|+

(T − t1)
ϑ

Γ(ϑ + 1)

[
cΨ3 + dΨ3 m

]
, t ∈ V2,

∥F4(I)∥ ≤


|I0|+ t1

[
cΨ4 + dΨ4∥I∥

]
≤ |I0|+ t1

[
cΨ4 + dΨ4 m

]
, t ∈ V1,

|I(t1)|+
(T − t1)

ϑ

Γ(ϑ + 1)

[
cΨ4 + dΨ4∥I∥

]
≤ |I(t1)|+

(T − t1)
ϑ

Γ(ϑ + 1)

[
cΨ4 + dΨ4 m

]
, t ∈ V2,

∥F5(Q)∥ ≤


|Q0|+ t1

[
cΨ5 + dΨ5∥Q∥

]
≤ |Q0|+ t1

[
cΨ5 + dΨ5 m

]
, t ∈ V1,

|Q(t1)|+
(T − t1)

ϑ

Γ(ϑ + 1)

[
cΨ5 + dΨ5∥Q∥

]
≤ |Q(t1)|+

(T − t1)
ϑ

Γ(ϑ + 1)

[
cΨ5 + dΨ5 m

]
, t ∈ V2,

∥F6(D)∥ ≤


|D0|+ t1

[
cΨ6 + dΨ6∥D∥

]
≤ |D0|+ t1

[
cΨ6 + dΨ6 m

]
, t ∈ V1,

|D(t1)|+
(T − t1)

ϑ

Γ(ϑ + 1)

[
cΨ6 + dΨ6∥D∥

]
≤ |D(t1)|+

(T − t1)
ϑ

Γ(ϑ + 1)

[
cΨ6 + dΨ6 m

]
, t ∈ V2,

∥F7(R)∥ ≤


|R0|+ t1

[
cΨ7 + dΨ7∥R∥

]
≤ |R0|+ t1

[
cΨ7 + dΨ7 m

]
, t ∈ V1,

|R(t1)|+
(T − t1)

ϑ

Γ(ϑ + 1)

[
cΨ7 + dΨ7∥R∥

]
≤ |R(t1)|+

(T − t1)
ϑ

Γ(ϑ + 1)

[
cΨ7 + dΨ7 m

]
, t ∈ V2,

(19)

In making use of (T − t1)
ϑ ≤ Tϑ, with max{cΨi} = cΨ, max{dΨi} = dΨ, and

i = 1, 2, 3, 4, 5, 6, 7, (19) yields that


∥F1(S)∥ ≤


m, where m ≥ |S0|+ t1cΨ

1 − t1dΨ
, t ∈ V1,

m, where m ≥ |S(t1)|Γ(ϑ + 1) + TϑcΨ

Γ(ϑ + 1)− TϑdΨ
, t ∈ V2,

∥F2(E)∥ ≤


m, where, m ≥ |E0|+ t1cΨ

1 − t1dΨ
, t ∈ V1,

m, where, m ≥ |E(t1)|Γ(ϑ + 1) + TϑcΨ

Γ(ϑ + 1)− TϑdΨ
, t ∈ V2,

∥F3(C)∥ ≤


m, where, m ≥ |C0|+ t1cΨ

1 − t1dΨ
, t ∈ V1,

m, where, m ≥ |C(t1)|Γ(ϑ + 1) + TϑcΨ

Γ(ϑ + 1)− TϑdΨ
, t ∈ V2,

∥F4(I)∥ ≤


m, where, m ≥ |I0|+ t1cΨ

1 − t1dΨ
, t ∈ V1,

m, where, m ≥ |I(t1)|Γ(ϑ + 1) + TϑcΨ

Γ(ϑ + 1)− TϑdΨ
, t ∈ V2,

∥F5(Q)∥ ≤


m, where, m ≥ |Q0|+ t1cΨ

1 − t1dΨ
, t ∈ V1,

m, where, m ≥ |Q(t1)|Γ(ϑ + 1) + TϑcΨ

Γ(ϑ + 1)− TϑdΨ
, t ∈ V2,

∥F6(D)∥ ≤


m, where, m ≥ |D0|+ t1cΨ

1 − t1dΨ
, t ∈ V1,

m, where, m ≥ |D(t1)|Γ(ϑ + 1) + TϑcΨ

Γ(ϑ + 1)− TϑdΨ
, t ∈ V2,

∥F7(R)∥ ≤


m, where, m ≥ |R0|+ t1cΨ

1 − t1dΨ
, t ∈ V1,

m, where, m ≥ |R(t1)|Γ(ϑ + 1) + TϑcΨ

Γ(ϑ + 1)− TϑdΨ
, t ∈ V2.

