
Citation: Kapoor, M.; Bin Turki, N.;

Shah, N.A. Approximate Analytical

Solution of Fuzzy Linear Volterra

Integral Equation via Elzaki ADM.

Fractal Fract. 2023, 7, 650. https://

doi.org/10.3390/fractalfract7090650

Academic Editors: Da-Yan Liu and

Riccardo Caponetto

Received: 19 June 2023

Revised: 8 August 2023

Accepted: 19 August 2023

Published: 25 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Approximate Analytical Solution of Fuzzy Linear Volterra
Integral Equation via Elzaki ADM
Mamta Kapoor 1,† , Nasser Bin Turki 2 and Nehad Ali Shah 3,*,†

1 Department of Mathematics, Lovely Professional University, Phagwara 144411, Punjab, India;
mamtakapoor.78@yahoo.com

2 Department of Mathematics, College of Science, King Saud University, P.O. Box-2455,
Riyadh 11451, Saudi Arabia; nassert@ksu.edu.sa

3 Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
* Correspondence: nehadali199@yahoo.com
† These authors contributed equally to this work and are co-first authors.

Abstract: In this paper, the fuzzy Volterra integral equations’ solutions are calculated using a hybrid
methodology. The combination of the Elzaki transform and Adomian decomposition method results
in the development of a novel regime. The precise fuzzy solutions are determined using Elzaki ADM
after the fuzzy linear Volterra integral equations are first translated into two crisp integral equations
utilizing the fuzzy number in parametric form. Three instances of the considered equations are
solved to show the established scheme’s dependability, efficacy, and application. The results have a
substantial impact on the fuzzy analytical dynamic equation theory. The comparison of the data in
a graphical and tabular format demonstrates the robustness of the defined regime. The lower and
upper bound solutions’ theoretical convergence and error estimates are highlighted in this paper. A
tolerable order of absolute error is also obtained for this inquiry, and the consistency of the outcomes
that are approximated and accurate is examined. The regime generated effective and reliable results.
The current regime effectively lowers the computational cost, and a faster convergence of the series
solution to the exact answer is signaled.

Keywords: fuzzy linear Volterra integral equation; Elzaki transform; Adomian decomposition method

1. Introduction

One of the most often utilized fields of mathematics is fuzzy fractional calculus
theory, which has both theoretical and practical applications embracing a wide range
of mathematical structures. Traditional derivatives mostly rely on Caputo–Liouville or
Riemann–Liouville concerns in this market segment. The nonlocality and singularity of the
kernel function, which is visible in the integral operator’s side-by-side with the normalizing
function showing alongside the integral ticks, are the most common defects of these two
qualifiers. A more accurate and precise characterization must unavoidably follow from the
reality of core replicating dynamic fractional systems. The Atangana–Baleanu Caputo is a
novel fractional fuzzy derivative construct introduced in this orientation, which is utilized
to synthesize and explicate fresh fuzzy real-world mathematical concepts.

The fuzzy set theory is useful for analyzing ambiguous situations. Any element of a
fractional equation, including the initial value and boundary conditions, may be impacted
by these uncertainties. The recognition of fractional models in practical contexts leads to
the usage of interval or fuzzy formulations as an alternative. Numerous fields, including
topology, fixed-point theory, integral inequalities, fractional calculus, bifurcation, image
processing, consumer electronics, control theory, artificial intelligence, and operations
research, have made extensive use of the fuzzy set theory. Over the past few decades, the
field of fractional calculus, which encompasses fractional-order integrals and derivatives,
has attracted a great lot of attention from academics and scientists. Because it yields
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precise and accurate conclusions, fractional calculus has a wide range of applications in
contemporary physical and biological processes. The integral (differential) operators have
more latitude in fractional differential calculus. As a result, academics are quite interested
in this subject. Over the past few decades, a large number of research papers, monographs,
and books on a variety of themes, including existence theory and analytical conclusions,
have been published.

The study of fuzzy integral equations is rapidly spreading and expanding, especially
in light of its recently recognized relationship to fuzzy control. Understanding integral
equations is important since they serve as the foundation for the bulk of mathematical
models applied to problems in a variety of fields, including chemistry, engineering, biology,
and physics. Mathematicians regularly use differential, fractional order differential, and
integral equations to resolve problems in the fields of chemistry, engineering, biology,
physics, and other sciences. Undoubtedly, any model has some parameters that might be
transmitted with some ambiguity. These ambiguous research problems, which result in the
presentation of fuzzy conceptions, are necessary to solve these models. Richening fuzzy
equation answers have received a lot of attention in the literature.

Fuzzy Sumudu transform technology was offered by Khan et al. [1] for the resolution
of fuzzy differential equations. Homotopy analysis was provided by Maitama and Zhou [2].
Fuzzy differential equations having derivatives of both fractional and integer orders can
be handled using the Shehu transform approach. Results on nth-order fuzzy differential
equations with GH-differentiability were reported by Khastan et al. in their paper published
in 2008 [3]. Applications of the fuzzy Laplace transform were provided by Salahshour and
Allahviranloo [4]. A unique method for solving fuzzy linear differential equations was
presented by Allahviranloo et al. [5]. Laplace transform was used by Salgado et al. [6] to
find solutions for interactive fuzzy equations. Laplace ADM was used by Ullah et al. [7] to
propose a solution to fuzzy Volterra integral equations. Applications of the double Sumudu
ADM for 2D fuzzy Volterra integral equations were announced by Alidema [8].

The classical Volterra integral equation is given by

θ(y) = h(y) + λ1

∫ y

β1

k(y, s)θ(s)ds. (1)

The fuzzy form of the differential equation is given as follows:

θ(y, α1) = h(y, α1) + λ1

∫ y

β1

k(y, s)θ(s, α1)ds. (2)

where the unknown fuzzy parameter function is as follows:

θ(y, α1) =
[
θ(y, α1),

_
θ(y, α1)

]
.

and is to be evaluated.
h(y, α1) =

[
h(y, α1),

_
h(y, α1)

]
.

is considered as the fuzzy parametric form function and k(y, s) is a real valued function
which is also considered as the kernel of the integral equation.

2. Preliminaries

Definition 1. [6]. Let φ : R→ E is a fuzzy valued function s.t. r ∈ [0, 1]

[φ(x)]r =
[
φr(x), φr(x)

]
.
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1. If φ(x) is a differentiable function in first form i.e., (1) differentiable, then

[
φ′(x)

]r
=
[
φr′(x), φ′r(x)

]
.

2. If φ(x) is a differentiable function in second form i.e., (2) differentiable, then

[
φ′(x)

]r
=
[
φ′r(x), φr′(x)

]
.

Definition 2. Let φ : (a, b)→ E is strongly generalized H-differentiable function at x0 ∈ (a, b) if
there exists φ′(x0) ∈ E s.t. for h > 0 and closed to zero.

1. φ′(x0) = lim
h→0

φ(x0+h)Θφ(x0)
h = lim

h→0

φ(x0)Θφ(x0−h)
h .

2. φ′(x0) = lim
h→0

φ(x0)Θφ(x0+h)
−h = lim

h→0

φ(x0−h)Θφ(x0)
−h .

3. φ′(x0) = lim
h→0

φ(x0+h)Θφ(x0)
h = lim

h→0

φ(x0−h)Θφ(x0)
−h .

4. φ′(x0) = lim
h→0

φ(x0)Θφ(x0+h)
−h = lim

h→0

φ(x0)Θφ(x0−h)
h .

Definition 3. Considereing that φ(x), φ′(x), . . . , φ(n−1)(x) are differentiable fuzzy valued func-
tions with r-cut form

[φ(x)]r =
[
φr(x), φr(x)

]
.

1. If φ(x), φ′(x), . . . , φ(n−1)(x) are (1) differentiable

[φn(x)]r =
[

φ
(n)
r (x), φ

(n)
r (x)

]
.

2. If φ(x), φ′(x), . . . , φ(n−1)(x) are (2) differentiable

[φn(x)]r =
[

φ
(n)
r (x), φ

(n)
r (x)

]
.

3. If φ(x) is (1)-differentiable and φ′(x), . . . , φ(n−1)(x) are (2) differentiable

[φn(x)]r =
[

φ
(n)
r (x), φ

(n)
r (x)

]
.

4. If φ(x) is (2)-differentiable and φ′(x), . . . , φ(n−1)(x) are (1) differentiable

[φn(x)]r =
[

φ
(n)
r (x), φ

(n)
r (x)

]
.

Definition 4. Elzaki transform is defined as follows:

E(ν) = ν
∫ ∞

0
f (t)e−(

t
ν )dt. (3)

where f (t) is considered as the time function.

E[ut(x, t)] =
1
ν

E[u(x, t)]− ν u(x, 0), (4)

E[ut(x, y, t)] =
1
ν

E[u(x, y, t)]− ν u(x, y, 0), (5)
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E[ut(x, y, z, t)] =
1
ν

E[u(x, y, z, t)]− ν u(x, y, z, 0). (6)

Via Table 1, the basic properties of the Elzaki transform are mentioned.

