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Abstract: The simulation and characterisation of randomly rough surfaces is an important topic
in surface science, tribology, geo- and planetary sciences, image analysis and optics. Extensions
to general random processes with two continuous variables are straightforward. Several surface
generation algorithms are available, and preference for one or another method often depends on the
specific scientific field. The same holds for the methods to estimate the fractal dimension D. This
work analyses six algorithms for the determination of D as a function of the size of the domain,
variance, and the input value for D, using surfaces generated by Fourier filtering techniques and the
random midpoint displacement algorithm. Several of the methods to determine fractal dimension
are needlessly complex and severely biased, whereas simple and computationally efficient methods
produce better results. A fine-tuned analysis of the power spectral density is very precise and shows
how the different surface generation algorithms deviate from ideal fractal behaviour. For large
datasets defined on equidistant two-dimensional grids, it is clearly the most sensitive and precise
method to determine fractal dimension.

Keywords: random surface; fractal; power spectral density; box counting; statistical simulation

1. Introduction

The description of surface topography by the superposition of harmonic waves with
randomly oriented wave vectors and phase angles was pioneered by Longuet-Higgins in
relation to the moving sea surface [1,2]. It uses the relationship between the magnitude of
the wave vector and the power spectrum (PS). Whitehouse et al. [3] were among the first to
analyse the roughness of engineering surfaces under the concept of random process theory.
With increasing measurement size and resolution, it was found that roughness increases
with the length (area) of the measured domain [4–7].

Fractals are often associated with graphics in a plane, such as the Julia and Mandelbrot
sets [8] or with problems like the coastline paradox [9], explained in terms of a Hausdorff
dimension in a classical paper by Mandelbrot [10]. A geometrical analysis of fractal dimen-
sion follows naturally from the graphical nature of the object studied. For random fractal
surfaces, or more generally, for the self-affine stochastic processes found in many scientific
disciplines, the problem must be approached differently. A mathematical definition of the
basic problem is the most direct way to start.

The increase in the variance with an increase in the size of the domain over which the
random variable is measured follows from Plancherel’s theorem [11] for self-affine surfaces
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with a power-law PS: let the surface topography be described as a function z(x, y), with an
isotropic PS:

P(r) =


0 r < rl

Cr−2(H+1) rl < r < ru
0 ru

(1)

Here, r =
√

k2 + l2, the magnitude of the wave vector k with components (k, l). rl
and ru are the lower and upper cut-off radii in the frequency domain. C is a constant.
The measurement length corresponds to the maximum wavelength λu = 2π/rl and the
resolution of the measurement λl = 2π/ru, where H is the Hurst exponent and the fractal
dimension D = 3 − H. The variance of the height is given by the following:

z2 =
∫ ∞

0
2πrP(r)dr = πC

r−2H
l − r−2H

u

H
(2)

The operator < · > refers to the expected value. For rl/ru ≪ 1, the second term in
the numerator can be neglected, and the standard deviation σ =

√
z2 ∼ r−h

l ∼ λh
u, i.e., the

root mean square roughness increases with the measurement length λu.
It has been shown that λl can be of atomic size in diamond coatings [12,13], while λu

can be as large as the size of the observable universe [14]. The cut-off radii are generally
not imposed by the physics of the phenomenon but by instrumental limitations, although
a combination of measurement techniques at overlapping observation scales has been
used to successfully extend λu/λl [4,12,13]. In geo- and planetary sciences, multifractal
descriptions are often used, where the value of H is allowed to vary with λu and/or
λl [15–17]. In materials science and tribology, an upper cut-off λu is universally observed,
beyond which the roughness no longer increases with the measurement length [12,13,18].
λu can be associated with the intuitive concept of coarseness, while H can be connected to
complexity [19]. In numerical simulations, λu/λl is determined by the size of the dataset,
and λu can be set to 1 without loss of generality.

Different definitions of the fractal dimension can give different results for D [20]. A
distinction must be made between the mathematical definition of D and the numerical
methods used to estimate D from a discrete set of measured or simulated data. From a
mathematical viewpoint, it is sufficient to find a single example in which two definitions of
D produce different results. Although there are many counterexamples, the Minkowski
and Hausdorff dimensions coincide in almost all cases, and objective criteria exist to test
this coincidence [21].

In numerical methods, if DM is the estimate of D by a given method M. If two methods
produce distinct values DM, it must be checked if they correspond to established math-
ematical exceptions. If not, the difference is more likely due to the numerical procedure
missing some essential details of the geometry or because of the finite size and resolution
of the available dataset. All definitions of fractal dimensions involve a limit for λl → 0 .
Limitations on λu/λl may severely distort the relationship between DM and D.

Most methods for determining D are only applicable to a limited subset of geome-
tries [20]. This study assumes that a smooth reference surface exists on a simply connected
domain on which a function z(x, y) can be defined. For engineering surfaces and many
geological and geomorphological studies, z is the height. More generally, z can be any
random variable measured along a line or surface, such as the grey scale or colour value of
pixels in an image [22–25] or the temperature of the cosmic background radiation [26,27].
Contours of constant z0 = z(x, y) (or w0 = w(x, y, z) in three dimensions [28]) cannot be
analysed by the methods studied here, except for box counting methods (BCM) and a
strongly modified power spectral density method [29].

This work will provide clear definitions of the bias and precision of the different meth-
ods M for the determination of H, with the goal of determining which method provides
the best estimate for H. Section 2 of this paper describes the methods used to simulate
the random surfaces and calculate H. Section 2.1 explains how this combination defines a
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random process. Section 2.2 presents three surface generation algorithms. It justifies the
selection of only two of them for further analysis. The following seven subsections describe
the methods used for determining H. Section 3 describes the simulation scheme, identifies
the parameters of interest, and provides a statistical analysis of the results based on linear
regression and analysis of variance (ANOVA). The results are discussed in terms of bias,
dispersion, precision, and computational and information efficiency. This will allow us to
reach a clear conclusion with respect to the problem posed in the title of this paper.

