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Abstract: In the context of fractal space, this study presents a higher-order nonlinear local fractional
Bratu-type equation and thoroughly examines this generalized nonlinear equation. Additional
analysis and identification of particular special situations of the generalized local fractional Bratu
equation is performed. Finally, the Adomian decomposition method is utilized to derive that solution
for the generalized Bratu equation of local fractional type. This study contributes to a deeper
understanding of these equations and provides a practical computational approach to their solutions.
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1. Introduction

The utilization of fractional derivatives represents a pivotal mathematical instrument
for the development of sophisticated mathematical and physical models within the in-
triguing realm of fractal space [1–3]. Yang’s pioneering introduction of the local fractional
derivative, as documented in his seminal works [4–7], has since captivated the attention of
a multitude of researchers. In the realm of applied mathematics and mathematical analysis,
the fractal derivative, also known as the Hausdorff derivative, serves as a non-Newtonian
extension of the derivative specifically designed for measuring fractals within the frame-
work of fractal geometry. Fractal derivatives have been developed to explore anomalous
diffusion, addressing situations where conventional methods overlook the fractal char-
acteristics of the medium. In this context, a fractal measure “t” is scaled by β. Notably,
this derivative is considered local, distinguishing it from the more commonly employed
fractional derivative. Fractal calculus is structured as a generalization of standard calculus.
This derivative has found extensive application in various scientific disciplines, notably in
the fields of physics and engineering. Its influence spans critical domains such as nanoengi-
neering, dynamic systems, and microelectronics. The main aspiration of fractional calculus
is to extend differentiation and integration to fractional order, a concept that has been
around since the 17th century due to the groundbreaking work of Leibnitz, Euler, Lagrange,
Abel, Liouville, and many others [8–10]. A growing area of mathematics called fractional
calculus (FC) has diverse applications in all connected sectors of science and problems
of engineering. Some of the findings were published in books or related review articles.
To learn more about local fractional calculus, see [11]. Incorporating fractal calculus into
differential equations presents a robust paradigm for modeling intricate systems featuring
self-replicating patterns. Within the domain of porous media, a fractional diffusion equa-
tion adeptly characterizes the non-local substance transport in materials exhibiting fractal
structures. Likewise, a fractional population growth equation captures the dynamics of
species expansion in environments marked by fractal patterns. Rooted in fractal calculus,
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these equations contribute to a nuanced understanding of phenomena in domains like heat
conduction, electrical circuits, and wave propagation. This approach proves versatile and
insightful, offering a comprehensive means of modeling the complex behaviors inherent in
systems displaying fractal characteristics [12–19].

In the past few years, fractional differential equations have been extensively utilized in
physics and engineering. Over the past few decades, fractional differential equations have
found widespread application in engineering and science. Ordinary differential equations
(ODEs) and fractional-order partial differential equations (PDEs) are commonly encoun-
tered in various disciplines, including fluid dynamics, biology, and physics. Numerous
fields, such as electrical, mechanical, chemical, biological, and economics, particularly in
ground transportation, signal image processing, and control theory, involve the use of these
equations. Considerable effort has been invested in developing reliable and consistent
numerical and analytical methodologies for solving these fractional equations over the
last decade or more. For fractional differential equations, the methods of Adomian decom-
position and variational iteration stand out among the rest. These methods distinguish
themselves by providing approximations for the issues under consideration without relying
on linearization or discretization.

Nonlinear differential equations, such as the Bratu-type equation, find application in
various fields of science and engineering. Bratu’s problem has been utilized in addressing
various challenges, including the Chandrashekhar model, the fuel ignition model, the ther-
mal response model, and the framework for the electrospun nanofiber fabrication process.
It is employed in chemical kinetics to simulate complex reaction kinetics, in combustion
theory to comprehend flame propagation, and in heat transfer to examine temperature
distributions in materials. Furthermore, it plays a role in mathematical biology, material
science, nuclear physics, electrochemistry, and environmental science, enabling the mod-
eling of complex processes such as population dynamics, diffusion in materials, neutron
transport in reactors, electrochemical reactions, and pollutant spread. Beyond specific ap-
plications, the Bratu-type equation serves as a fundamental mathematical model, providing
insights into nonlinear differential equations and their properties. This makes it a versatile
and indispensable tool in scientific research and analysis. The “Nonlinear Local Frac-
tional Bratu-Type Equation” is a mathematically intricate and captivating equation residing
within the domain of fractional calculus differential equations. This equation presents a
specialized variant of the Bratu equation, well known for its relevance in studying combus-
tion processes and reaction–diffusion phenomena. Within the “Nonlinear Local Fractional
Bratu-Type Equation,” the incorporation of fractional calculus introduces a unique and
labyrinthine facet to the problem. Fractional calculus extends conventional notions of differ-
entiation and integration to noninteger orders, enabling the portrayal of intricate physical
processes characterized by memory and anomalous diffusion. Consequently, this equation
holds particular significance across a spectrum of scientific and engineering disciplines,
including physics, chemistry, biology, and materials science.