Table 1. Elzaki transform of the given function.

f(t) E[f(t)] = T(ν)

1 ν2

t ν3

tn ∠n νn+2

eat ν2

1−aν

sin(at) aν3

1+a2ν2

cos(at) aν2

1+a2ν2

sinh(at) aν3

1−a2ν2

cosh(at) aν2

1−a2ν2

ADM’s key benefit is that it does not rely on perturbation, linearization, or any
other kind of discretization. The actual result of the model thus stays the same. It is not
necessary to discretize the variables, which is a complex and challenging approach. This
indicates that the results were produced without any errors, which was made possible
by discretization. It is also precise in determining the approximate and exact solutions of
nonlinear prototypes. Different types of differential equations, including integro-differential
equations, differential algebraic equations, and differential-difference equations, as well as
some functional equations, eigenvalue problems, and stochastic system problems, can all
be solved using such techniques. Some of the latest references regarding the solution of
different differential equations are as follows [9–16].

3. The Main Advantages of the Study

The fuzzy Volterra Integral equation is solved in current research using an iterative
regime devised and included under the name Elzaki ADM. Numerical discretization
under the current regime does not require any complicated calculations and is simple to
implement. To obtain the approximated-analytical solutions, innovative iterative regimes
must be created because it is difficult to create numerical programs to handle fractional
PDEs. There are many transforms described in the literature, but depending on how
they affect calculations, some transforms are simple to use, and others are not. One of
the simplest techniques is the Elzaki ADM. It has been observed through a review of
the literature that fuzzy Volterra Integral equations are rarely resolved. As a result, the
originality of the research lies in its focus on identifying a solution to the problem. This
article also elaborates on error analysis and convergence analysis.

4. Basic Notion of Regime

The parametric form of the considered equation is as follows:θ(y, α1) = h(y, α1) +
∫ y

β1
k(y, s) θ(s, α1)ds,

_
θ(y, α1) =

_
h(y, α1) +

∫ y
β1

k(y, s)
_
θ(s, α1)ds.
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Applying Elzaki transform:
E[θ(y, α1)] = E[h(y, α1)] + E

[∫ y
β1

k(y, s) θ(s, α1)ds
]
,

E
[_
θ(y, α1)

]
= E

[_
h(y, α1)

]
+ E

[∫ y
β1

k(y, s)
_
θ(s, α1)ds

]
.

By the notion of the Convolution theorem for the Elzaki transform: E[θ(y, α1)] = E[h(y, α1)] +
1
u E[y] E[θ(y, α1)],

E
[_
θ(y, α1)

]
= E

[_
h(y, α1)

]
+ 1

u E[y]E
[_
θ(y, α1)

]
.

 E[θ(y, α1)] = E[h(y, α1)] + u2 E[θ(y, α1)],

E
[_
θ(y, α1)

]
= E

[_
h(y, α1)

]
+ u2E

[_
θ(y, α1)

]
. θ(y, α1) = h(y, α1) + E−1[u2 E[θ(y, α1)]

]
,

_
θ(y, α1) =

_
h(y, α1) + E−1

[
u2E

[_
θ(y, α1)

]]
.

Applying ADM:
∞
∑

i=0
θi(y, α1) = h(y, α1) + E−1

[
u2 E

[
∞
∑

i=0
θi(y, α1)

]]
,

∞
∑

i=0

_
θi(y, α1) =

_
h(y, α1) + E−1

[
u2 E

[
∞
∑

i=0

_
θi(y, α1)

]]
.



θ0(y, α1) + θ1(y, α1) + θ2(y, α1) + θ3(y, α1) + · · ·
= h(y, α1) + E−1[u2 E

[
θ0(y, α1) + θ1(y, α1) + θ2(y, α1) + θ3(y, α1) + · · ·

]]
_
θ0(y, α1) +

_
θ1(y, α1) +

_
θ2(y, α1) +

_
θ3(y, α1) + · · ·

=
_
h(y, α1) + E−1

[
u2E

[ _
θ0(y, α1) +

_
θ1(y, α1) +

_
θ2(y, α1) +

_
θ3(y, α1) + · · ·

]]
.

,



θ0(y, α1) = h(y, α1),

θ1(y, α1) = E−1[u2 E
[
θ0(y, α1)

]]
,

θ2(y, α1) = E−1[u2 E
[
θ1(y, α1)

]]
,

θ3(y, α1) = E−1[u2 E
[
θ2(y, α1)

]]
,

...
θn+1(y, α1) = S−1[u2 E

[
θn(y, α1)

]]
, n = 0, 1, 2, 3, . . .

_
θ0(y, α1) =

_
h(y, α1),

_
θ1(y, α1) = S−1

[
u2E

[ _
θ0(y, α1)

]]
,

_
θ2(y, α1) = S−1

[
u2E

[ _
θ1(y, α1)

]]
,

_
θ3(y, α1) = S−1

[
u2E

[ _
θ2(y, α1)

]]
,

...
_

θn+1(y, α1) = E−1
[
u2E

[ _
θn(y, α1)

]]
, n = 0, 1, 2, 3, . . .
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5. Convergence Analysis and Error Estimate

Theorem 1.

(i) Let X be a Banach space and let θm(x, α1) and θn(x, α1) be in X. Suppose γ ∈ (0, 1), then
the series solution

{
θm(x, α1)

}∞
m=0, which is defined, converges to the lower-bound solution

whenever θm(x, α1) ≤ γ θm−1(x, α1), ∀m > N, that I,s for any given ε > 0, there exists a
positive number N, such that

∣∣∣∣θm+n(x, α1)
∣∣∣∣≤ ε, ∀m, n > N .

(ii) Let ∑
j
i=0 θi(x, α1) be finite and θi(x, α1) be its approximate solution. Suppose γ > 0, such

that
∣∣∣∣∣∣θi+1(x, α1)

∣∣∣∣∣∣≤ γ
∣∣∣∣∣∣θi(x, α1)

∣∣∣∣∣∣, γ ∈ (0, 1), ∀i , then the max. absolute error for the
lower bound solution is:∣∣∣∣∣

∣∣∣∣∣θ(x, α1)−
j

∑
i=0

θi(x, α1)

∣∣∣∣∣
∣∣∣∣∣≤ γj+1

1− γ

∣∣∣∣∣
∣∣∣∣∣θ0(x, α1)

∣∣∣∣∣
∣∣∣∣∣

Proof.

(i)

Provided R0(x, α1) = θ0(x, α1),

R1(x, α1) = θ0(x, α1) + θ1(x, α1),

R2(x, α1) = θ0(x, α1) + θ1(x, α1) + θ2(x, α1),

R3(x, α1) = θ0(x, α1) + θ1(x, α1) + θ2(x, α1) + θ3(x, α1),

. . .

Rm(x, α1) = θ0(x, α1) + θ1(x, α1) + θ2(x, α1) + θ3(x, α1) + . . . + θm(x, α1)

The aim is to prove that Rm(x, α1) is a Cauchy sequence in the Banach space.
It is provided that for γ ∈ (0, 1)

||Rm+1(x, α1)− Rm(x, α1)|| =
∣∣∣∣∣∣θm+1(x, α1)

∣∣∣∣∣∣
≤ γ

∣∣∣∣θm(x, α1)
∣∣∣∣

≤ γ2
∣∣∣∣∣∣θm−1(x, α1)

∣∣∣∣∣∣
≤ γ3

∣∣∣∣∣∣θm−2(x, α1)
∣∣∣∣∣∣

. . .

≤ γm+1
∣∣∣∣∣∣θ0(x, α1)

∣∣∣∣∣∣.
Let find

||Rm(x, α1)− Rn(x, α1)||
= ||Rm(x, α1)− Rm−1(x, α1) + Rm−1(x, α1)− Rm−2(x, α1)+

Rm−2(x, α1)− Rm−3(x, α1) + . . . + Rn+1(x, α1)− Rn(x, α1)||.
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||Rm(x, α1)− Rn(x, α1)||
≤ ||Rm(x, α1)− Rm−1(x, α1)||+ ||Rm−1(x, α1)− Rm−2(x, α1)||

+||Rm−2(x, α1)− Rm−3(x, α1)||+ . . .+||Rn+1(x, α1)− Rn(x, α1)||.

||Rm(x, α1)− Rn(x, α1)||
= γm||θ0(x, α1)||+ γm−1||θ0(x, α1)||+ γm−2||θ0(x, α1)||
+γm−3||θ0(x, α1)||+ . . . + γn+1||θ0(x, α1)||.∣∣∣∣∣∣∣∣Rm(x, α1)− Rn(x, α1)

∣∣∣∣∣∣∣∣≤ (1− γm−n)

(1− γ)
γn+1

∣∣∣∣∣∣∣∣θ0(x, α1)

∣∣∣∣∣∣∣∣.
Considering ε = 1−γ

(1−γm−n)γn+1||θ0(x,α1)||

||Rm(x, α1)− Rn(x, α1)|| < ε.

lim
m,n→∞

||Rm(x, α1)− Rn(x, α1)|| = 0.

⇒ {Rm}∞
m=0 is a Cauchy sequence.