2. Methods
2.1. Surface Simulation and Characterisation as a Random Process

Simulated surfaces will be used to analyse the methods for estimating H. The process
is illustrated in Figure 1. For Gaussian surfaces with zero mean, the input values are
the variance < z2 >in, Hin, λu, and λl . These are deterministic values. The surface
generation algorithm S acts on a finite set {gi} of random values, producing a single
representation zS (x, y). Because of the random nature of {gi}, the mean value of µS ̸= 0
and < z2 >S ̸=< z2 >in in general. Shifting and rescaling the simulated surface can correct
these random variations. A numerical procedure M then calculates the simulated Hurst
exponent HSM (or Hout), which is a random variable, which will be characterised by its
mean and standard deviation.
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Figure 1. Representation of the process which creates HSM for a given input value Hin through a
surface generating algorithm S and a method M. By the random input {gi}, zS (x, y) is a random
process, and HSM is a random value.

The bias is defined as BSM(Hin) =< HSM > −Hin. The variance < H2
SM > ̸=

< H2
S >; the right-hand side is the variance of the unknown Hurst exponent of the surface

simulated with S . The total dispersion can be characterised by the standard deviation

σout(Hin) =
√
< (HSM − Hin)

2 >. < H2
S > cannot be estimated independently of M, but

the smallest < H2
SM > obtained from a given set of methods will give an upper bound

estimate for < H2
S >.

2.2. Surface Generation

Surfaces used in this study are defined on an equidistant set of points
(
xi, yj

)
, with

i, j : 1 → 2n0 and n0 = 8, 9, or 10. The side of the square domain can be arbitrarily set equal to
1. Then, λu =

√
2 and λl = 2−n0 . Three surface generation methods S are commonly used

to generate z(x, y). The generalised Weierstrass–Mandelbrot function [30,31] (S = WM)
has recently recovered some popularity [32–38]. It is described by the following:

z(x, y) = λu

(
G
λu

)D−2√ log γ

M ∑M
m=1 ∑N

n=0 γ(D−3)n cos
(

φnm − cos
(

2πγn
√

x2 + y2 cos
(

arctan
(

x2

y2

)
− π m

M

)
+ φnm

))
. (3)

G is called the fractal roughness, and γ is the lacunarity. The random phase angles φmn
are chosen from a uniform distribution on [−π,π]. The observation that the second cosine
term in the sum is independent from the random phase angles allows speeding up the
calculation of the WM surface during Monte Carlo simulations. Even so, the method is not
computationally efficient compared to the following algorithms.
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The midpoint displacement method (S = MP) has been widely used in computer
graphics [39] and in early studies on fractal landscapes [40,41]. The original midpoint algo-
rithm suffers from the problem that the initial few values can dominate the entire simulated
surface, creating clear cross-patterns in the result. This can be corrected by modifying the
way in which random values are added during each simulation step [39]. It is also feasible
to ensure periodicity of the surface, which is important in some simulations, e.g., in contact
mechanics, where a Fourier transform boundary element method is employed [42,43].

The Fourier transform method (S = FT) [43,44] uses normally distributed variables{
gij
}

on a regular grid with a size of 2n0 × 2n0 . This set is transformed to the frequency
domain using a fast Fourier transform (FFT), defining

{
ĝij
}
= F

{
gij
}

. By multiplying
with the PS P(k, l) in the frequency domain and applying the inverse Fourier transform
(IFT),

{
ĝij
}

is filtered:

z(x, y) = F−1

((
Re
(

ĝij
)
+ i Im

(
ĝij
))√

P
(√

k2
i + l2

i

))
, (4)

where i =
√
−1; the linear combination of real and imaginary parts in Equation (4) gener-

ates a purely real z(x, y).
It shall be remembered that the FFT is only an efficient way of summing cosine and

sine terms in a discrete Fourier transform (DFT). This is equivalent to the original approach
by Longuet-Higgins [1], but Equation (4) allows for the efficient inclusion of 22n0 harmonic
terms, which would require unacceptable computer times if the surface were generated
by naive algorithms. However, by using the FFT, aliasing is introduced, which results
in a statistical height distribution that is not Gaussian. This aspect can be improved by
eliminating the longest wavelengths from the analysis [45].

Figure 2 shows three topographies generated by WM, MP, and FT. Their differences
are seen in PS and the autocorrelation RS (Section 2.7). PWM shows many individual peaks
corresponding to the individual combinations (m, n) in Equation (3) and has ridges along
the coordinate axes. The rotational symmetry inherent to Equation (3) is visible in RWM as
small wrinkles in the conical part of the surface. Elaborating Equation (3) is computationally
inefficient and limits the use of WM for large-scale simulations.
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PMP and RMP show pronounced edges along the coordinate axes. The preferential
90◦–45◦ orientations imposed by the algorithm are clearly visible in RMP. PFT consists of
a noisy signal around the centre of the spectrum that decays according to Equation (1).
RFT consists of a conical peak superposed on a background ridge. Only the conical part is
important for the analysis (Section 2.8).

2.3. Box Counting Methods

Box counting methods (BCM) are, in principle, numerical implementations of the
theoretical definition of a Minkowski dimension [18]. For fractal curves defined on a unit
square domain, the method consists of dividing the image into a set of m × m identical
squares with length a = 1/m and counting the number nm of squares which contain at least
one point of the curve. The box counting dimension is determined as the following:

DBCM = lim
m→∞

log nm

log m
(5)

If there is an algorithm for infinitely refining the scale of the curve, m is limited only by
computational precision, and the method is very accurate [46–48]. For experimental data,
m is limited by the spatial resolution. The procedure is analogous in 3 dimensions [28].