(20)
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Upon further investigation, in both cases, we get

m ≥

max
{

max
{
|S0|+ t1cΨ

1 − t1dΨ
,
|S(t1)|Γ(ϑ + 1) + TϑcΨ

Γ(ϑ + 1)− TϑdΨ

}
, max

{
|E0|+ t1cΨ

1 − t1dΨ
,
|E(t1)|Γ(ϑ + 1) + TϑcΨ

Γ(ϑ + 1)− TϑdΨ

}
,

max
{
|C0|+ t1cΨ

1 − t1dΨ
,
|C(t1)|Γ(ϑ + 1) + TϑcΨ

Γ(ϑ + 1)− TϑdΨ

}
, max

{
|I0|+ t1cΨ

1 − t1dΨ
,
|I(t1)|Γ(ϑ + 1) + TϑcΨ

Γ(ϑ + 1)− TϑdΨ

}
,

max
{
|Q0|+ t1cΨ

1 − t1dΨ
,
|Q(t1)|Γ(ϑ + 1) + TϑcΨ

Γ(ϑ + 1)− TϑdΨ

}
, max

{
|D0|+ t1cΨ

1 − t1dΨ
,
|D(t1)|Γ(ϑ + 1) + TϑcΨ

Γ(ϑ + 1)− TϑdΨ

}
,

max
{
|R0|+ t1cΨ

1 − t1dΨ
,
|R(t1)|Γ(ϑ + 1) + TϑcΨ

Γ(ϑ + 1)− TϑdΨ

}}
.

Referring to Equation (20), it follows that

∥∇(S, E, C, I, Q, D, R)∥ ≤ m. (21)

As a result, the fact that ∇ is bounded implies that Dm contains ∇(Dm). ∇ is a
continuous operator since Ψi, for i = 1, 2 is continuous as well; additionally, ∇ is uniformly
continuous because of its boundedness. Let tq < tp ∈ [0, T]. To guarantee equi-continuity,
take the first operator of (23) as

|F1(S)(tp)− F1(S)(tq)| ≤



∫ tp

tq
|Ψ1(θ, S(θ)|dθ, t ∈ V1,

1
Γ(ϑ)

∫ tq

t1

∣∣∣∣[(tq − θ)ϑ−1 − (tp − θ)ϑ−1
]∣∣∣∣|Ψ1(θ, S(θ))|dθ

+
1

Γ(ϑ)

∫ tp

tq
(tp − θ)ϑ−1|Ψ1(θ, S(θ))|dθ, t ∈ V2,

(22)

Upon applying Hypothesis 2 (H2) and simplification, (22) yields

|F1(S)(tp)− F1(S)(tq)| ≤


[cΨ1 + dΨ1 m](tq − tp), t ∈ V1,

cΨ1 + dΨ1 m]

Γ(ϑ + 1)

(
(tq − t1)

ϑ − (tp − t1)
ϑ + 2(tp − tq)

ϑ

)
, t ∈ V2.

(23)

The right side of (23) becomes zero at tp → tq; therefore,

|F1(S)(tp)− F1(S)(tq)| → 0 with tp → tq.

Also, F1 is bounded and continuous, which implies that

∥F1(S)(tp)− F1(S)(tq)∥ → 0 with tp → tq.

Hence, F1 is uniformly continuous. Similarly, we can show that

∥F2(E)(tp)− F2(E)(tq)∥ → 0 with tp → tq,

∥F3(C)(tp)− F3(C)(tq)∥ → 0 with tp → tq,

∥F4(I)(tp)− F4(I)(tq)∥ → 0 with tp → tq,

∥F5(Q)(tp)− F5(Q)(tq)∥ → 0 with tp → tq,

∥F6(D)(tp)− F6(D)(tq)∥ → 0 with tp → tq,

∥F7(R)(tp)− F7(R)(tq)∥ → 0 with tp → tq.
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Therefore, we can assert that

∥F(S, E, C, I, Q, D, R)(tp)− F(S, E, C, I, Q, D, R)(tq)∥ → 0 with tp → tq.