Let ∑
j
i=0 θi(x, α1) < ∞∣∣∣∣∣

∣∣∣∣∣θ(x, α1)−
j

∑
i=0

θi(x, α1)

∣∣∣∣∣
∣∣∣∣∣=
∣∣∣∣∣
∣∣∣∣∣ ∞

∑
i=j+1

θi(x, α1)

∣∣∣∣∣
∣∣∣∣∣

≤
∞

∑
i=j+1

∣∣∣∣θi(x, α1)
∣∣∣∣

≤
∞

∑
i=j+1

γi
∣∣∣∣∣∣θ0(x, α1)

∣∣∣∣∣∣
≤
∣∣∣∣∣∣θ0(x, α1)

∣∣∣∣∣∣[γj+1 + γj+2 + γj+3 + · · ·
]
.

≤
∣∣∣∣θ0(x, α1)

∣∣∣∣γj+1

1− γ
. �

Theorem 2.

(i) Let X be a Banach space and let
_

θm(x, α1) and
_

θn(x, α1) be in X. Suppose γ ∈ (0, 1),

then the series solution
{ _

θm(x, α1)
}∞

m=0
, which is defined ∑∞

m=0

_
θm(x, α1), converges to

the upper bound solution whenever
_

θm(x, α1) ≤ γ
_

θm−1(x, α1), ∀m > N, that is, for any
given ε > 0, there exists a positive number N, such that

∣∣∣∣∣∣ _
θm+n(x, α1)

∣∣∣∣∣∣≤ ε, ∀m, n > N .

(ii) Let ∑
j
i=0

_
θi(x, α1) be finite and

_
θi(x, α1) be its approximate solution. Suppose γ > 0, such

that ||
_

θi+1(x, α1)
∣∣∣∣∣∣≤ γ

∣∣∣∣∣∣ _
θi(x, α1)

∣∣∣∣∣∣, γ ∈ (0, 1), ∀i , then the max. absolute error for the
upper bound solution is:∣∣∣∣∣

∣∣∣∣∣θ(x, α1)−
j

∑
i=0

_
θi(x, α1)

∣∣∣∣∣
∣∣∣∣∣≤ γj+1

1− γ

∣∣∣∣∣
∣∣∣∣∣ _
θ0(x, α1)

∣∣∣∣∣
∣∣∣∣∣.
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Proof.

(i)

Provided S0(x, α1) =
_
θ0(x, α1)

S1(x, α1) =
_
θ0(x, α1) +

_
θ1(x, α1),

S2(x, α1) =
_
θ0(x, α1) +

_
θ1(x, α1) +

_
θ2(x, α1),

S3(x, α1) =
_
θ0(x, α1) +

_
θ1(x, α1) +

_
θ2(x, α1) +

_
θ3(x, α1),

. . .

Sm(x, α1) =
_
θ0(x, α1) +

_
θ1(x, α1) +

_
θ2(x, α1) +

_
θ3(x, α1)

+ . . . +
_

θm(x, α1).

The aim is to prove that Sm(x, α1) is a Cauchy sequence in the Banach space.
It is provided that for γ ∈ (0, 1)

||Sm+1(x, α1)− Sm(x, α1)|| =
∣∣∣∣∣∣ _

θm+1(x, α1)
∣∣∣∣∣∣

≤ γ
∣∣∣∣∣∣ _

θm(x, α1)
∣∣∣∣∣∣

≤ γ2
∣∣∣∣∣∣ _

θm−1(x, α1)
∣∣∣∣∣∣

≤ γ3
∣∣∣∣∣∣ _

θm−2(x, α1)
∣∣∣∣∣∣

. . .

≤ γm+1
∣∣∣∣∣∣ _

θ0(x, α1)
∣∣∣∣∣∣.

Let find

||Sm(x, α1)− Sn(x, α1)||
= ||Sm(x, α1)− Sm−1(x, α1) + Sm−1(x, α1)− Sm−2(x, α1)+.

Sm−2(x, α1)− Sm−3(x, α1) + . . . + Sn+1(x, α1)− Sn(x, α1)||

||Sm(x, α1)− Sn(x, α1)||
≤ ||Sm(x, α1)− Sm−1(x, α1)||+ ||Sm−1(x, α1)− Sm−2(x, α1)||

+||Sm−2(x, α1)− Sm−3(x, α1)||+ . . .+||Sn+1(x, α1)− Sn(x, α1)||

||Sm(x, α1)− Sn(x, α1)||
= γm||

_
θ0(x, α1)||+ γm−1||

_
θ0(x, α1)||+ γm−2||

_
θ0(x, α1)||

+γm−3||
_
θ0(x, α1)||+ . . . + γn+1||

_
θ0(x, α1)||∣∣∣∣∣∣∣∣Sm(x, α1)− Sn(x, α1)

∣∣∣∣∣∣∣∣≤ (1− γm−n)

(1− γ)
γn+1

∣∣∣∣∣∣∣∣ _
θ0(x, α1)

∣∣∣∣∣∣∣∣.
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Considered ε = 1−γ

(1−γm−n)γn+1
∣∣∣∣∣∣ _

θ0(x,α1)
∣∣∣∣∣∣ .

||Sm(x, α1)− Sn(x, α1)||< ε

lim
m,n→∞

||Sm(x, α1)− Sn(x, α1)|| = 0.

⇒ {Sm}∞
m=0 is a Cauchy sequence.

(ii)

Let ∑
j
i=0

_
θi(x, α1) < ∞∣∣∣∣∣

∣∣∣∣∣_θ(x, α1)−
j

∑
i=0

_
θi(x, α1)

∣∣∣∣∣
∣∣∣∣∣=
∣∣∣∣∣
∣∣∣∣∣ ∞

∑
i=j+1

_
θi(x, α1)

∣∣∣∣∣
∣∣∣∣∣

≤
∞

∑
i=j+1

∣∣∣∣∣∣ _
θi(x, α1)

∣∣∣∣∣∣
≤

∞

∑
i=j+1

γi
∣∣∣∣∣∣ _

θ0(x, α1)
∣∣∣∣∣∣

≤
∣∣∣∣∣∣ _

θ0(x, α1)
∣∣∣∣∣∣[γj+1 + γj+2 + γj+3 + . . .

]
.

≤

∣∣∣∣∣∣ _
θ0(x, α1)

∣∣∣∣∣∣γj+1

1− γ
.�

6. Numerical Experiments

In the present sections, three numerical examples are tested for the validity and
applicability of the proposed regime. The series approximation and exact solutions for
lower and upper bounds are fetched for each example.

Example 1. Considered the fuzzy linear Volterra integral equation of the second kind as follows:

θ(y, α1) = h(y, α1) +
∫ y

0
k(y, s) θ(s, α1)ds. (7)

where, h(y, α1) = [3 + α1, 8− 2α1], 0 ≤ y ≤ 1.
Exact solution: θ(y, α1) = [3 + α1, 8− 2α1]cosh y{

θ(y, α1) = h(y, α1) +
∫ y

0 (y− s) θ(s, α1)ds,
_
θ(y, α1) =

_
h(y, α1) +

∫ y
0 (y− s)

_
θ(s, α1)ds.

Applying the Elzaki transform: E[θ(y, α1)] = E[h(y, α1)] + E
[∫ y

0 (y− s) θ(s, α1)ds
]
,

E
[_
θ(y, α1)

]
= E

[_
h(y, α1)

]
+ E

[∫ y
0 (y− s)

_
θ(s, α1)ds

]
.

{
E[θ(y, α1)] = E[3 + α1] + E

[∫ y
0 (y− s) θ(s, α1)ds

]
,

E
[_
θ(y, α1)

]
= E[8− 2α1] + E

[∫ y
0 (y− s)

_
θ(s, α1)ds

]
.
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 E[θ(y, α1)] = (3 + α1)E[1] + E
[∫ y

0 (y− s) θ(s, α1)ds
]
,

E
[_
θ(y, α1)

]
= (8− 2α1)E[1] + E

[∫ y
0 (y− s)

_
θ(s, α1)ds

]
.

Via the Convolution theorem for Elzaki transform: E[θ(y, α1)] = (3 + α1) E[1] + 1
u E[y]E[θ(y, α1)],

E
[_
θ(y, α1)

]
= (8− 2α1) E[1] + 1

u E[y]E
[_
θ(y, α1)

]
.

 E[θ(y, α1)] = (3 + α1)E[1] + u2 E[θ(y, α1)],

E
[_
θ(y, α1)

]
= (8− 2α1)E[1] + u2 E

[_
θ(y, α1)

]
. θ(y, α1) = (3 + α1) + E−1[u2 E[θ(y, α1)]

]
,

_
θ(y, α1) = (8− 2α1) + E−1

[
u2 E

[_
θ(y, α1)

]]
.{

θ(y, α1) = (3 + α1) + E−1[u2 E[θ(y, α1)]
]
,

_
θ(y, α1) = (8− 2α1) + E−1

[
u2 E

[_
θ(y, α1)

]]
.

Applying ADM:
∞
∑

i=0
θi(y, α1) = (3 + α1) + E−1

[
u2 E

[
∞
∑

i=0
θi(y, α1)

]]
,

∞
∑

i=0

_
θi(y, α1) = (8− 2α1) + E−1

[
u2 E

[
∞
∑

i=0

_
θi(y, α1)

]]
.