For functions defined as z(x, y) on a finite grid, the method produces considerable
bias [49]. Several recent publications have focussed on the rule that nm should be the
infimum of all possible covering configurations at a given size [22,50]. This infimum can
be approximated by shifting the covering boxes with respect to their ideal position [51].
Differential box counting (DBC) adapts for differences in vertical and horizontal scale by
calculating the range ∆z over the domain and using boxes of vertical size ∆z/m. A lack
of vertical resolution is addressed by considering only the highest and lowest boxes that
contain part of the surface in each column of boxes; all intermediate boxes will contain a
part of the surface, even if the corresponding points do not appear in the dataset [49]. This
modifies Equation (5) as the following:

DDBC = lim
m→∞

log ∑i

⌈
m Mi−mi

∆z

⌉
log m

(6)

where the sum is taken over all m2 boxes, ⌈·⌉ represents the ceiling function, and Mi and
mi are the maximum and minimum values within square i. The method is closely related
to the Hall–Wood estimator [52,53]. Differences between the original definition of a box
counting dimension, BCM and DBC, are illustrated in Figure 3.
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Figure 3. (a) Original concept of BCM as a method to estimate the Minkowski dimension of a fractal
contour. The grey boxes contain part of the curve and are counted in nm. (b) BCM with vertical
scaling. The boxes marked by * and ** are missed because the curve passes through the box, but there
are no data points inside the box due to a lack of vertical resolution. (c) DBC allows for a vertical shift
and counts the total range in individual intervals. Box ** is still missed.

Notice that Figures 3–5 use time series to exemplify the basic concepts of the methods
and are for illustrative purposes only. The curve shown in Figures 3a and 4a corresponds
to an arbitrary contour line of a surface produced by FT. The data series represents an
arbitrary vertical section through this surface in arbitrary units. All methods described in
this paper refer to the fully three-dimensional functions, as shown in Figure 2.
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Figure 4. (a) Original concept of the yardstick method to estimate the Hausdorff dimension of a
fractal contour. The contour is approximated by lines of a fixed length. (b) Trapezium method [39]
for the estimation of the fractal dimension of a time series. The length of the lines between the dots is
approximated by the length of the blue lines over intervals of width a in successive refinements. By
Pythagoras’ theorem, the method is sensitive to vertical scaling, and the finite resolution of the data
means that the limit for a → 0 can only be approached crudely.
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Figure 5. (a) Illustration of RLM for a time series. The vertical variation (standard deviation) is
marked as dashed lines relative to the mean (blue line). (b) Cumulative data (black) with superposed
piecewise fitting curves (blue, Equation (9)), according to DBC. (c) Fitting residuals, showing the
residual standard deviation (dashed line) for each interval. Standard deviations are shown for
plotting purposes; RLM and DBC use the corresponding variance.

2.4. Triangular Prism Method

The triangular prism method (TPM) [40,41,54] is an extension of the Hausdorff dimen-
sion as used by Mandelbrot [10] to explain the coastline paradox [9]. The original method
is applied to contour lines in the plane, where the number ni of segments (yardsticks)
with a given length l required to cover the entire contour is determined by geometrical
construction. TPM extends this approach by covering a surface with a mesh of triangles of a
given size. The total surface area sTot is the sum of all areas obtained by approximating the
surface by triangles over a grid of square domains with side a and the following equation:

DTPM = lim
a→0

log sTot
log a

(7)

Because surface area does not linearly scale with height, this method is sensitive to the
vertical scale, which would limit its use to self-similar surfaces [55]. However, it has been
proven that Equation (7) always converges to the correct value of D, but very small values
of a may be required, corresponding to very large datasets [46]. The difference between the
original definition of a Hausdorff dimension and its application to a time series is shown in
Figure 4. For more details on the geometry in the case of two-dimensional surfaces, the
reader is referred to Ref. [49].

2.5. Detrended Fluctuation

Detrended fluctuation (DTF) was originally developed for the study of single-variable
processes that show nonstationarity [56]. Instead of analysing the variance of the function
over a time interval ∆t, a linear or polynomial fit is made to the accumulated function over
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∆t, and the residual variance of this fit is analysed as a function of ∆t. The method was
adapted to two-variable random processes by Gu and Zhou [57,58], with an emphasis on
multifractal analysis.

Here, the cumulative function Z(x, y) is calculated over each square subdivision with
side a. A fitting polynomial f (x, y) is adjusted to Z(x, y) on the individual squares. The
residual variance va, averaged over all squares, obeys va ∼ aH, hence the following equation:

DDTF = 3 − lim
a→0

log va

log a
(8)

Linear fits and second-degree polynomials are commonly used for f (x, y) [49]. This
work uses the following Equation:

f (x, y) = c00 + c10x + c01y + c20x2 + c02xy + c11y2 (9)

2.6. Roughness–Length Method

The roughness–length method (RLM) is based on the log–log plot of the variance
measured over square areas of length a, according to Equation (2). Early Monte Carlo
simulations [59] showed that its reliability is comparable to the power spectral method for
time series. Its use is popular in the field of rock mechanics [60]. It was used to analyse the
quality of surfaces generated by the FT and WM methods [32]. The number of simulations
in this study was limited.

The implementation and use of the RLM are simple. Its theoretical basis (Equation (2))
is straightforward. Therefore, extended studies on its theoretical background or numerical
improvement have not been published, contrary to TPM, BCM, DBC, and DTF. Its use
for the characterisation of random surfaces is nonetheless interesting, as will be shown in
Section 3. An illustration of the difference between RLM and DTF is shown in Figure 5 for
the simplified case of time series.