The equation typically appears as a differential equation containing a nonlinear term,
a fractional derivative, and boundary conditions determined by the specific contextual
problem. The solution to this equation provides valuable insights into the behavior of
systems governed by fractional diffusion and nonlinear reactions, revealing the intricate
interplay between these two phenomena. Ongoing research endeavors focused on the
“Non-linear Bratu Equation of Local Fractional Type” captivate mathematicians, physicists,
and engineers alike as they grapple with challenges in the realm of non-standard calculus,
nonlinear dynamics, and complex systems. A deep understanding of the solutions and
attributes of this equation has the potential to advance our understanding of diverse
real-world processes, potentially leading to practical applications across domains such as
combustion theory, chemical kinetics, and biological modeling.

The Bratu-type equation holds significant utility in the fields of science and engineer-
ing. Recognizing its importance, we shift our focus to investigating a generalized local
fractional Bratu-type equation [20,21]. In this extension, we employ the Mittag-Leffler
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function to define a generalized local fractional Bratu-type equation. The inclusion of
the Mittag-Leffler function enhances the flexibility of modeling, allowing the customiza-
tion of equations matching specific behaviors observed in the system under study. This
adaptability is crucial to accurately representing the nuances of real-world phenomena.
Incorporating the Mittag-Leffler function into the generalization of an equation serves
as a valuable approach to enriching the model and addressing the intricacies inherent
in fractional calculus. It proves to be a robust tool for characterizing systems with fea-
tures such as long memory, anomalous diffusion, and other nonlocal or non-Markovian
behaviors. Moreover, our approach extends to the n-dimensional generalization of the
fractional Bratu-type equation, and the derived model can be easily streamlined to the
classical Bratu-type equation by assigning specific values.

d2nβζ

dξ2nβ
+ ℘ Eβ

(
ζβ
)
= 0, ξ > 0, 0 < β < 1, n ∈ N. (1)

In this equation, ℘ is a constant and Eβ

(
ζβ
)

is the Mittag-Leffler function with real parame-
ter β. In addition, ξ and ζ are known and unknown functions.

We also introduce another form of the generalized local fractional Bratu-type equation:

d2nβζ

dξ2nβ
+ ℘ exp(ζ) = 0, ξ > 0, 0 < β < 1, n ∈ N, (2)

where ℘ is constant. In this equation, exp(ζ) is the exponential function.
If n = 1, then Equation (1), reduces in to

d2βζ

dξ2β
+ ℘ Eβ

(
ζβ
)
= 0, ξ > 0, 0 < β < 1. (3)

If n = 1, then Equation (2), reduces in to

d2βζ

dξ2β
+ ℘ exp(ζ) = 0, ξ > 0, 0 < β < 1. (4)

Also, if n = 1 and β = 1, then Equation (2), reduces in to the classical Bratu-type
equation [6]:

d2ζ

dξ2 + ℘ exp(ζ) = 0, ξ > 0. (5)

Establishing the existence and uniqueness of the generalized non-linear local fractional
Bratu-type equation formulated is straightforward with the application of the Lipschitz
condition. In addition, to address a combustion challenge within a numerical framework,
a specific approach is employed. Numerous techniques have been explored to approximate
the analytical solution of a nonlinear differential equation. These include the homotopy
perturbation method [14,22], the variational iteration method [15,23], the reduced differ-
ential transform method [24], the homotopy analysis method [25,26], and the δ-homotopy
analysis transform method [27,28], among others.