θ0(y, α1) + θ1(y, α1) + θ2(y, α1) + θ3(y, α1) + . . .

= (3 + α1) + E−1[u2 E
[
θ0(y, α1) + θ1(y, α1) + θ2(y, α1) + θ3(y, α1) + . . .

]]
,

_
θ0(y, α1) +

_
θ1(y, α1) +

_
θ2(y, α1) +

_
θ3(y, α1) + . . .

= (8− 2α1) + E−1
[
u2 E

[ _
θ0(y, α1) +

_
θ1(y, α1) +

_
θ2(y, α1) +

_
θ3(y, α1) + . . .

]]
.

θ0(y, α1) = (3 + α1),

θ1(y, α1) = S−1[u2E
[
θ0(y, α1)

]]
,

θ2(y, α1) = S−1[u2E
[
θ1(y, α1)

]]
,

θ3(y, α1) = S−1[u2E
[
θ2(y, α1)

]]
,

...
θn+1(y, α1) = S−1[u2E

[
θn(y, α1)

]]
, n = 0, 1, 2, 3, . . .

_
θ0(y, α1) = (8− 2α1),

_
θ1(y, α1) = E−1

[
u2E

[ _
θ0(y, α1)

]]
,

_
θ2(y, α1) = E−1

[
u2E

[ _
θ1(y, α1)

]]
,

_
θ3(y, α1) = E−1

[
u2E

[ _
θ2(y, α1)

]]
,

...
_

θn+1(y, α1) = E−1
[
u2E

[ _
θn(y, α1)

]]
, n = 0, 1, 2, 3, . . .

Calculation part for lower bound terms:

θ0(y, α1): θ0(y, α1) = (3 + α1).
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θ1(y, α1): θ1(y, α1) = E−1
[
u2E

[
θ0(y, α1)

]]
,

⇒ θ1(y, α1) = E−1
[
u2E[(3 + α1)]

]
,

⇒ θ1(y, α1) = (3 + α1) E−1
[
u2 E[1]

]
,

⇒ θ1(y, α1) = (3 + α1) E−1
[
u4
]
,

⇒ θ1(y, α1) = (3 + α1)

[
y2

2!

]
.

θ2(y, α1): θ2(y, α1) = E−1[u2E
[
θ1(y, α1)

]]
,

⇒ θ2(y, α1) = E−1
[
u2E

[
(3 + α1)

[
y2

2!

]]]
,

⇒ θ2(y, α1) = (3 + α1) E−1
[

u2E
[

y2

2!

]]
,

⇒ θ2(y, α1) = (3 + α1) E−1
[
u2u4

]
,

⇒ θ2(y, α1) = (3 + α1) E−1
[
u6
]
,

⇒ θ2(y, α1) = (3 + α1)

[
y4

4!

]
.

θ3(y, α1): θ3(y, α1) = E−1[u2E
[
θ2(y, α1)

]]
,

⇒ θ3(y, α1) = E−1
[
u2E

[
(3 + α1)

[
y4

4!

]]]
,

⇒ θ3(y, α1) = (3 + α1) E−1
[

u2E
[

y4

4!

]]
,

⇒ θ3(y, α1) = (3 + α1) E−1
[
u2u6

]
,

⇒ θ3(y, α1) = (3 + α1) E−1
[
u8
]
,

⇒ θ3(y, α1) = (3 + α1)

[
y6

6!

]
.

Calculation part for upper-bound terms:
_
θ0(y, α1):

_
θ0(y, α1) = (8− 2α1).

_
θ1(y, α1):

_
θ1(y, α1) = E−1

[
u2S

[ _
θ0(y, α1)

]]
,

⇒
_
θ1(y, α1) = E−1

[
u2E[(8− 2α1)]

]
,

⇒
_
θ1(y, α1) = (8− 2α1) E−1

[
u2E[1]

]
,

⇒
_
θ1(y, α1) = (8− 2α1) E−1

[
u4
]
,
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_
θ1(y, α1) = (8− 2α1)

[
y2

2!

]
.

_
θ2(y, α1):

_
θ2(y, α1) = E−1

[
u2E

[ _
θ1(y, α1)

]]
,

⇒
_
θ2(y, α1) = E−1

[
u2E

[
(8− 2α1)

[
y2

2!

]]]
,

⇒
_
θ2(y, α1) = (8− 2α1) E−1

[
u2E

[
y2

2!

]]
,

⇒
_
θ2(y, α1) = (8− 2α1) E−1

[
u2u4

]
,

⇒
_
θ2(y, α1) = (8− 2α1) E−1

[
u6
]
,

⇒
_
θ2(y, α1) = (8− 2α1)

[
y4

4!

]
.

_
θ3(y, α1):

_
θ3(y, α1) = S−1

[
u2E

[ _
θ2(y, α1)

]]
,

⇒
_
θ3(y, α1) = S−1

[
u2E

[
(8− 2α1)

[
y4

4!

]]]
,

⇒
_
θ3(y, α1) = (8− 2α1) E−1

[
u2E

[
y4

4!

]]
,

⇒
_
θ3(y, α1) = (8− 2α1) E−1

[
u2u6

]
,

⇒
_
θ3(y, α1) = (8− 2α1) E−1

[
u8
]
,

⇒
_
θ3(y, α1) = (8− 2α1)

[
y6

6!

]
.

Finally: {
θ(y, α1) = θ0(y, α1) + θ1(y, α1) + θ2(y, α1) + θ3(y, α1) + . . .
_
θ(y, α1) =

_
θ0(y, α1) +

_
θ1(y, α1) +

_
θ2(y, α1) +

_
θ3(y, α1) + . . .

θ(y, α1) = (3 + α1) + (3 + α1)
[

y2

2!

]
+ (3 + α1)

[
y4

4!

]
+ (3 + α1)

[
y6

6!

]
+ . . .

_
θ(y, α1) = (8− 2α1) + (8− 2α1)

[
y2

2!

]
+ (8− 2α1)

[
y4

4!

]
+ (8− 2α1)

[
y6

6!

]
+ . . .
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

θ(y, α1) = (3 + α1)
[
1 +

[
y2

2!

]
+
[

y4

4!

]
+
[

y6

6!

]
+ . . .

]
θ(y, α1) = 3 + a +

( 3
2 + a

2
)
y2

+
(

1
8 + a

24

)
y4 +

(
1

240 + a
720

)
y6

+
(

1
13440 + a

40320

)
y8

+
(

1
1209600 + a

3628800

)
y10

+
(

1
159667200 + a

479001600

)
y12

+
(

1
29059430400 + a

87178291200

)
y14,

_
θ(y, α1) = (8− 2α1)

[
1 +

[
y2

2!

]
+
[

y4

4!

]
+
[

y6

6!

]
+ . . .

]
_
θ(y, α1) = 8− 2a + (4− a)y2

+
(

1
3 −

a
12

)
y4 +

(
1

90 −
a

360

)
y6

+
(

1
5040 −

a
20160

)
y8 +

(
1

453600 −
a

1814400

)
y10

+
(

1
59875200 −

a
239500800

)
y12

+
(

1
10897286400 −

a
43589145600

)
y14.{

θ(y, α1) = (3 + α1)cosh y,
_
θ(y, α1) = (8− 2α1)cosh y.

Observation 1. Via Table 2, the comparison of approx. and exact solutions regarding the lower
bound are provided. Via Figure 1, approximated solution of the lower bound is notified. Via Figure 2,
the exact solution of the lower bound is provided. Table 3 notifies the comparison of 15pprox. and
exact solutions regarding the upper bound. In Figure 3, the approximated solution of the upper
bound is provided. In Figure 4, the exact solution of the upper bound is mentioned. Via Figure 5,
the compatibility of approx. and the exact solutions for lower and upper bounds at a = 0.1, 0.3, 0.5,
0.7, and 0.9 are validated. Via Figure 6, the compatibility of approx. and the exact solutions for
lower and upper bounds ata = 1, 3, 5, 7, and 9 are verified.

Table 2. Comparison of Approx. and Exact Solutions regarding Lower Bound.

a = 0.1 a = 0.5

y Approx. Exact Abs. Err. Approx. Exact Abs. Err.

0.1 3.115512921 3.115512921 0 3.517514588 3.517514588 0
0.2 3.162206943 3.162206944 1.00 × 10−9 3.570233644 3.570233644 0
0.3 3.240549394 3.240549393 1.00 × 10−9 3.517514588 3.658684800 1.41 × 10−1
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Table 3. Comparison of Approx. and Exact Solutions regarding Upper Bound.

a = 0.1 a = 0.5

y Approx. Exact Abs. Err. Approx. Exact Abs. Err.