2.7. Power Spectral Density and Related Functions

In most cases of interest, the function z(x, y) can be described with respect to a fixed
mean value, which can be set to 0 without loss of generality. This is certainly true for the
numerically generated surfaces studied here. Three closely related functions are defined
for discrete datasets on a regular grid

(
xi, yj

)
with i, j : 1 → 2n0 . The autocorrelation of a

real-valued function z(x, y) is defined as the following:

R(ξ, ψ) =

∞∫
−∞

∞∫
∞

z(x, y)z(x − ξ, y − ψ)dxdy (10)

or for discrete data:

R(ξk, ψl) =
1

22n0 ∑2n0

i=1 ∑2n0

j=1 z
(
xi, yj

)
z
(
xi − ξk, yj − ψl

)
(11)

The convolution in Equation (10) can be easily performed as a multiplication in the
frequency domain. Likewise, the discrete convolution in Equation (11) is most easily
performed as a multiplication after FFT followed by IFT. The power spectral density (PSD)
is the Fourier transform of the autocorrelation function, i.e.,

P(k, l) = F (R(x, y)) = |F (z(x, y))|2. (12)

The variogram [61], height correlation function [62], or structure function [63] is
defined as follows:

γ(ξ, ψ) =< (h(x, y)h(x − ξ, y − ψ))2 > (13)
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Given that γ(ξ, ψ) = 1 − R(ξ, ψ), all three functions hold the same information [62,64].
Their numerical implementation and fields of application may differ, which may induce
differences in the estimated value of DM, with M referring to PSA (power spectral analysis)
or SFA (structure–function analysis).

Variograms or structure functions are widely used in geosciences [15–17] but are
seldom found in tribology and surface sciences. One reason is that the variogram can be
applied without defining a reference level (mean value) and can be calculated for limited
datasets obtained from irregularly spaced sample points, which are typical for geological
exploration [65]. The other reason is that surface profilers and atomic force microscopes
usually come with an extensive postprocessing package, which includes background
corrections and PSD calculation in the form of black-box procedures [66,67].

2.8. Tuning of the PSA

A common strategy to calculate the PSD from a measured or simulated surface is
to apply an FFT to each individual line z

(
x, yj

)
and averaging the results. In this work,

P
(√

k2 + l2
)

is calculated and averaged over all values with identical radii. Both ap-
proaches are illustrated in Figure 6. While there is a large dispersion on the individ-
ual PFT

(
k, lj
)
, the average over all j is restricted to a very narrow band. PFT

(√
k2 + l2

)
shows a much larger spread. Meanwhile, for j : 1 → 1025 for the line profiles, there are
82,798 different values for r =

√
k2 + l2 in a 1025 × 1025 grid (1,050,625 points). The lower

number of values for each value of r produces a larger variance of the sample mean.
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Figure 6. (a) log2 − log2 plot of PFT

(
k, lj

)
, j : 1 → 1025 for a surface with 1025× 1025 points, together

with the average for all 1025-line profiles. (b) Individual values and averages over all points with the
same radius. (c) Filtered data. As the low-pass threshold radius rThr decreases, dispersion is reduced,
as is the linear part of the plot.

The data in Figure 6b present two inconveniences for correct regression analysis.
The residual variance is not constant, and the density of data points increases strongly
with r. Figure 6c shows the results of applying a low-pass filter to the average data of
Figure 6b, with threshold radii rThr = 1, 2−4, 2−8. With the highest threshold, linearity is
respected over the entire log2 r range, but dispersion is considerable for large values of
r. As rThr is increased, dispersion decreases, but the curve flattens for small rThr. This
phenomenon is artificial and should not be confused with an upper cutoff. For the statistical
simulations reported in Section 3.3, rThr = 2−5 was used, with linear regression performed
for r : 2−6 → 2−1 .

An important aspect of PSA is illustrated in Figure 7. PFT(r) correctly reproduces the
power-law PSD used as an input for FT. This is not a trivial result because the algorithm
used to determine H by PSA does not “know” what kind of surface is used as an input,
i.e., PSA does not use a trivial deconvolution of

{
ĝij
}

and P(r) because the input
{

ĝij
}

are
unknown to the algorithm. PMP(r) flattens at high frequencies. Although the theoretical
analysis of MP shows that this method produces a power-law PSD [39], its numerical
implementation induces a deviation of this theoretical behaviour. PWM(r) shows the
strongest deviation from the ideal behaviour. The peaks in the spectrum are due to the
finite values of N and M in Equation (3). Each peak corresponds to a circle of spikes
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in PWM(k, l) (Figure 2). Using PSA without accounting for this behaviour leads to large
errors [32].
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2.9. Tuning of the SFA

A reference curve for the structure function γ(r) can be calculated by eliminating
C from Equations (1) and (2) and taking the limit for ru → ∞ for P(r). This produces
the following:

P(r) =

{
0 r < rl

<z2>Hr2H
l

π r−2(H+1) rl ≤ r
(14)

with the help of mathematical software, the IFT of Equation (14) can be found as the following:

R(ρ)
< z2 >

=
1

< z2 >
F−1(P(r)) = −

4−Hr2H
l ρHΓ(1 − H)

Γ(1 + H)
+1 F2

(
−H; 1, 1 − H;−1

4
r2

l ρ2
)

, (15)

where Γ(·) is the gamma function, and 1F2(·) is the generalised hypergeometric function. As
R(ρ) has zero crossings (Figure 8a), its representation in a log2 − log2 plot is meaningless.
The log–log plot for γ(ρ) = 1 − R(ρ) shows asymptotic linear behaviour for log2 ρ < 0
(Figure 8b). Figure 8c shows the average of γ(ρ) over all points with the same ρ for H = 0.25,
0.5, 0.75 and S = FT.
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Figure 8. (a) presents R(ρ) (Equation (15)) for H = 0.25, 0.5, 0.75, and S = FT. (b) shows a log2 − log2
plot of the theoretical value (Equation (15)), with linear fits (dashed) in the ρ = 2−10 − 2−4 range.
(c) shows the theoretical curves (th.) and simulated γ(ρ) (sim.). The latter shows considerable
horizontal offsets. Variations in H are much smaller but not negligible.