In this research work, we utilize the Adomian decomposition method—a powerful tool
for solving linear or nonlinear differential equations to derive the results of the generalized
Bratu-type equation. The Adomian decomposition method is a powerful technique that
provides efficient algorithms for approximate analytical solutions and numerical simula-
tions for real-world applications in engineering and applied sciences. This approach is an
excellent technique for solving generalized nonlinear fractional differential equations, even
though the outcome is expressed in terms of an infinite series. Variational formulation of
the local fractional Bratu-type equation is established by the semi-inverse method and its
approximate analytical solution is obtained by the Adomian decomposition method.

In addressing the motivation behind this work, it becomes apparent that conventional
derivative definitions prove insufficient when tackling space co-ordinate within a fractal
environment. To adequately capture this phenomenon, the utilization of Yang’s local
fractional derivative becomes crucial. This research employs the Adomian decomposition
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method, recognized as a potent technique for solving both linear and nonlinear differential
equations [29], serving as the cornerstone for deriving our findings.

The paper is structured into six sections. Section 1 provides an introduction, while
Section 2 covers the Preliminaries. Section 3 presents the Adomian decomposition method
(ADM), Section 4 addresses the solution of the generalized local fractional Bratu equation,
and Section 5 delves into specific cases, including the numerical solution of the model
using the Adomian decomposition method. Concluding remarks are presented in Section 6.
The references are discussed at the end of the paper.

2. Preliminaries

In this segment, we introduce essential definitions and foundational principles of the
Adomian decomposition method in the contexts of local fractional and calculus of fractional
domains.

2.1. Local Fractal Derivative

The local fractional derivative of function R(t) with an order of 0 < β < 1 at the
specific point t = t0 is provided in accordance with [4–7]

DβRβ(t0) =
dβ

dtβ Rβ(t)|to

= lim
t→t0

∆β(Rβ(t)−Rβ(t0))
(t−t0)

β ,

which, for all µ > 0, 0 < |t − t0| < δ, satisfies condition
∣∣Rβ(t)− Rβ(t0)

∣∣ ≤ µβ, where

∆β
(

Rβ(t)− Rβ(t0)
) ∼= [Rβ(t)− Rβ(t0)

]
Γ(1 + β).

2.2. Local Fractal Integral

If Ω(ℓ) in fractal space has order β(0, 1), then the local fractal integral of Ω(ℓ) is
defined in the interval (β, λ) as follows:

s It
(β)Ω(ℓ) =

1
Γ(1 + β )

t∫
s

Ω(θ)(dθ)β =
1

Γ(1 + β )
lim

∆θ→0

j=I−1

∑
j=0

Ω
(
θj
)(

∆θj
)β , (6)

where ∆θj = θj+1 − θj, ∆θ = max{∆θ1, ∆θ2, ∆θ3, . . . .} and
[
θj, θj+1

]
, j = 0, . . . , I − 1,

θ0 = s, θI = t, is a division of (s, t).

2.3. Properties of Local Fractional Derivatives

We present the following properties associated with local fractional derivatives (see [30,31]):
We let ζ1(ξ), ζ2(ξ) ∈ Cβ(a, b); then,

(i) s I(β)
t (ζ1(ξ)± ζ2(ξ))=s I(β)

t [ζ1(ξ)] ± s I(β)
t [ζ2(ξ)],

(ii) s I(β)
t (ζ1(ξ) ∗ ζ2(ξ)) = ζ2(ξ)s I(β)

t [ζ1(ξ)] + ζ1(ξ)s I(β)
t [ζ2(ξ)],

(iii) s I(β)
t

[
ζ1(ξ)
ζ2(ξ)

]
=

(
ζ2(ξ)s I(β)

t [ζ1(ξ)]−ζ1(ξ)s I(β)
t [ζ2(ξ)]

)
(ζ2(ξ))

2 .

The higher-order local fractional order can be expressed as

θ(mβ)(t) =

m times︷ ︸︸ ︷
Dβ

t . . . Dβ
t θ(t).
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2.4. Mittag-Leffler Function

The Swedish mathematician Gosta Mittag-Leffler explored and introduced a function
defined as in the expression of power series in 1903 (see [4,8]):

Eβ

(
tβ
)
=

∞

∑
n=0

tnβ

Γ(βn + 1)
, (7)

where 0 < β < 1.