0.1 7.839032511 7.839032511 0 7.035029177 7.035029176 1.00 × 10−9

0.2 7.956520693 7.956520697 4.00 × 10−9 7.140467289 7.140467292 3.00 × 10−9

0.3 8.153640410 8.153640409 1.00 × 10−9 7.317369598 7.317369598 0
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଴𝜃(𝑦, 𝛼ଵ) = ℎ(𝑦, 𝛼ଵ) + න (𝑦 − 𝑠) 𝜃(𝑠, 𝛼ଵ)𝑑𝑠.௬
଴

 

Applying the Elzaki transform: 

⎩⎪⎨
⎪⎧𝐸ൣ𝜃(𝑦, 𝛼ଵ)൧ = 𝐸ൣℎ(𝑦, 𝛼ଵ)൧ + 𝐸 ቈන (𝑦 − 𝑠) 𝜃(𝑠, 𝛼ଵ)𝑑𝑠௬

଴ ቉ ,
𝐸ൣ𝜃(𝑦, 𝛼ଵ)൧ = 𝐸ൣℎ(𝑦, 𝛼ଵ)൧ + 𝐸 ቈන (𝑦 − 𝑠) 𝜃(𝑠, 𝛼ଵ)𝑑𝑠௬

଴ ቉ . 

Figure 6. Comparison of the approx. and exact solutions for lower and upper bounds at a = 1, 3, 5, 7,
and 9 regarding Example 1.

Example 2. Considered the fuzzy linear Volterra integral equation as follows:

θ(y, α1) = h(y, α1) +
∫ y

0
k(y, s) θ(s, α1)ds. (8)
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where, h(y, α1) = [α1, 2− α1]
(

1− y− y2

2

)
, 0 ≤ y ≤ 1.

Exact solution: θ(y, α1) = [α1, 2− α1](1− sinh y){
θ(y, α1) = h(y, α1) +

∫ y
0 (y− s) θ(s, α1)ds,

_
θ(y, α1) =

_
h(y, α1) +

∫ y
0 (y− s)

_
θ(s, α1)ds.

Applying the Elzaki transform: E[θ(y, α1)] = E[h(y, α1)] + E
[∫ y

0 (y− s) θ(s, α1)ds
]
,

E
[_
θ(y, α1)

]
= E

[_
h(y, α1)

]
+ E

[∫ y
0 (y− s)

_
θ(s, α1)ds

]
.


E[θ(y, α1)] = E

[
α1

(
1− y− y2

2

)]
+ E

[∫ y
0 (y− s) θ(s, α1)ds

]
,

E
[_
θ(y, α1)

]
= E

[
(2− α1)

(
1− y− y2

2

)]
+ E

[∫ y
0 (y− s)

_
θ(s, α1)ds

]
.

E[θ(y, α1)] = α1E
[(

1− y− y2

2

)]
+ E

[∫ y
0 (y− s) θ(s, α1)ds

]
,

E
[_
θ(y, α1)

]
= (2− α1) E

[(
1− y− y2

2

)]
+ E

[∫ y
0 (y− s)

_
θ(s, α1)ds

]
.

S[θ(y, α1)] = α1E
[(

1− y− y2

2

)]
+ S

[∫ y
0 (y− s) θ(s, α1)ds

]
,

S
[_
θ(y, α1)

]
= (2− α1)E

[(
1− y− y2

2

)]
+ S

[∫ y
0 (y− s)

_
θ(s, α1)ds

]
. E[θ(y, α1)] = E[h(y, α1)] + E

[∫ y
0 (y− s) θ(s, α1)ds

]
,

E
[_
θ(y, α1)

]
= E

[_
h(y, α1)

]
+ E

[∫ y
0 (y− s)

_
θ(s, α1)ds

]
.

Applying the convolution theorem for the Elzaki transform:
E[θ(y, α1)] = α1E

[(
1− y− y2

2

)]
+ 1

u E[y] E[θ(y, α1)],

E
[_
θ(y, α1)

]
= (2− α1)E

[(
1− y− y2

2

)]
+ 1

u E[y] E
[_
θ(y, α1)

]
.


E[θ(y, α1)] = α1E

[(
1− y− y2

2

)]
+ u2 E[θ(y, α1)],

E
[_
θ(y, α1)

]
= (2− α1) E

[(
1− y− y2

2

)]
+ u2 E

[_
θ(y, α1)

]
.

θ(y, α1) = α1

(
1− y− y2

2

)
+ E−1[u2 E[θ(y, α1)]

]
,

_
θ(y, α1) = (2− α1)

(
1− y− y2

2

)
+ E−1

[
u2 E

[_
θ(y, α1)

]]
.

θ(y, α1) = α1

(
1− y− y2

2

)
+ E−1[u2 E[θ(y, α1)]

]
,

_
θ(y, α1) = (2− α1)

(
1− y− y2

2

)
+ E−1

[
u2 E

[_
θ(y, α1)

]]
.

Applying ADM:
∞
∑

i=0
θi(y, α1) = α1

(
1− y− y2

2

)
+ E−1

[
u2 E

[
∞
∑

i=0
θi(y, α1)

]]
,

∞
∑

i=0

_
θi(y, α1) = (2− α1)

(
1− y− y2

2

)
+ E−1

[
u2 E

[
∞
∑

i=0

_
θi(y, α1)

]]
.
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

θ0(y, α1) + θ1(y, α1) + θ2(y, α1) + θ3(y, α1) + . . .

= α1

(
1− y− y2

2

)
+S−1[u2 S

[
θ0(y, α1) + θ1(y, α1) + θ2(y, α1) + θ3(y, α1) + . . .

]]
,

_
θ0(y, α1) +

_
θ1(y, α1) +

_
θ2(y, α1) +

_
θ3(y, α1) + . . .

= (2− α1)
(

1− y− y2

2

)
+S−1

[
u2 S

[ _
θ0(y, α1) +

_
θ1(y, α1) +

_
θ2(y, α1) +

_
θ3(y, α1) + . . .

]]
.

θ0(y, α1) = α1

(
1− y− y2

2

)
,

θ1(y, α1) = E−1[u2E
[
θ0(y, α1)

]]
,

θ2(y, α1) = E−1[u2E
[
θ1(y, α1)

]]
,

θ3(y, α1) = E−1[u2E
[
θ2(y, α1)

]]
,

...
θn+1(y, α1) = E−1[u2E

[
θn(y, α1)

]]
, n = 0, 1, 2, 3, . . .

_
θ0(y, α1) = (2− α1)

(
1− y− y2

2

)
,

_
θ1(y, α1) = E−1

[
u2E

[ _
θ0(y, α1)

]]
,

_
θ2(y, α1) = E−1

[
u2E

[ _
θ1(y, α1)

]]
,

_
θ3(y, α1) = E−1

[
u2E

[ _
θ2(y, α1)

]]
,

...
_

θn+1(y, α1) = E−1
[
u2E

[ _
θn(y, α1)

]]
, n = 0, 1, 2, 3, . . .

Calculation regarding the lower bound:

θ0(y, α1): θ0(y, α1) = α1

(
1− y− y2

2

)
.

θ1(y, α1): θ1(y, α1) = E−1[u2 E
[
θ0(y, α1)

]]
,

⇒ θ1(y, α1) = E−1
[

u2 E
[

α1

(
1− y− y2

2!

)]]
,

⇒ θ1(y, α1) = α1 E−1
[

u2 E
[

1− y− y2

2!

]]
,

⇒ θ1(y, α1) = α1 E−1
[
u2
[
u2 − u3 − u4

]]
,

⇒ θ1(y, α1) = α1 E−1
[
u4 − u5 − u6

]
,

⇒ θ1(y, α1) = α1

[
y2

2!
− y3

3!
− y4

4!

]
.

θ2(y, α1): θ2(y, α1) = E−1[u2 E
[
θ1(y, α1)

]]
,

⇒ θ2(y, α1) = E−1
[
u2 E

[
α1

[
y2

2! −
y3

3! −
y4

4!

]]]
,

⇒ θ2(y, α1) = α1 E−1
[

u2 E
[

y2

2!
− y3

3!
− y4

4!

]]
,
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⇒ θ2(y, α1) = α1 E−1
[
u2
[
u4 − u5 − u6

]]
,

⇒ θ2(y, α1) = α1 E−1
[
u6 − u7 − u8

]
,

⇒ θ2(y, α1) = α1

[
y4

4!
− y5

5!
− y6

6!

]
.

θ3(y, α1): θ3(y, α1) = E−1[u2 E
[
θ2(y, α1)

]]
,

⇒ θ3(y, α1) = E−1
[
u2 E

[
α1

[
y4

4! −
y5

5! −
y6

6!

]]]
,

⇒ θ3(y, α1) = α1 E−1
[

u2 E
[

y4

4!
− y5

5!
− y6

6!

]]
,

⇒ θ3(y, α1) = α1 E−1
[
u2
[
u6 − u7 − u8

]]
,

⇒ θ3(y, α1) = α1 E−1
[
u8 − u9 − u10

]
,

⇒ θ3(y, α1) = α1

[
y6

6!
− y7

7!
− y8

8!

]
.

Calculation regarding the upper bound:

_
θ0(y, α1):

_
θ0(y, α1) = (2− α1)

(
1− y− y2

2

)
.

_
θ1(y, α1):

_
θ1(y, α1) = E−1

[
u2 E

[ _
θ0(y, α1)

]]
,

⇒
_
θ1(y, α1) = E−1

[
u2 E

[
(2− α1)

(
1− y− y2

2!

)]]
,

⇒
_
θ1(y, α1) = (2− α1) E−1

[
u2 E

[
1− y− y2

2!