Contrary to the radial average of the PSD, no filtering is needed for SFA, but the range
where the theoretical prediction and linear approach are valid is limited compared with
the filtered PSD. There is a visible difference between the slope of the simulated γ(ρ) and
the theoretical curves. The horizontal offset of the simulated γ(ρ) is a random value with
broad dispersion. For calculating H, this offset is irrelevant.

3. Simulations and Results
3.1. Simulation Scheme

Five factors were considered in this study: the surface generating algorithm, the size
of the dataset, the vertical scale σ0 =

√
< z2 >in, the method for calculating H, and the

value of Hin. The domain is defined as a grid of 2n0 × 2n0 points, with n0 taking values of
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8, 9, and 10. An earlier study [49] showed that TPM, and to a lesser extent, DTF, depend
on vertical scaling; three roughness values σ0 equal to 0.25, 0.5, and 1 are considered. The
methods used are DBC, TPM, DTF, PSA, SFA, and RLM.

The value of Hin was varied from 1/128 to 127/128 in steps of 1/64. These values
are chosen to exploit the perfectly parallel nature of the calculations on a processor with
eight cores. Two surfaces were created for each combination of S , n0 and Hin. For each of
these surfaces, the three values of σ0 and all six methods were applied. The scheme allows
the assessment of bias and dispersion by standard regression analysis and the comparison
of results by ANOVA.

3.2. Data Analysis

For both S , each M and n0, HSM (or Hout) is plotted vs. Hin, for each value of σ0. The
linear regression is calculated with the following Equation:

HSM = a0 + a1Hin (16)

is determined by standard least squares. A fourth regression line is estimated for the pooled
data, disregarding the value of σ0. The residual variance σ2

Out of the pooled data is compared
with the mean residual variance of the three individual regression lines. The resulting
F-ratio is compared with the 90% quantile of the F-distribution with the corresponding
degrees of freedom, and the p-value is calculated. If p > 0.1, it is concluded that M is
insensitive to σ0 in the range evaluated.

The value of a1 characterises the bias of the methods. Although this value cannot
be studied entirely independently of a0, a1 affects the precision of a method. Having
determined HSM (Equation (16)) and knowing a0 and a1, a corrected value can be found
as the following:

Hcrr =
HSM − a0

a1
(17)

σout represents the dispersion of the method. The precision of M can be defined as
the difference between Hin and Hcrr for a measured HSM, quantified, for example, as the
standard deviation between the predicted value Hcrr and Hin is as follows:

σPred =

√
< (Hin − Hcrr)

2 > (18)

σout interacts with a1 in determining σPred. Small values of a1 magnify σout when
projected on the horizontal axis of the HSM vs. Hin-plot. σPred is obtained from the
regression analysis on a Hin vs. Hout-plot, under the assumption that the residuals of this
regression are independent of HSM. If the residuals follow a normal distribution, the
confidence intervals can be calculated. The assumption of normality was assessed using
the Kolmogorov–Smirnov test.

3.3. Results for S = FT

The complete results for n0 = 10, σ0 = 0.25, 0.5, and 1 and all M for S = FT are
presented in Figure 9. As an example, Table 1 presents the complete analysis of the
regression results for DTF and DBC. For all M, the regression results are independent of σ0,
although the PF-values for TPM are close to 0.1. A summary of the pooled data for all M is
shown in Tables 2 and 3, for FT and MP and all n0, together with PF and the 90% confidence
interval for Hcrr. None of the PKM indicate deviations from normality, but note that for
n0 = 8, PF = 0.025 for TPM, confirming its dependence on σ0, as observed in an earlier
study [49]. All methods except RLM and PSA present a visible increase in the variance with
Hin. This effect is not studied in detail and is neglected in the statistical analysis.
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Table 1. Results of the regression analysis for n0 = 10, σ0 = 0.25, 0.5, and 1 for S = FT and
M = DTF and DBC. The first three lines present the results for individual σ0. R2 is the coefficient of
determination, and n is the number of simulations. The next line presents the results for the pooled
values. Line 6 presents the ANOVA results for the effect of σ0; F90% and Pσ0 are the 90% confidence
level and p-value for the Fisher test, respectively. Line 8 gives the residual standard deviation σPred,
the 90% confidence interval for Hcrr, and the p-value for the Kolmogorov–Smirnov test (PKM) applied
to the residuals of the Hin vs. HSM regression line.

DTF a0 a1 sout R2 n

σ0 = 1 0.014 0.848 0.046 0.968 128
σ0 = 0.5 0.002 0.852 0.046 0.968 128

σ0 = 0.25 0.002 0.866 0.044 0.972 128

Pooled 0.006 0.855 0.045 0.969 384

ANOVA σ0 F-ratio F90% Pσ0

1.011 1.139 0.458

Precision sPred 90% CI PKM

0.052 ±0.087 0.755

DBC a0 a1 σout R2 n

σ0 = 1 0.308 0.594 0.016 0.992 128
σ0 = 0.5 0.305 0.601 0.018 0.99 128

σ0 = 0.25 0.306 0.598 0.018 0.99 128

Pooled 0.306 0.597 0.017 0.991 384

ANOVA σ F-ratio F90% Pσ0

1.003 1.139 0.488

Precision σPred 90% CI PKM

0.028 ±0.048 0.97
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Table 2. Summary of the statistical results for S = FT and all M. The results are pooled over all σ0.
Notice how σout and the 90% CI on Hcrr increase with decreasing n0.