Thus, F is equi-continues. As a result, F exhibits relative compactness, demonstrating
that system (4) possesses at least one solution through the utilization of the Schauder
fixed-point approach.

4. Numerical Scheme and Simulations

Below, we outline the process of generating numerical simulations for our suggested
model, as described by Equation (4). We utilized the principles of definite integrals to
devise a methodology for obtaining our numerical outcomes. Initially, we formulate the
approach for the initial equation within our system, as denoted by Equation (4), and
subsequently apply a similar procedure to the subsequent equation. Our methodology
closely adheres to the framework presented in reference [29]. Consider model (24) with
w = (S, E, C, I, Q, D, R) being described as

PWC
0 Dϑ

t [S(t)] = Φ1(t, w(t)),
PWC
0 Dϑ

t [E(t)] = Φ2(t, w(t)),
PWC
0 Dϑ

t [C(t)] = Φ3(t, w(t)),
PWC
0 Dϑ

t [I(t)] = Φ4(t, w(t)),
PWC
0 Dϑ

t [Q(t)] = Φ5(t, w(t)),
PWC
0 Dϑ

t [D(t)] = Φ6(t, w(t)),
PWC
0 Dϑ

t [R(t)] = Φ7(t, w(t)).

(24)

Its equivalent integral form is given by

S(t) =


S0 +

∫ t

0
Φ1(θ, w(θ))dθ, t ∈ V1,

S(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Φ1(θ, w(θ))dθ, t ∈ V2,

E(t) =


E0 +

∫ t

0
Φ2(θ, w(θ))dθ, t ∈ V1,

E(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Φ2(θ, w(θ))dθ, t ∈ V2,

C(t) =


C0 +

∫ t

0
Φ3(θ, w(θ))dθ, t ∈ V1,

C(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Φ3(θ, w(θ))dθ, t ∈ V2,

I(t) =


I0 +

∫ t

0
Φ4(θ, w(θ))dθ, t ∈ V1,

I(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Φ4(θ, w(θ))dθ, t ∈ V2,

Q(t) =


Q0 +

∫ t

0
Φ5(θ, w(θ))dθ, t ∈ V1,

Q(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Φ5(θ, w(θ))dθ, t ∈ V2,

D(t) =


D0 +

∫ t

0
Φ6(θ, w(θ))dθ, t ∈ V1,

D(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Φ6(θ, w(θ))dθ, t ∈ V2,

R(t) =


R0 +

∫ t

0
Φ7(θ, w(θ))dθ, t ∈ V1,

R(t1) +
1

Γ(ϑ)

∫ t

t1

(t − θ)ϑ−1Φ7(θ, w(θ))dθ, t ∈ V2.

(25)
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In the context of Newton’s difference formula, we estimate the function Φi(t, w(t)),
i = 1, 2, . . . , 7 across the interval [tℓ, tℓ+1] by examining differences in evenly distributed
values, denoted as ∆tℓ = ∆t. In addition, we use the given notations for the simple
representation of formulas for different classes as follows:

℧1 = [(n − ℓ+ 1)ϑ − (n − ℓ)ϑ],

℧2 = [(n − ℓ+ 1)ϑ(n − ℓ+ 3 + 2ϑ)− (n − ℓ)(n − ℓ+ 3 + 3ϑ)],

℧3 = [(n − ℓ+ 1)ϑ(2(n − ℓ)2 + (3ϑ + 10)(n − ℓ) + 2ϑ2 + 9ϑ + 12)− (n − ℓ)ϑ(2(n − ℓ)2

+ (5ϑ + 10)(n − ℓ) + 6ϑ2 + 18ϑ + 12)].

Thus, at t = tn+1, using Newton’s interpolation technique, we obtain the approximated
version of (25) as follows:

S(tn+1) =



S0 + ∑i
ℓ=2

[
5

12 Φ1(tℓ−2, w(tℓ−1))− 4
3 Φ1(tℓ−2, w(tℓ−1))

+ 23
12 Φ1(tℓ, w(tℓ−1))

]
∆t, t ∈ V1,

S(t1) +
(∆t)ϑ−1

Γ(ϑ+1) ∑n
ℓ=i+3

[
Φ1(tℓ−2, w(tℓ−2))

]
℧1

+ (∆t)ϑ−1

Γ(ϑ+2) ∑n
ℓ=i+3

[
Φ1(tℓ−1, w(tℓ−1))− Φ1(tℓ−2, w(tℓ−2))