]]
,

⇒
_
θ1(y, α1) = (2− α1) E−1

[
u2
[
u2 − u3 − u4

]]
,

⇒
_
θ1(y, α1) = (2− α1) E−1

[
u4 − u5 − u6

]
,

⇒
_
θ1(y, α1) = (2− α1)

[
y2

2!
− y3

3!
− y4

4!

]
.

_
θ2(y, α1):

_
θ2(y, α1) = E−1

[
u2 E

[ _
θ1(y, α1)

]]
,

⇒
_
θ2(y, α1) = E−1

[
u2 E

[
(2− α1)

[
y2

2! −
y3

3! −
y4

4!

]]]
,

⇒
_
θ2(y, α1) = (2− α1) E−1

[
u2 E

[
y2

2!
− y3

3!
− y4

4!

]]
,

⇒
_
θ2(y, α1) = (2− α1) E−1

[
u2
[
u4 − u5 − u6

]]
,

⇒
_
θ2(y, α1) = (2− α1) E−1

[
u6 − u7 − u8

]
,
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⇒
_
θ2(y, α1) = (2− α1)

[
y4

4!
− y5

5!
− y6

6!

]
.

_
θ3(y, α1):

_
θ3(y, α1) = E−1

[
u2 E

[ _
θ2(y, α1)

]]
,

⇒
_
θ3(y, α1) = E−1

[
u2 E

[
(2− α1)

[
y4

4! −
y5

5! −
y6

6!

]]]
,

⇒
_
θ3(y, α1) = (2− α1) E−1

[
u2 E

[
y4

4!
− y5

5!
− y6

6!

]]
,

⇒
_
θ3(y, α1) = (2− α1) E−1

[
u2
[
u6 − u7 − u8

]]
,

⇒
_
θ3(y, α1) = (2− α1) E−1

[
u8 − u9 − u10

]
,

_
θ3(y, α1) = (2− α1)

[
y6

6!
− y7

7!
− y8

8!

]
.

Finally: {
θ(y, α1) = θ0(y, α1) + θ1(y, α1) + θ2(y, α1) + θ3(y, α1) + . . .
_
θ(y, α1) =

_
θ0(y, α1) +

_
θ1(y, α1) +

_
θ2(y, α1) +

_
θ3(y, α1) + . . .

θ(y, α1) = α1

(
1− y− y2

2

)
+ α1

[
y2

2! −
y3

3! −
y4

4!

]
+α1

[
y4

4! −
y5

5! −
y6

6!

]
+α1

[
y6

6! −
y7

7! −
y8

8!

]
+ . . .

θ(y, α1) = a – ay− 1
6 ay3 − 1

120 ay5

− 1
5040 ay7 − 1

362880 ay9

− 1
39916800 ay11

− 1
6227020800 ay13,

_
θ(y, α1) = (2− α1)

(
1− y− y2

2

)
+ (2− α1)

[
y2

2! −
y3

3! −
y4

4!

]
+(2− α1)

[
y4

4! −
y5

5! −
y6

6!

]
+(2− α1)

[
y6

6! −
y7

7! −
y8

8!

]
+ . . .

_
θ(y, α1) = 2 – a + (−2 + a) ∗ y

+
(
− 1

3 + a
6

)
y3 +

(
− 1

60 + a
120

)
y5

+
(
− 1

2520 + a
5040

)
y7 +

(
− 1

181440 + a
362880

)
y9

+
(
− 1

19958400 + a
39916800

)
y11

+
(
− 1

3113510400 + a
6227020800

)
y13.{

θ(y, α1) = α1 [1− sinh y],
_
θ(y, α1) = (2− α1) [1− sinh y].

Observation 2. Via Table 4, the comparison of approx. and exact solutions regarding the lower
bound are provided.
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Table 4. Comparison of Approx. and Exact Solutions regarding Lower Bound.

a = 0.1 a = 0.5

y Approx. Exact Abs. Err. Approx. Exact Abs. Err.

0.1 0.089983 0.089983 0 0.449916 0.449916 0
0.2 0.079866 0.079866 0 0.399331 0.399331 1.00 × 10−10

0.3 0.069547 0.069547 1.00 × 10−11 0.3477398533 0.347739 0

In Figure 7, the approximated solution for the lower bound is notified. In Figure 8, the exact
solution for the lower bound regarding is provided. Via Table 5, the comparison of approx. and exact
solutions regarding the upper bound are provided. In Figure 9, the approximated solution for the
upper bound is notified. In Figure 10, the exact solution for the upper bound is notified.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 21 of 29 
 

 

Table 5. Comparison of Approx. and Exact Solutions regarding Upper Bound. 

 𝒂 = 0.1 𝒂 = 0.5 𝐲 Approx. Exact Abs. Err. Approx. Exact Abs. Err. 
0.1 1.709683175 1.709683175 0 1.349749875 1.349749875 0 
0.2 1.517461595 1.517461595 0 1.197995996 1.197995996 0 
0.3 1.321411443 1.321411443 0 1.043219560 1.043219560 0 

 
Figure 7. Approximated solution for lower bound regarding Example 2. 

 
Figure 8. Exact solution for lower bound regarding Example 2. 

 
Figure 9. Approximated solution for upper bound regarding Example 2. 

Figure 7. Approximated solution for lower bound regarding Example 2.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 21 of 29 
 

 

Table 5. Comparison of Approx. and Exact Solutions regarding Upper Bound. 

 𝒂 = 0.1 𝒂 = 0.5 𝐲 Approx. Exact Abs. Err. Approx. Exact Abs. Err. 
0.1 1.709683175 1.709683175 0 1.349749875 1.349749875 0 
0.2 1.517461595 1.517461595 0 1.197995996 1.197995996 0 
0.3 1.321411443 1.321411443 0 1.043219560 1.043219560 0 

 
Figure 7. Approximated solution for lower bound regarding Example 2. 

 
Figure 8. Exact solution for lower bound regarding Example 2. 

 
Figure 9. Approximated solution for upper bound regarding Example 2. 

Figure 8. Exact solution for lower bound regarding Example 2.



Fractal Fract. 2023, 7, 650 21 of 28

Table 5. Comparison of Approx. and Exact Solutions regarding Upper Bound.

a = 0.1 a = 0.5

y Approx. Exact Abs. Err. Approx. Exact Abs. Err.

0.1 1.709683175 1.709683175 0 1.349749875 1.349749875 0
0.2 1.517461595 1.517461595 0 1.197995996 1.197995996 0
0.3 1.321411443 1.321411443 0 1.043219560 1.043219560 0
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Example 3. Considered the fuzzy linear Volterra integral equation as follows: 𝜃(𝑦, 𝛼ଵ) = ℎ(𝑦, 𝛼ଵ) + ׬ 𝜃(𝑠, 𝛼ଵ)𝑑𝑠.௬଴   (9)

where, ℎ(𝑦, 𝛼ଵ) = [𝛼ଵ − 1, 1 − 𝛼ଵ]𝑦. 
Exact solution: 𝜃(𝑦, 𝛼ଵ) = [𝛼ଵ − 1, 1 − 𝛼ଵ] (sinh 𝑦 + cosh 𝑦 − 1). 

⎩⎪⎨
⎪⎧𝜃(𝑦, 𝛼ଵ) = ℎ(𝑦, 𝛼ଵ) + න  𝜃(𝑠, 𝛼ଵ)𝑑𝑠,௬

଴𝜃(𝑦, 𝛼ଵ) = ℎ(𝑦, 𝛼ଵ) + න  𝜃(𝑠, 𝛼ଵ)𝑑𝑠.௬
଴

 

Applying the Elzaki transform: 

⎩⎪⎨
⎪⎧𝐸ൣ𝜃(𝑦, 𝛼ଵ)൧ = 𝐸ൣℎ(𝑦, 𝛼ଵ)൧ + 𝐸 ቈන  𝜃(𝑠, 𝛼ଵ)𝑑𝑠௬

଴ ቉ ,
𝐸ൣ𝜃(𝑦, 𝛼ଵ)൧ = 𝐸ൣℎ(𝑦, 𝛼ଵ)൧ + 𝐸 ቈන  𝜃(𝑠, 𝛼ଵ)𝑑𝑠௬

଴ ቉ . 

⎩⎪⎨
⎪⎧𝐸ൣ𝜃(𝑦, 𝛼ଵ)൧ = 𝐸[(𝛼ଵ − 1)𝑦] + 𝐸 ቈන  𝜃(𝑠, 𝛼ଵ)𝑑𝑠௬

଴ ቉ ,
𝐸ൣ𝜃(𝑦, 𝛼ଵ)൧ = 𝐸[(1 − 𝛼ଵ)𝑦] + 𝐸 ቈන  𝜃(𝑠, 𝛼ଵ)𝑑𝑠௬

଴ ቉ . 