Method n0 a0 a1 σout R2 Pσ0 90% CI

DTF 10 0.002 0.866 0.044 0.972 0.458 ±0.087
9 −0.004 0.841 0.049 0.962 0.458 ±0.105
8 0.002 0.845 0.069 0.927 0.494 ±0.13

TPM 10 0.137 0.744 0.03 0.982 0.11 ±0.067
9 0.153 0.716 0.033 0.976 0.15 ±0.078
8 0.175 0.691 0.039 0.964 0.025 ±0.095

RLM 10 0.144 0.741 0.024 0.988 0.487 ±0.053
9 0.155 0.723 0.025 0.986 0.472 ±0.06
8 0.182 0.692 0.029 0.979 0.481 ±0.071

DBC 10 0.306 0.597 0.017 0.991 0.488 ±0.048
9 0.338 0.559 0.018 0.988 0.442 ±0.053
8 0.375 0.52 0.023 0.978 0.489 ±0.074

SFA 10 0.107 0.787 0.016 0.995 0.487 ±0.034
9 0.128 0.758 0.018 0.993 0.491 ±0.039
8 0.153 0.726 0.018 0.993 0.479 ±0.042

PSA 10 0.001 1.001 0.002 1 0.4134 ±0.0032
9 0.003 1.001 0.004 1 0.4984 ±0.0068
8 0.007 1.007 0.008 0.999 0.4692 ±0.0137

Table 3. Summary of the statistical results for S = MP and all M. The results are pooled over all σ0.
Generally, bias is higher, and precision is lower than in FT.

Method n0 a0 a1 σout R2 Pσ0 90% CI

DTF 10 −0.014 0.884 0.047 0.967 0.004 ±0.089
9 −0.028 0.874 0.05 0.962 0.008 ±0.077
8 −0.042 0.86 0.062 0.942 0.011 ±0.064

TPM 10 0.034 0.893 0.029 0.988 0.015 ±0.083
9 0.033 0.889 0.034 0.983 0.023 ±.064
8 0.045 0.859 0.04 0.975 0.027 ±0.077

RLM 10 0.014 0.922 0.021 0.994 0.468 ±0.039
9 0.013 0.917 0.024 0.992 0.477 ±.044
8 0.017 0.901 0.032 0.985 0.415 ±0.06

DBC 10 0.268 0.641 0.018 0.99 0.488 ±0.05
9 0.3 0.599 0.021 0.986 0.479 ±0.059
8 0.339 0.546 0.025 0.975 0.376 ±0.079

SFA 10 0.148 0.549 0.047 0.919 0.466 ±0.036
9 0.155 0.535 0.043 0.929 0.486 ±0.049
8 0.165 0.511 0.037 0.943 0.488 ±0.062

PSA 10 −0.065 1.038 0.013 0.998 0.446 ±0.022
9 −0.059 1.046 0.02 0.996 0.485 ±0.033
8 −0.033 1.056 0.03 0.99 0.47 ±0.048

3.4. Results for S = MP

The results for S = MP differ considerably from S = FT. Figure 10 shows that SFA
has a large bias, especially for high values of H (low D), where the predominance of the
first few values in MP is not masked by the strong fluctuations associated with low H. In
the statistical results (Table 3), the precision for HTPM and HDBC varies significantly with
σ0, as found in an earlier study [49]. This effect depends on both the surface simulation
method and the algorithm used for the calculation of D.
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4. Discussion
4.1. Bias, Dispersion, and Precision

Most studies on the fractal dimension of measured data conclude that different meth-
ods yield different results, as is clearly confirmed here. However, if the exact input value
Hin is a priori unknown, there is no way to decide which HSM is closer to this value. In the
field of image recognition, there is a tradition of applying different methods to a standard
library of bitmaps and evaluating whether a method can distinguish between similar im-
ages [23–25,51]. Methods are then compared based on their consistency with earlier research,
but such an approach does not provide information on bias or statistical dispersion.

Using simulated data with known Hin, two factors become clear at once. The first is
the bias B(Hin), as captured by a1. DBC is clearly underperforming in this regard. However,
by Equation (17), this can be corrected by if a0 and a1 are calibrated through numerical
simulation. Dispersion (σout) cannot be corrected. In this aspect, DBC outperforms the
other methods, except for PSA. σout combines with B to determine σPred and the confidence
interval for Hcrr. A low value of a1 will magnify the dispersion on Hcrr for a given Hout.
The low dispersion found in DBC cancels out the effect of bias for S = PS. This effect has
not received due attention in the literature; most studies comparing different methods for
the determination of D do not define precision.

4.2. Computational Efficiency

In the context of this study, efficiency can be interpreted either in terms of computa-
tional speed or the optimal use of information. Computation speed is often a secondary
concern if the effort involved in measuring z(x, y) is much greater than the work involved
in the calculation of D. However, as the size of the datasets increases, the computational
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cost may blow up. In applications such as real-time pattern recognition, computational
speed is essential. PSA, DBC, and RLM will have an advantage here.

To compare computational efficiency, it must be ensured that the most efficient algo-
rithm is used for each method. A straightforward example is the use of FFT in SFA and PSA,
but efficient algorithms are also known for BCM [68] and direct calculation of R(ρ) and
γ(ρ) [69]. As the algorithms in this study have not been fully optimised for efficiency, only
the most evident effects will be mentioned. As an example, the full PSA routine used here
for n0 = 10 takes 5′′ using a single core on an 11th Gen Intel Core i9-11950H @ 2.60 GHz.
Additional software optimisation can certainly increase this speed.