3. Adomian Decomposition Method (ADM)

We have the well-known ADM approach, which is quite useful for solving linear or
non-linear differential equations [32,33]:

ν − Nν = g, (8)

where N is a nonlinear operator and ν is an unknown function. The equation defined in (8)
is known as a non-linear system. Now, to find the approximate solutions for Equation (8),
first, we consider the solution of (8) is unique with the form

ν =
∞

∑
j=0

νj. (9)

It is evident that finding the solution to (9) becomes notably challenging when the
given system involves nonlinear terms. To address this challenge, the Adomian decom-
position method (ADM) emerges as a pivotal tool. In this approach, the nonlinear term is
decomposed as follows:

Nν =
∞

∑
j=0

Bj, (10)

where Bj is known as Adomian polynomials with coefficients ν0, ν1, ν2, ν3, . . . , νn, hence

Bj = Bj(ν0, ν1, ν2, . . . , νn). (11)

Now, to obtain the values of Bj, we set

ν =
∞

∑
j=0

qjνj, (12)

and

Nν =
∞

∑
j=0

qjBj, (13)

where

Bj =
1
j!

dj

dqj N
∞

∑
j=0

qjνj

∣∣∣∣∣
j=0

. (14)

Now, putting the value of Bj in (13), from (8), we obtain

∞

∑
j=0

νj =
∞

∑
j=0

Bj + g. (15)

Now, to obtain the value of νj, we define the following relations:

ν0 = g,
νj+1 = Bj(ν0, ν1, ν2, . . . , νj).

For more details on the method, see [32–35].
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4. Solution of Generalized Local Fractional Bratu Equation

Theorem 1. Consider the following generalized Bratu-type equation:

d2nβζ

dξ2nβ
+ ℘Eβ

(
ζβ
)
= 0, ξ > 0, 0 < β < 1, n ∈ N, (16)

where dβ

dξβ is known as Yang’s fractional derivative of a local type, with

ζ(0) = ζ(1) = 0, ζβ = λ(constant).
}

(17)

Proof. We have the Adomian decomposition method, which is quite useful in solving
nonlinear ordinary or partial differential equations. To solve the differential equation
defined in the statement of Theorem 1, first, we consider

L2nβ
ξ =

d2nβ

dξ2nβ
, (18)

and its inverse integral is

L−2nβ
ξ (.) =

ξ∫
0

ξ∫
0

. . .

ξ∫
0

(.)

{2n times}

dxβdxβ . . . dxβ. (19)

The operator form of Equation (16), with Adomian polynomials, is

L(2nβ)
ξ ζ + ℘

∞

∑
j=0

Bj = 0. (20)

Upon using the inverse operator, we obtain the following recurrence relation:
ζ0 = λ ξβ

Γ(β+1) ,

ζ j+1 = −L−(2nβ)
ξ

(
℘

∞
∑

j=0
Bj

)
;

(21)

hence, putting j = 0, in Equation (21), we obtain

ζ1 = −L−(2nβ)
ξ (℘ B0), (22)

where B0 = Eβ

(
ζ

β
0

)
.

And for j = 1, Equation (21) offers

ζ2 = −L−(2nβ)
ξ (℘B1). (23)

with B1 = ν1Eβ

(
ζ

β
0

)
.

In the same manner, for j = 2, Equation (21) provides us with

ζ3 = −L−(2nβ)
ξ (℘B2), (24)

where B2 =

(
ζ2 +

ζ2
1

2

)
Eβ

(
ζ

β
0

)
, and so on.

Then, we can easily find the solution of Equation (16) as

ζ = ζ0 +
∞

∑
j=1

ζ j. (25)
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Theorem 2. Derive the solution of another form of the generalized local fractional Bratu-type equation:

d2nβζ

dξ2nβ
+ ℘ exp(ζ) = 0, ξ > 0, 0 < β < 1, n ∈ N, (26)

where dβ

dξβ is known as Yang’s fractional derivative of local type,and

ζ(0) = ζ(1) = 0, ζβ = λ(constant).
}

(27)

Proof. Utilizing the Adomian decomposition method, a valuable technique for solving non-
linear ordinary or partial differential equations, we address the solution of the differential
equation specified in Theorem 1. Initially, we examine

L2nβ
ξ =

d2nβ

dξ2nβ
, (28)

and its inverse integral is

L−2nβ
ξ (.) =

ξ∫
0

ξ∫
0

. . .