⎩⎪⎨
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Example 3. Considered the fuzzy linear Volterra integral equation as follows:

θ(y, α1) = h(y, α1) +
∫ y

0
θ(s, α1)ds. (9)

where, h(y, α1) = [α1 − 1, 1− α1]y.
Exact solution: θ(y, α1) = [α1 − 1, 1− α1](sinh y + cosh y− 1).{

θ(y, α1) = h(y, α1) +
∫ y

0 θ(s, α1)ds,
_
θ(y, α1) =

_
h(y, α1) +

∫ y
0

_
θ(s, α1)ds.
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Applying the Elzaki transform: E[θ(y, α1)] = E[h(y, α1)] + E
[∫ y

0 θ(s, α1)ds
]
,

E
[_
θ(y, α1)

]
= E

[_
h(y, α1)

]
+ E

[∫ y
0

_
θ(s, α1)ds

]
.

 E[θ(y, α1)] = E[(α1 − 1)y] + E
[∫ y

0 θ(s, α1)ds
]
,

E
[_
θ(y, α1)

]
= E[(1− α1)y] + E

[∫ y
0

_
θ(s, α1)ds

]
. E[θ(y, α1)] = (α1 − 1)E[y] + E

[∫ y
0 θ(s, α1)ds

]
,

E
[_
θ(y, α1)

]
= (1− α1)E[y] + E

[∫ y
0

_
θ(s, α1)ds

]
.

Applying the convolution theorem for the Elzaki transform: E[θ(y, α1)] = (α1 − 1)E[y] + 1
u E[1]E[θ(y, α1)],

E
[_
θ(y, α1)

]
= (1− α1)E[y] + 1

u E[1]E
[_
θ(y, α1)

]
.

 E[θ(y, α1)] = (α1 − 1) E[y] + u E[θ(y, α1)],

E
[_
θ(y, α1)

]
= (1− α1) E[y] + u E

[_
θ(y, α1)

]
. θ(y, α1) = (α1 − 1)y + E−1[uE[θ(y, α1)]],

_
θ(y, α1) = (1− α1)y + E−1

[
uE
[_
θ(y, α1)

]]
.

Applying ADM:
∞
∑

i=0
θi(y, α1) = (α1 − 1)y + E−1

[
uE
[

∞
∑

i=0
θi(y, α1)

]]
,

∞
∑

i=0

_
θi(y, α1) = (1− α1)y + E−1

[
u E
[

∞
∑

i=0

_
θi(y, α1)

]]
.



θ0(y, α1) + θ1(y, α1) + θ2(y, α1) + θ3(y, α1) + . . . = (α1 − 1)y

+E−1[uE
[
θ0(y, α1) + θ1(y, α1) + θ2(y, α1) + θ3(y, α1) + . . .

]]
,

_
θ0(y, α1) +

_
θ1(y, α1) +

_
θ2(y, α1) +

_
θ3(y, α1) + . . . = (1− α1)y+

E−1
[
uE
[ _
θ0(y, α1) +

_
θ1(y, α1) +

_
θ2(y, α1) +

_
θ3(y, α1) + . . .

]]
.

θ0(y, α1) = (α1 − 1)y,

θ1(y, α1) = E−1[uE
[
θ0(y, α1)

]]
,

θ2(y, α1) = E−1[uE
[
θ1(y, α1)

]]
,

θ3(y, α1) = E−1[uE
[
θ2(y, α1)

]]
,

...
θn+1(y, α1) = E−1[uE

[
θn(y, α1)

]]
, n = 0, 1, 2, 3, . . .
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

_
θ0(y, α1) = (1− α1)y,

_
θ1(y, α1) = E−1

[
uE
[ _
θ0(y, α1)

]]
,

_
θ2(y, α1) = E−1

[
uE
[ _
θ1(y, α1)

]]
,

_
θ3(y, α1) = E−1

[
uE
[ _
θ2(y, α1)

]]
,

...
_

θn+1(y, α1) = E−1
[
uE
[ _
θn(y, α1)

]]
, n = 0, 1, 2, 3, . . .

The calculation for the lower bound:

θ0(y, α1) : θ0(y, α1) = (α1 − 1)y.

θ1(y, α1) : θ1(y, α1) = E−1[uE
[
θ0(y, α1)

]]
,

⇒ θ1(y, α1) = E−1[uE[(α1 − 1)y]],

⇒ θ1(y, α1) = (α1 − 1)E−1[uE[y]],

⇒ θ1(y, α1) = (α1 − 1)E−1
[
uu3

]
,

⇒ θ1(y, α1) = (α1 − 1)E−1
[
u4
]
,

⇒ θ1(y, α1) = (α1 − 1)
(

y2

2!

)
.

θ2(y, α1) :θ2(y, α1) = E−1[uE
[
θ1(y, α1)

]]
,

⇒ θ2(y, α1) = E−1
[
uE
[
(α1 − 1)

(
y2

2!

)]]
,

⇒ θ2(y, α1) = (α1 − 1)E−1
[

uE
[

y2

2!

]]
,

⇒ θ2(y, α1) = (α1 − 1)E−1
[
uu4

]
,

⇒ θ2(y, α1) = (α1 − 1)E−1
[
u5
]
,

⇒ θ2(y, α1) = (α1 − 1)
(

y3

3!

)
.

θ3(y, α1) :θ3(y, α1) = E−1[uE
[
θ2(y, α1)

]]
,

⇒ θ3(y, α1) = E−1
[
uE
[
(α1 − 1)

(
y3

3!

)]]
,

⇒ θ3(y, α1) = (α1 − 1)E−1
[

uE
[

y3

3!

]]
,

⇒ θ3(y, α1) = (α1 − 1)E−1
[
uu5

]
,

⇒ θ3(y, α1) = (α1 − 1)E−1
[
u6
]
,
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⇒ θ3(y, α1) = (α1 − 1)
(

y4

4!

)
.

The calculation for the upper bound:
_
θ0(y, α1) :

_
θ0(y, α1) = (1− α1)y.

_
θ1(y, α1) :

_
θ1(y, α1) = E−1

[
uE
[ _
θ0(y, α1)

]]
,

⇒
_
θ1(y, α1) = E−1[uE[(1− α1)y]],

⇒
_
θ1(y, α1) = (1− α1)E−1[uE[y]],

⇒
_
θ1(y, α1) = (1− α1)E−1

[
uu3

]
,

⇒
_
θ1(y, α1) = (1− α1)E−1

[
u4
]
,

⇒
_
θ1(y, α1) = (1− α1)

(
y2

2!

)
.

_
θ2(y, α1) :

_
θ2(y, α1) = E−1

[
uE
[ _
θ1(y, α1)

]]
,

⇒
_
θ2(y, α1) = E−1

[
uE
[
(1− α1)

(
y2

2!

)]]
,

⇒
_
θ2(y, α1) = (1− α1)E−1

[
uE
[

y2

2!

]]
,

⇒
_
θ2(y, α1) = (1− α1)E−1

[
uu4

]
,

⇒
_
θ2(y, α1) = (1− α1)E−1

[
u5
]
,

_
θ3(y, α1) :

_
θ3(y, α1) = E−1

[
uE
[ _
θ2(y, α1)

]]
,

⇒
_
θ3(y, α1) = E−1

[
uE
[
(1− α1)

(
y3

3!

)]]
,

⇒
_
θ3(y, α1) = (1− α1)E−1

[
uE
[

y3

3!

]]
,

⇒
_
θ3(y, α1) = (1− α1)E−1

[
uu5

]
,

⇒
_
θ3(y, α1) = (1− α1)E−1

[
u6
]
,

⇒
_
θ3(y, α1) = (1− α1)

(
y4

4!

)
.

Finally: {
θ(y, α1) = θ0(y, α1) + θ1(y, α1) + θ2(y, α1) + θ3(y, α1) + . . .
_
θ(y, α1) =

_
θ0(y, α1) +

_
θ1(y, α1) +

_
θ2(y, α1) +

_
θ3(y, α1) + . . .
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

θ(y, α1) = (α1 − 1)y + (α1 − 1)
(

y2

2!

)
+ (α1 − 1)

(
y3

3!

)
+ (α1 − 1)

(
y4

4!

)
+ . . .

θ(y, α1) = (a− 1)y +
(

a
2 −

1
2

)
y2

+
(

a
6 −

1
6

)
y3 +

(
a

24 −
1

24

)
y4

+
(

a
120 −

1
120

)
y5 +

(
a

720 −
1

720

)
y6

+
(

a
5040 −

1
5040

)
y7 +

(
a

40320 −
1

40320

)
y8

+
(

a
362880 −

1
362880

)
y9

+
(

a
3628800 −

1
3628800

)
y10

+
(

a
39916800 −

1
39916800

)
y11

+
(

a
479001600 −

1
479001600

)
y12

+
(

a
6227020800 −

1
6227020800

)
y13

+
(

a
87178291200 −

1
87178291200

)
y14,

_
θ(y, α1) = (1− α1)y + (1− α1)

(
y2

2!

)
+ (1− α1)

(
y3

3!

)
+ (1− α1)

(
y4

4!

)
+ . . .