Calculation of the cumulative function in DTF and of the variance in RLM can be
significantly sped up using the results at length scale a to obtain the values for 2a. A naive
calculation of z2 was used in RLM because, even without optimisation, this method is very
fast. In contrast, DTF blows up rapidly with n0. The use of the cumulative function instead
of the original values, combined with a regression analysis for each subset in each step,
generates computational overhead. TPM is not very efficient either and is not very precise.

Further development of DTF and TPM to analyse physical measurements in the form
of z

(
xi, yj

)
shows little promise. Considering the algorithms used in this study, DBC, RLM,

PSA, and SFA are at least ten times more efficient than TPM, which is significantly faster
than DTF. SFA takes about twice the time of PSA simply because of the calculation of the
IFT in addition to the FFT. Given the lower precision of SFA, PSA is preferred.

4.3. Information Efficiency

Information efficiency describes how much of the available information in the dataset
is effectively used to estimate D, including the individual values of z

(
xi, yj

)
and their

spatial correlation. Power spectral analysis and autocorrelation were originally developed
for the analysis of time series. Contact surface profilers measure roughness along a line [3];
hence, estimating fractal dimensions by analysing data along a line is a deep-rooted
tradition [61,63,70,71].

Most modern applications generate large datasets over a rectangular array of regularly
spaced points, as is the case for images obtained by digital cameras, atomic force micro-
scopes, optical roughness measurements, or photogrammetry data. To analyse single lines
out of a full set of f

(
xi, yj

)
data induces a considerable loss of information and may even

distort the conclusions of the analysis [72,73]. The effect is clearly illustrated in Figure 6a,
where the power spectrum of single lines shows extreme dispersion, but the average value
of the 1025 lines appears as a well-defined straight line. Single-line analysis should never
be performed if data are available over a 2D domain.

Even so, DTF, TPM, DBC, and RLM do not use all available information because
they are typically implemented by subsequent division of intervals by two in each step.
For the periodic surfaces generated by FT, there are 22n0 possible positions to collocate
the corner of the first interval. While the computational cost of DTF and TPM does not
encourage exploration of this effect, it has been used to decrease the statistical dispersion
in DBC [20,21,51] and can be used in RLM. According to the definition of the Minkowski
dimension [20], in DBC, the infimum of nm should be determined, while in RLM, the
mean value can be used. Calculating all possible values would significantly increase the
calculation time for RLM and DBC. SFA and PSA are not subject to this observation.

4.4. Effect of Vertical Scaling and Resolution

Vertical scaling clearly affects TPM but was found to be insignificant in all other
methods for FT. It also affects DTF for MP. It is always possible to apply vertical rescaling
such that σ0 is of the same order of λu if the significant number of digits for x, y, and z
is equal, i.e., image depth should be equal to image resolution [49]. If not, scaling only
increases the gaps between consecutive vertical values. Many scientific cameras obey this
condition, and optical roughness measurements often have a higher vertical resolution than
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lateral resolution. In numerical simulations, the vertical resolution is limited by machine
precision, while the lateral resolution is defined by n0.

In terms of cameras and measurement systems available in many laboratory settings,
n0 = 10 is rather modest. However, for time-consuming measurements, large sample sets,
or computationally complex simulations, it may still be interesting to work at lower n0. It
follows from Tables 2 and 3 that σout increases with decreasing n0. The effect is small for
all methods except for PSA, where the increase in σout is proportional to the reduction in
spatial resolution. Still, at n0 = 8, PSA outperforms all other methods at n0 = 10, i.e., better
estimates can be obtained using smaller datasets.

4.5. Effect of the Surface Generation Algorithm

PSA is more precise than the other methods for FT by a factor of 10. PFT(r) is related
to the input function P(r) in Equation (4) by

{
ĝij
}

, which randomises the result. It has
been claimed that using PSA with S = FT is “unfair” [32] because one is presumably the
inverse of the other. It was pointed out in Section 2.8 that this is not the case; the implemen-
tation of PSA used in this work is independent of the surface generating algorithm. The
excellent results obtained by PSA from surfaces generated by FT show that both methods
are consistent.

The radial PS of surfaces defined by MP has a reduced linear section in the log–log
plot (Figure 7). DTF is slightly more successful here than for S = FT (Tables 2 and 3)
because the principal characteristic of DTF is to filter out effects of nonstationarity, which
is inherent to MP [37]. Zhang et al. [32] detected a breakdown of PSA for WM. This can
be associated with the discrete peaks in the PS (Figures 2b and 7c). These peaks are the
reason why WM was not included in the analysis, as they do not appear in the experimental
spectra available in the literature [12–18].

As a reference, a series of simulations was performed for WM with n0 = 10 using
RLM and PSA. The latter method does not produce useful results over the entire range of H.
RLM gave HWM RLM = 0.082 + 0.81Hin, with σout = 0.02. This is comparable to RLM and
SFA for FT. It follows that an approximate value for H can be obtained, even if the initial
assumption (Equation (1)) is not fulfilled. Without the analysis of the PS, the peaks in the
PS for WM would be overlooked. An extensive statistical analysis of the available surface
generation algorithms, in terms of their PS, H, and the probability density distribution of
surface heights, is an interesting topic for future investigation.

If the purpose of a study is to simulate a surface which conforms to Equation (1), the
peaks in the PS created by WM induce a deviation from the basic hypothesis. Whether
such preferred frequencies are important in the simulation depends on the application. For
optical phenomena, they can be very important as they may interact with the frequency of
the optical signal. In contact and fracture mechanics, the effect of the details of the PS has
not been critically analysed. MP introduces a smaller deviation than WM, but its effect on
specific applications has not been quantified either.