ξ∫
0

(.)

{2n times}

dxβdxβ . . . dxβ. (29)

The operator form of the above equations with Adomian polynomials is

L(2nβ)
ξ ζ + ℘

∞

∑
j=0

Bj = 0. (30)

Upon using the inverse operator, we obtain the following recurrence relation:
ζ0 = λ ξβ

Γ(β+1) ,

ζ j+1 = −L−(2nβ)
ξ

(
℘

∞
∑

j=0
Bj

)
;

(31)

hence, for j = 0, we obtain from (31)

ζ1 = −L−(2nβ)
ξ (℘B0), (32)

where B0 = eζ0 .
And for j = 1, Equation (31) offers

ζ2 = −L−(2nβ)
ξ (℘B1). (33)

with B1 = ν1eζ0 ,
In the same manner for j = 2, Equation (31) provides us with

ζ3 = −L−(2nβ)
ξ (℘B2), (34)

with B2 =

(
ζ2 +

ζ2
1

2

)
eζ0 , and so on. Then, we can easily find the solution of Equation (26) as

ζ = ζ0 +
∞

∑
j=1

ζ j. (35)
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5. Particular Cases

Now, we discuss some particular cases of the proposed generalized local fractional
Bratu-type equations. In the above-defined Theorems 1 and 2, by putting some specific
values of different constants, it is reduced into well-known differential equations.

Special Case (i):
If we put n = 1 in the defined (16) of Theorem 1, we obtain

d2βζ

dξ2β
+ ℘ Eβ

(
ζβ
)
= 0, ξ > 0, 0 < β ≤ 1, (36)

with
ζ(0) = ζ(1) = 0, ζβ = λ(constant).

}
(37)

By using the above-defined procedure, we obtain the following results:

B0 = Eβ

(
ζ

β
0

)
, (38)

B1 = ν1Eβ

(
ζ

β
0

)
, (39)

B2 =

(
ζ2 +

ζ2
1

2

)
Eβ

(
ζ

β
0

)
, (40)

...

Now, using the method defined in the above section, we obtain the following terms:

ζ0 = λ
ξβ

Γ(1 + β)
; (41)

in the same manner,
ζ1 = −℘L−2β

ξ

(
Eβ

(
ζ

β
0

))
(42)

or

ζ1 = −℘

ξ∫
0

ξ∫
0

Eβ

(
λ

xβ

Γ(1 + β)

)
dxβdxβ. (43)

Upon solving, we obtain

ζ1 = − ℘

λ2

[
Eβ

(
λ

ξβ

Γ(1 + β)

)
− 1 − λ

ξβ

Γ(1 + β)

]
, (44)

and using the same approach, we obtain

ζ2 = − ℘2

4λ4

[
Eβ

(
2λξβ

Γ(1+β)

)
− 2λξβ

Γ(1+β)
−

4λξβ

Γ(1+β)
Eβ

(
λξβ

Γ(1+β)

)
+ 4Eβ

(
λξβ

Γ(1+β)

)
− 5
]
,

(45)

and the remaining terms can be acquired using a similar methodology.
Now, by putting the above-obtained coefficients in the following equation, we obtain

the required solution,

ζ = ζ0 +
∞

∑
j=1

ζ j, (46)

or
ζ = λ ξβ

Γ(1+β)
− ℘

λ2

[
Eβ

(
λ ξβ

Γ(1+β)

)
− 1 − λ ξβ

Γ(1+β)

]
− ℘2

4λ4

[
Eβ

(
2λξβ

Γ(1+β)

)
− 2λξβ

Γ(1+β)
−

4λξβ

Γ(1+β)
Eβ

(
λξβ

Γ(1+β)

)
+ 4Eβ

(
λξβ

Γ(1+β)

)
− 5
]
+ . . . .

(47)

Through our investigation, we establish the efficacy of the Adomian decomposition
method in solving non-linear differential equations. The results obtained for the gener-
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alized local fractional Bratu-type equation offer enhanced clarity and validation of the
method’s capabilities.