]
℧2

+ ϑ(∆t)ϑ−1

2Γ(ϑ+3) ∑n
ℓ=i+3

[
Φ1(tℓ+1, w(tℓ+1))

−2Φ1(tℓ−1, w(tℓ−1)) + Φ1(tℓ−1, w(tℓ−1))

]
℧3, t ∈ V2,

(26)

Applying identical reasoning as in (26) to approximate the rest equations of model (4),
we arrive at

E(tn+1) =



E0 + ∑i
ℓ=2

[
5

12 Φ2(tℓ−2, w(tℓ−1))− 4
3 Φ2(tℓ−2, w(tℓ−1))

+ 23
12 Φ2(tℓ, w(tℓ−1))

]
∆t, t ∈ V1,

E(t1) +
(∆t)ϑ−1

Γ(ϑ+1) ∑n
ℓ=i+3

[
Φ2(tℓ−2, w(tℓ−2))

]
℧1

+ (∆t)ϑ−1

Γ(ϑ+2) ∑n
ℓ=i+3

[
Φ2(tℓ−1, w(tℓ−1))− Φ2(tℓ−2, w(tℓ−2))

]
℧2

+ ϑ(∆t)ϑ−1

2Γ(ϑ+3) ∑n
ℓ=i+3

[
Φ2(tℓ+1, w(tℓ+1))

−2Φ2(tℓ−1, w(tℓ−1)) + Φ2(tℓ−1, w(tℓ−1))

]
℧3, t ∈ V2,

(27)

C(tn+1) =



C0 + ∑i
ℓ=2

[
5
12 Φ3(tℓ−2, w(tℓ−1))− 4

3 Φ3(tℓ−2, w(tℓ−1))

+ 23
12 Φ3(tℓ, w(tℓ−1))

]
∆t, t ∈ V1,

C(t1) +
(∆t)ϑ−1

Γ(ϑ+1) ∑n
ℓ=i+3

[
Φ3(tℓ−2, w(tℓ−2))

]
℧1

+ (∆t)ϑ−1

Γ(ϑ+2) ∑n
ℓ=i+3

[
Φ3(tℓ−1, w(tℓ−1))− Φ3(tℓ−2, w(tℓ−2))

]
℧2

+ ϑ(∆t)ϑ−1

2Γ(ϑ+3) ∑n
ℓ=i+3

[
Φ3(tℓ+1, w(tℓ+1))

−2Φ3(tℓ−1, w(tℓ−1)) + Φ3(tℓ−1, w(tℓ−1))

]
℧3, t ∈ V2,

(28)
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I(tn+1) =



I0 + ∑i
ℓ=2

[
5
12 Φ4(tℓ−2, w(tℓ−1))− 4

3 Φ4(tℓ−2, w(tℓ−1))

+ 23
12 Φ4(tℓ, w(tℓ−1))

]
∆t, t ∈ V1,

I(t1) +
(∆t)ϑ−1

Γ(ϑ+1) ∑n
ℓ=i+3

[
Φ4(tℓ−2, w(tℓ−2))

]
℧1

+ (∆t)ϑ−1

Γ(ϑ+2) ∑n
ℓ=i+3

[
Φ4(tℓ−1, w(tℓ−1))− Φ4(tℓ−2, w(tℓ−2))

]
℧2

+ ϑ(∆t)ϑ−1

2Γ(ϑ+3) ∑n
ℓ=i+3

[
Φ4(tℓ+1, w(tℓ+1))

−2Φ4(tℓ−1, w(tℓ−1)) + Φ4(tℓ−1, w(tℓ−1))

]
℧3, t ∈ V2,

(29)

Q(tn+1) =



Q0 + ∑i
ℓ=2

[
5
12 Φ5(tℓ−2, w(tℓ−1))− 4

3 Φ5(tℓ−2, w(tℓ−1))

+ 23
12 Φ5(tℓ, w(tℓ−1))

]
∆t, t ∈ V1,

Q(t1) +
(∆t)ϑ−1

Γ(ϑ+1) ∑n
ℓ=i+3

[
Φ5(tℓ−2, w(tℓ−2))

]
℧1

+ (∆t)ϑ−1

Γ(ϑ+2) ∑n
ℓ=i+3

[
Φ5(tℓ−1, w(tℓ−1))− Φ5(tℓ−2, w(tℓ−2))