If the goal is to estimate the fractal dimension of some measured dataset z = z(x, y), it
is important to investigate whether the hypothesis of a power-law PS is fulfilled. This can
be carried out by plotting P

(√
k2 + l2

)
as in Figure 7 or by studying the residual standard

deviation and coefficient of determination of the linear fit to the log2 − log2 plot for P(r).
Failure to do so may lead to incorrect or incomplete conclusions about the character of
the data.

The simulations made in this work are meant as a reference for the analysis of exper-
imental data. In an experimental setting, D is a priory unknown, so it is not possible to
compare and calibrate the methods objectively. For measurements on an irregular grid,
the present version of PSA is not feasible, and other methods may be selected. For exper-
imental results on a regular grid, which may show deviations from the exact power law
(Equation (1)), PSA can detect such deviations, while techniques such as DBC and DTF will
mask them, which may represent an unacceptable loss of information.
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Refined methods for the characterisation of more complex random processes on a
two-dimensional domain can be devised. Substituting the simple power law by more
advanced fitting functions may be the first approach to this problem. For the simulation
of surfaces which purposedly deviate from Equation (1), the FT technique can use more
refined expressions for P(k, l) in Equation (4).

5. Conclusions

A basic rule in scientific research is that measurement techniques must be calibrated to
reliable standards. Neither calibration techniques nor standards have been clearly defined
for determining the Hurst exponent of random fractal surfaces defined as z = z(x, y) on
a unit square. This study defines the bias, dispersion, and precision of the methods. Bias
refers to the difference between the output and input values of the Hurst exponent. It is
a function of the deterministic input value Hin. Dispersion is the standard deviation of
the random variable Hout, and precision is the standard deviation after correction for bias,
i.e., on Hcrr.

The consistency and high precision of the power spectral analysis for surfaces pro-
duced by the Fourier transform method establishes the latter as a useful standard for the
other methods. The detrended fluctuation and triangular prism methods can be rejected
because of their computational cost and low precision. Based on the bias, differential
box counting should be rejected. Box counting methods were developed to characterise
contours z0 = z(x, y) in the plane but not for surfaces z = z(x, y) in three dimensions,
where they underperform.

Differential box counting and detrended fluctuation can filter out deviations of the
perfect power law behaviour of the power spectrum, but power spectral analysis accu-
rately detects these deviations. Future research should, therefore, focus on exploring the
unique capabilities of power spectral analysis, rather than trying to improve methods that
are computationally inefficient or make suboptimal use of the information available in
the measurements.
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Abbreviations

PS Power spectrum
PSD Power spectral density
ANOVA Analysis of variance
WM Weierstrass–Mandelbrot
FFT Fast Fourier transform
IFT Inverse fast Fourier transform
DTF Discrete Fourier transform
F (·) Fourier transform
F−1(·) Inverse Fourier transform
Re(·) Real part
Im(·) Imaginary part
⌈·⌉ Ceiling
< · > Expected value
Γ(·) Gamma function
1F2(·) generalised hypergeometric function
x, y, z, ξ, ψ Coordinates in physical domain
xi, yj, ξk, ψl Points in physical domain
ρ Radius in physical domain
z(x, y) Fractal function on a square domain
w(x, y, z) Density function in physical space
z0, w0 Arbitrary values for z(x, y), w(x, y, z)
z2 variance of z(x, y)
λu Longest wavelength in physical space
λl Shortest wavelength in physical space
k Wave vector in the frequency domain
k, l Coordinates in the frequency domain
ki, lj Points in the frequency domain
r Radial coordinate in the frequency domain
rl upper cut-off radius in frequency domain
ru upper cut-off radius in frequency domain
D Fractal dimension
H Hurst exponent
C Arbitrary normalisation constant
G Fractal roughness (WM)
γ Lacunarity (WM)
P(r) Power spectrum as a function of r
R(ξ, ψ) Autocorrelation of z(x, y)
γ(ξ, ψ) Structure function of z(x, y)
< z2 >in Input value of z2 for simulation
σ0 Input value of standard deviation
Hin Input value of H for simulation
S Surface generation method (generic)
WM Weierstrass–Mandelbrot (method)
MP Random midpoint (method)
FT Fourier transform (method)
{gi} Set of random numbers (generic)
zS (x, y) Random surface generated by S
zS
(

xi, yj

)
individual values of zS (x, y)

2n0 Number of x, y values in zS
(

xi, yj

)
µS Mean value of zS (x, y)
< z2 >S Variance of zS (x, y)
M, N Number of terms in WM{

gij

}
2n0 × 2n0 matrix of Gaussian values{

ĝij

}
Fourier transform of

{
gij

}
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φnm Random phase angles in WM
M Method to determine H (generic)
BCM Box counting methods (generic)
DBC Differential box counting (method)
DTF Detrended fluctuation (method)
TPM Triangular prism method
RLM Roughness–length method
PSA Power spectrum analysis (method)
SFA Structure–function analysis (method)
a Size of square sub-domain
m2 Number of sub-domains
∆z Range of zS

(
xi, yj

)
over entire domain

Mi Maximum of zS
(

xi, yj

)
in sub-domain i.

mi Minimum of zS
(

xi, yj

)
in sub-domain i.

f (x, y) Regression function for DTF
va Residual variance for sub-domain size a
c00, c10, c01, c20, c02, c11, a0, a1 parameters
sTot Total surface determined in TPM
PS (k, l), PS (r) Power spectrum for method S
RS (x, y), RS (ρ) Autocorrelation for method S
γS (ρ) Structure function for method S
rThr Treshold radius for low-pass filter
HSM Estimated H for S , M, and Hin
Hcrr Corrected H for S , M, and Hin
BSM Bias for methods S and M
σout Standard error on HSM (dispersion)
σPred Standard error on Hcrr (precision)
R2 Coefficient of determination
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