To examine the spatial behavior, we depict Figure 1, illustrating the variations of the
dependent variable ζ concerning the independent variable ξ for Case (i) at various values
of β = 0.7, 0.8, 0.9, and 0.99. These results are derived with λ = 1 and ℘ = 0.5. The findings
reveal a noticeable influence of β on the behavior of ζ. Additionally, it is observed that
the value of the space coordinate initially rises and subsequently decreases over a defined
time interval.

0.00 0.05 0.10 0.15 0.20

0.00

0.05

0.10

0.15

0.20

ξ

ζ

β=0.99

β=0.9

β=0.8

β=0.7

Figure 1. Change in ζ of Case (i) with respect to ξ for different values of β.

Special Case (ii):
If we put n = 1 in the defined Equation (26) of Theorem 2, we obtain

d2βζ

dξ2β
+ ℘exp(ζ) = 0, ξ > 0, 0 < β < 1, (48)

with
ζ(0) = ζ(1) = 0, ζβ = λ(constant).

}
(49)

ζ0 = λ
ξβ

Γ(1 + β)
, (50)

In the same manner,
ζ1 = −℘L−2β

ξ

(
exp
(

ζ
β
0

))
, (51)

or

ζ1 = −℘

ξ∫
0

ξ∫
0

exp
(

λ
xβ

Γ(1 + β)

)
dxβdxβ. (52)

We obtain

ζ1 = − ℘

λ2

[
exp
(

λ
ξβ

Γ(1 + β)

)
− 1 − λ

ξβ

Γ(1 + β)

]
, (53)

and using the same approach, we obtain

ζ2 = − ℘2

4λ4

[
exp
(

2λξβ

Γ(1+β)

)
− 2λξβ

Γ(1+β)

− 4λξβ

Γ(1+β)
exp
(

λξβ

Γ(1+β)

)
+ 4exp

(
λξβ

Γ(1+β)

)
− 5
]
,

(54)

and other terms can be obtained by the same approach.
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Now, by putting the above-obtained coefficients in the following equation, we obtain
the required solution,

ζ = ζ0 +
∞

∑
j=1

ζ j, (55)

or
ζ = λ ξβ

Γ(1+β)
− ℘

λ2

[
exp
(

λ ξβ

Γ(1+β)

)
− 1 − λ ξβ

Γ(1+β)

]
− ℘2

4λ4

[
exp
(

2λξβ

Γ(1+β)

)
− 2λξβ

Γ(1+β)

− 4λξβ

Γ(1+β)
exp
(

λξβ

Γ(1+β)

)
+ 4exp

(
λξβ

Γ(1+β)

)
− 5
]
+ . . . .

(56)

In our examination, it was demonstrated that the Adomian decomposition method
proves highly effective in solving non-linear differential equations. The results obtained
for the generalized local fractional Bratu-type equation align with those presented by
Yao et al. [21], underscoring the precision and reliability of the method.

To examine the spatial behavior, we depict Figure 2, illustrating the variations of the
dependent variable ζ concerning the independent variable ξ for Case (ii) at various values
of β = 0.7, 0.8, 0.9, and 0.99. These results are derived with λ = 1 and ℘ = 0.5. The findings
reveal a noticeable influence of β on the behavior of ζ. Additionally, it is observed that
the value of space coordinate initially rises and subsequently decreases over a defined
time interval.
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Figure 2. Change in ζ of Case (ii) with respect to ξ for different values of β.

6. Conclusions

In this paper, we introduce the generalized local fractional Bratu-type equation, ex-
tending the discussion to encompass the n-dimensional case. We also use the Mittag-Leffler
function in this generalization. A more efficient analytical approach is presented for the
analysis of the generalized local fractional Bratu-type equation, utilizing the Yang local frac-
tional derivative. Our investigation involves the formulation of two theorems pertaining to
the higher-order generalized local fractional Bratu equation, followed by an exploration of
its solution using the Adomian decomposition method. Furthermore, we present specific
results that underscore the method’s effectiveness in approximating analytical solutions for
this equation. The incorporation of a more generalized function enhances the utility of the
study compared to the original nongeneralized equation.
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