]
℧2

+ ϑ(∆t)ϑ−1

2Γ(ϑ+3) ∑n
ℓ=i+3

[
Φ5(tℓ+1, w(tℓ+1))

−2Φ5(tℓ−1, w(tℓ−1)) + Φ5(tℓ−1, w(tℓ−1))

]
℧3, t ∈ V2,

(30)

D(tn+1) =



D0 + ∑i
ℓ=2

[
5
12 Φ6(tℓ−2, w(tℓ−1))− 4

3 Φ6(tℓ−2, w(tℓ−1))

+ 23
12 Φ6(tℓ, w(tℓ−1))

]
∆t, t ∈ V1,

D(t1) +
(∆t)ϑ−1

Γ(ϑ+1) ∑n
ℓ=i+3

[
Φ6(tℓ−2, w(tℓ−2))

]
℧1

+ (∆t)ϑ−1

Γ(ϑ+2) ∑n
ℓ=i+3

[
Φ6(tℓ−1, w(tℓ−1))− Φ6(tℓ−2, w(tℓ−2))

]
℧2

+ ϑ(∆t)ϑ−1

2Γ(ϑ+3) ∑n
ℓ=i+3

[
Φ6(tℓ+1, w(tℓ+1))

−2Φ6(tℓ−1, w(tℓ−1)) + Φ6(tℓ−1, w(tℓ−1))

]
℧3, t ∈ V2,

(31)

R(tn+1) =



R0 + ∑i
ℓ=2

[
5
12 Φ7(tℓ−2, w(tℓ−1))− 4

3 Φ7(tℓ−2, w(tℓ−1))

+ 23
12 Φ7(tℓ, w(tℓ−1))

]
∆t, t ∈ V1,

R(t1) +
(∆t)ϑ−1

Γ(ϑ+1) ∑n
ℓ=i+3

[
Φ7(tℓ−2, w(tℓ−2))

]
℧1

+ (∆t)ϑ−1

Γ(ϑ+2) ∑n
ℓ=i+3

[
Φ7(tℓ−1, w(tℓ−1))− Φ7(tℓ−2, w(tℓ−2))

]
℧2

+ ϑ(∆t)ϑ−1

2Γ(ϑ+3) ∑n
ℓ=i+3

[
Φ7(tℓ+1, w(tℓ+1))

−2Φ7(tℓ−1, w(tℓ−1)) + Φ7(tℓ−1, w(tℓ−1))

]
℧3, t ∈ V2.

(32)
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5. Numerical Simulation of Our Model

To simulate our model (4) using the numerical approximations computed in (26)–(32),
the numerical values for the parameters are given in Table 2.

The proposed model’s solution will be unique in relation to these data, meeting the
requirements of Theorem 2. The results devoted to numerical interpretations against
various fractional-order values for two different sets are displayed in Figures 3–9 and
Figures 10–16, respectively.
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Figure 3. Fractional-order dynamical behaviors of the susceptible class of the proposed model (4)
using various fractional-order values in (0, 0.75].
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Figure 4. Fractional-order dynamical behaviors of the exposed class of the proposed model (4) using
various fractional-order values in (0, 0.75].
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Figure 5. Fractional-order dynamical behaviors of the protected class of the proposed model (4) using
various fractional-order values in (0, 0.75].
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Figure 6. Fractional-order dynamical behaviors of the infected class of the proposed model (4) using
various fractional-order values in (0, 0.75].
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Figure 7. Fractional-order dynamical behaviors of the isolated class of the proposed model (4) using
various fractional-order values in (0, 0.75].
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Figure 8. Fractional-order dynamical behaviors of the death class of the proposed model (4) using
various fractional-order values in (0, 0.75].

In the next set of figures, Figures 10–16, we present another set of piecewise fractional-
order dynamics of the proposed model. Here, we present the numerical solutions for
different classes using a fractional order that lies in (0.75, 1.00].
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Figure 9. Fractional-orde r dynamical behaviors of the recovered class of the proposed model (4)
using various fractional-order values in (0, 0.75].
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Figure 10. Fractional-order dynamical behaviors of the susceptible class of the proposed model (4)
using various fractional-order values in (0.75, 1.00].
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Figure 11. Fractional-order dynamical behaviors of the exposed class of the proposed model (4) using
various fractional-order values in (0.75, 1.00].
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Figure 12. Fractional-order dynamical behaviors of the protected class of the proposed model (4)
using various fractional-order values in (0.75, 1.00].
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Figure 13. Fractional-order dynamical behaviors of the infected class of the proposed model (4) using
various fractional-order values in (0.75, 1.00].
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Figure 14. Fractional-order dynamical behaviors of the isolated class of the proposed model (4) using
various fractional-order values in (0.75, 1.00].
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Figure 15. Fractional-order dynamical behaviors of the death class of the proposed model (4) using
various fractional-order values in (0.75, 1.00].
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Figure 16. Fractional-order dynamical behaviors of the recovered class of the proposed model (4)
using various fractional-order values in (0.75, 1.00].