_
θ(y, α1) = (−a + 1)y +

(
− a

2 + 1
2

)
y2

+
(
− a

6 + 1
6

)
y3 +

(
− a

24 + 1
24

)
y4

+
(
− a

120 + 1
120

)
y5 +

(
− a

720 + 1
720

)
y6

+
(
− a

5040 + 1
5040

)
y7 +

(
− a

40320 + 1
40320

)
y8

+
(
− a

362880 + 1
362880

)
y9

+
(
− a

3628800 + 1
3628800

)
y10

+
(
− a

39916800 + 1
39916800

)
y11

+
(
− a

479001600 + 1
479001600

)
y12

+
(
− a

6227020800 + 1
6227020800

)
y13

+
(
− a

87178291200 + 1
87178291200

)
y14.{

θ(y, α1) = (α1 − 1)[cosh y + sinh y− 1],
_
θ(y, α1) = (1− α1)[cosh y + sinh y− 1].

Observation 3. Via Table 6, the comparison of the approx. and exact solutions regarding the lower
bound are mentioned.

Table 6. Comparison of Approx. and Exact Solutions regarding Lower Bound.

a = 0.1 a = 0.5

y Approx. Exact Abs. Err. Approx. Exact Abs. Err.

0.1 −0.094653 −0.094653 7.00 × 10−11 −0.052585 −0.052585 3.00 × 10−11

0.2 −0.199262 −0.199262 2.00 × 10−10 −0.110701 −0.110701 0
0.3 −0.314872 −0.314872 5.00 × 10−10 −0.174929 −0.174929 3.00 × 10−10
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In Figure 11, the approximated solution for the lower bound is provided. In Figure 12, the
exact solution for the lower bound is notified. Via Table 7, the comparison of the approx. and exact
solutions regarding the upper bound are mentioned. Via Figure 13, the approximated solution for
the upper bound is notified. Via Figure 14, the exact solution for the upper bound is mentioned.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 27 of 29 
 

 

Table 6. Comparison of Approx. and Exact Solutions regarding Lower Bound. 

 𝒂 = 0.1 𝒂 = 0.5 𝐲 Approx. Exact Abs. Err. Approx. Exact Abs. Err. 
0.1 −0.094653 −0.094653 7.00 × 10−11 −0.052585 −0.052585 3.00 × 10−11 
0.2 −0.199262 −0.199262 2.00 × 10−10 −0.110701 −0.110701 0 
0.3 −0.314872 −0.314872 5.00 × 10−10 −0.174929 −0.174929 3.00 × 10−10 

Table 7. Comparison of Approx. and Exact Solutions regarding Upper Bound. 

 𝒂 = 0.1 𝒂 = 0.5 𝐲 Approx. Exact Abs. Err. Approx. Exact Abs. Err. 
0.1 0.094653 0.094653 7.00 × 10−11 0.052585 0.052585 3.00 × 10−11 
0.2 0.199262 0.199262 2.00 × 10−10 0.110701 0.110701 0 
0.3 0.314872 0.314872 5.00 × 10−10 0.174929 0.174929 3.00 × 10−10 

 
Figure 11. Approximated solution for lower bound regarding Example 3. 

 
Figure 12. Exact solution for lower bound regarding Example 3. 

Figure 11. Approximated solution for lower bound regarding Example 3.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 27 of 29 
 

 

Table 6. Comparison of Approx. and Exact Solutions regarding Lower Bound. 

 𝒂 = 0.1 𝒂 = 0.5 𝐲 Approx. Exact Abs. Err. Approx. Exact Abs. Err. 
0.1 −0.094653 −0.094653 7.00 × 10−11 −0.052585 −0.052585 3.00 × 10−11 
0.2 −0.199262 −0.199262 2.00 × 10−10 −0.110701 −0.110701 0 
0.3 −0.314872 −0.314872 5.00 × 10−10 −0.174929 −0.174929 3.00 × 10−10 

Table 7. Comparison of Approx. and Exact Solutions regarding Upper Bound. 

 𝒂 = 0.1 𝒂 = 0.5 𝐲 Approx. Exact Abs. Err. Approx. Exact Abs. Err. 
0.1 0.094653 0.094653 7.00 × 10−11 0.052585 0.052585 3.00 × 10−11 
0.2 0.199262 0.199262 2.00 × 10−10 0.110701 0.110701 0 
0.3 0.314872 0.314872 5.00 × 10−10 0.174929 0.174929 3.00 × 10−10 

 
Figure 11. Approximated solution for lower bound regarding Example 3. 

 
Figure 12. Exact solution for lower bound regarding Example 3. 
Figure 12. Exact solution for lower bound regarding Example 3.

Table 7. Comparison of Approx. and Exact Solutions regarding Upper Bound.

a = 0.1 a = 0.5

y Approx. Exact Abs. Err. Approx. Exact Abs. Err.

0.1 0.094653 0.094653 7.00 × 10−11 0.052585 0.052585 3.00 × 10−11

0.2 0.199262 0.199262 2.00 × 10−10 0.110701 0.110701 0
0.3 0.314872 0.314872 5.00 × 10−10 0.174929 0.174929 3.00 × 10−10



Fractal Fract. 2023, 7, 650 27 of 28Fractal Fract. 2023, 7, x FOR PEER REVIEW 28 of 29 
 

 

 
Figure 13. Approximated solution for upper bound regarding Example 3. 

 
Figure 14. Exact solution for upper bound regarding Example 3. 

7. Conclusions 
The fuzzy Volterra integral equations were successfully handled in this article using 

series-type analytical solutions. The Elzaki ADM general approach is utilized for the nec-
essary reasons, and two sequences of upper and lower limit solutions are fetched. Then, 
we put our proposed technique to the test using three separate cases. It is also emphasized 
that a simpler method may be used to obtain the same result. The findings show that the 
Elzaki ADM is an effective tool for solving linear and nonlinear fuzzy integral equation 
problems. Using this approach, future studies will examine the solutions of the fuzzy 
Volterra integral equations with various types of crisp and fuzzy kernels. The current re-
gime confirms that semi-analytical regimes are extremely convenient for treating fuzzy 
differential equations because no discretization error is introduced throughout the pro-
cess. 

It is concluded that the basic idea can easily be extended to similar problems in phys-
ical science and engineering. However, numerous fuzzy differential equations may be ef-
fectively solved semi-analytically by employing the offered approach. There are still quite 
a few higher-order fuzzy differential equations that are challenging to handle in the rec-
ommended regime, notably the higher-order fuzzy KdV equation and many others. For 
some discontinuous fuzzy differential equations, the Elzaki ADM cannot be utilized. The 
Elzaki ADM can only be used for fuzzy differential equations with the initial and bound-
ary conditions since it is an iterative method. 

Figure 13. Approximated solution for upper bound regarding Example 3.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 28 of 29 
 

 

 
Figure 13. Approximated solution for upper bound regarding Example 3. 

 
Figure 14. Exact solution for upper bound regarding Example 3. 

7. Conclusions 
The fuzzy Volterra integral equations were successfully handled in this article using 

series-type analytical solutions. The Elzaki ADM general approach is utilized for the nec-
essary reasons, and two sequences of upper and lower limit solutions are fetched. Then, 
we put our proposed technique to the test using three separate cases. It is also emphasized 
that a simpler method may be used to obtain the same result. The findings show that the 
Elzaki ADM is an effective tool for solving linear and nonlinear fuzzy integral equation 
problems. Using this approach, future studies will examine the solutions of the fuzzy 
Volterra integral equations with various types of crisp and fuzzy kernels. The current re-
gime confirms that semi-analytical regimes are extremely convenient for treating fuzzy 
differential equations because no discretization error is introduced throughout the pro-
cess. 

It is concluded that the basic idea can easily be extended to similar problems in phys-
ical science and engineering. However, numerous fuzzy differential equations may be ef-
fectively solved semi-analytically by employing the offered approach. There are still quite 
a few higher-order fuzzy differential equations that are challenging to handle in the rec-
ommended regime, notably the higher-order fuzzy KdV equation and many others. For 
some discontinuous fuzzy differential equations, the Elzaki ADM cannot be utilized. The 
Elzaki ADM can only be used for fuzzy differential equations with the initial and bound-
ary conditions since it is an iterative method. 

Figure 14. Exact solution for upper bound regarding Example 3.

7. Conclusions

The fuzzy Volterra integral equations were successfully handled in this article using
series-type analytical solutions. The Elzaki ADM general approach is utilized for the
necessary reasons, and two sequences of upper and lower limit solutions are fetched. Then,
we put our proposed technique to the test using three separate cases. It is also emphasized
that a simpler method may be used to obtain the same result. The findings show that the
Elzaki ADM is an effective tool for solving linear and nonlinear fuzzy integral equation
problems. Using this approach, future studies will examine the solutions of the fuzzy
Volterra integral equations with various types of crisp and fuzzy kernels. The current
regime confirms that semi-analytical regimes are extremely convenient for treating fuzzy
differential equations because no discretization error is introduced throughout the process.

It is concluded that the basic idea can easily be extended to similar problems in
physical science and engineering. However, numerous fuzzy differential equations may
be effectively solved semi-analytically by employing the offered approach. There are still
quite a few higher-order fuzzy differential equations that are challenging to handle in the
recommended regime, notably the higher-order fuzzy KdV equation and many others. For
some discontinuous fuzzy differential equations, the Elzaki ADM cannot be utilized. The
Elzaki ADM can only be used for fuzzy differential equations with the initial and boundary
conditions since it is an iterative method.
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