6. Numerical Discussion and Comparison with Real Data

Here, we simulate our model corresponding to piecewise FDEs by varying the frac-
tional orders in Figures 3–16. In order to see the crossover effect at the specified point
t1 = 20, we simulate the approximate solutions by picking [0, 20] and (20, 200] for both
compartments of the proposed model. Days are used to measure time here. In this case, we
use a fractional order that lies in (0, 0.75] to show numerical answers for various classes in
Figures 3–9. Additionally, in Figures 10–16, the numerical results are presented graphically
using various fractional-order values from (0.75, 1.00].

A compartmental model for the transmission dynamics of COVID-19, including the
death class, was formulated. We used the new perspectives of fractional calculus that was
recently introduced by researchers, which has the ability to describe the crossover behaviors
of real-world phenomena. We saw that the population dynamics of the susceptible class
decreased, and the crossover effect appears after t1 = 20, where the multi-phase behavior is
clearly seen. The concerned multi-phase or crossover behavior is different due to different
fractional orders. In the same way, the protected class is also decreasing with the crossover
behavior after t1 = 20, since the density of the pretesting population is decreasing as
infection in the society grows. Also, the crossover behavior can be seen near t1 = 20 in the
infected class. The infection, after achieving its peak, is then decreasing. The numbers of
isolated and quarantined people are also decreasing as the number of recovered people is
growing. Also, the recovery rate is faster, but the death number is also increasing until it
becomes stable. In both mentioned classes, the crossover effect appears after t1 = 20. The
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proposed model provides us a better indication of the COVID-19 situation using the new
aspect of fractional calculus.

To demonstrate the validity of a numerical scheme for the considered non-linear
model of COVID-19, we compared our results with some reported data of death and
infected classes. We compared our simulated results for 20 days with the reported data of
Pakistan during 2021 using the source [31] for infected and death cases. We performed the
comparison to verify the validity of the numerical scheme adopted for the proposed model.
Both results have close agreement, as shown in Figures 17 and 18, respectively.

Time  (Days)
0 2 4 6 8 10 12 14 16 18 20

In
fe

ct
ed

 c
la

ss

0

10

20

30

40

50

60

Simulated results
Real data

Figure 17. Comparison of real and simulated data in case of infected class.
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Figure 18. Comparison of real and simulated data in case of death class.

7. Conclusions

Crossover tendencies are observed in a wide range of real-world processes and phe-
nomena. We know that different kernels exhibiting behaviors that arise in various real-
world problems can be excellently described by applying the concept of piecewise dif-
ferential operators. Fluctuations are appearing in many real world process, for instance,
the economies of less developed countries and the health system, and weather condi-
tions in many areas are some examples, where the natural processes can give birth to
crossover behavior in their state of evolution. To model such phenomena more realisti-
cally, the piecewise differential and integral operators of fractional orders were recently
introduced. Researchers have increasingly studied various diseases using mathematical
models involving piecewise differential operators. Usually, the published work has been
based on numerical analysis since mathematical analysis is a powerful area to be used
to investigate the existence theory of solutions to such mathematical models and their
numerical interpretations.
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The fractional-order epidemic model (4) under piecewise equations with fractional-
order derivative was thoroughly studied in this work. We created adequate prerequisites
for the originality and existence of the suggested problem’s solution. Then, we established
an appropriate scheme based on the Adam–Bashforth method. We then simulated the
considered model using various fractional-order values, taking t1 = 20 and T = 200. The
corresponding dynamics were shown with clear crossover behavior near t1 = 20. Hence,
we concluded that piecewise equations with fractional-order derivative are powerful tools
for describing abrupt changes in the dynamics of various evolutionary processes and
phenomena. We compared some results with the available reported data of infected and
death classes to check the efficiency of the adopted numerical scheme. In the future, we will
extend this concept to other dynamical problems with various fractional-order operators.
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